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A Positive Theory of Income Taxation∗
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Abstract

We explore the consequences of electoral competition for nonlinear income taxation. Our
model is a dynamic version of the standard two-party electoral competition model adapted to non-
linear income taxation. The theory has a number of desirable features. First, equilibria always
exist, even though the set of admissible tax policies is multidimensional. Second, the Nash set
can be characterized generically, and its components give sharp predictions. Third, the features of
equilibrium tax policies depend only on empirically meaningful fundamentals.

Equilibrium tax schedules benefit the more numerous income groups and place the burden of
taxation on income groups with fewer voters. For empirical income distributions, the features
of an equilibrium tax schedule are reminiscent of Director’s law of public income redistribution
(Stigler [39]).
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1. Introduction

Director’s law of income redistribution argues that ‘public expenditures are
made for the primary benefit of the middle classes, and financed with taxes
which are borne in considerable part by the poor and rich’ (Stigler [39], p. 1).
For instance, publicly financed schools and universities, social security benefits,
public housing, and mortgage interest tax deductions for homeowners are often
argued to disproportionately benefit the middle class.

Stigler [39] sketches a theoretical argument whereby the middle class bene-
fited from (1) being in coalition with the rich in the nineteenth century and (2)
entering in coalition with the poor in the twentieth century, as the increase in
the flexibility of taxes and expenditure programs redistributed income increas-
ingly toward lower income classes. This argument is hard to formalize, for it
entails redistribution of income among (at least) three income groups, and it
is well-known that collective decision-making processes modeled as strategic
games with multidimensional action spaces (such as spaces of nonlinear tax
schemes) typically have no (pure-strategy) equilibrium.

The essence of the problem that arises when tax policies are nonlinear can
be grasped in the context of the standard model of two-party competition,
where voters switch support from one candidate to the other if promised a more
favorable policy. When the set of admissible policies is sufficiently rich, this
creates incentives for a bidding war between the parties, which leads to cycling
over alternative platforms. This is a fundamental problem that is not specific
to taxation settings, but rather rooted in Arrow’s impossibility theorem and
intrinsic to environments of collective choice over many dimensions.1 This
argument (or some variation of it) can be used to explain why the constraints
on the set of admissible tax schemes cannot be dispensed with in most of the
literature on positive income taxation.

To overcome this problem, an important part of the existing literature on
voting over income taxes assumes policy spaces that are artificially constrained.
For instance, to be able to make use of the median voter theorem, the seminal
papers of Romer [36], Roberts [34], and Meltzer and Richard [30] consider only
linear tax schemes.2 These studies do not fully account for Director’s law in

1See Austen-Smith and Banks [3] for a general treatment.
2In general, resort to various forms of constraints imposed on the set of admissible tax

schemes for the sole purpose of obtaining a coherent model, namely one for which an equi-
librium can be shown to exist, is pervasive. Despite the constraints, the field has produced
studies that are useful to understand various aspects of the political economy of income
taxation (cf. Romer [36], Roberts [34], and Meltzer and Richard [30], Cukierman and
Meltzer [14], Gouveia and Oliver [19], Snyder and Kramer [38], Marhuenda and Ortuño-
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that redistribution of income via linear tax schedules benefits not only the
middle class (or the median voter) but also the poor.

Models of pork-barrel politics (e.g., Lindbeck and Weibull [25] and Dixit
and Londregan [17]), which build on theories of probabilistic voting (cf. Austen-
Smith and Banks [4] and references therein), can handle nonlinear tax schemes
and relate to Director’s law. In these models, voters have attachments to po-
litical parties that can be loosened through the offer of private consumption in
the form of pork-barrel spending. Lindbeck and Weibull [25] derives a version
of Director’s law under the assumption that the middle class cares less about
the candidates’ personal attributes (and more about the policy implemented)
than the poor and the rich. While Lindbeck and Weibull [25] requires that
voter preferences on ideological aspects of public policy be independent of the
distribution of income, Dixit and Londregan [17] removes this separation be-
tween ideology and income redistribution: as long as the rich and the poor
have a strong ideological affinity for the rightist and the leftist parties, respec-
tively, party loyalties are most likely to be loosened for middle income voters,
who consequently receive the largest strategic transfers.

This paper shows that Director’s law can emerge in a dynamic version of
the standard Downsian model of electoral competition, independently of the
distribution of voter preferences beyond private consumption.

We use Downs’ [18] view that electoral competition is ‘a mechanism whereby
political parties that are engaged in what Schumpeter called a “competitive
struggle for the people’s vote” are obliged to take account of the preference
of the electors for one policy rather than another’ (Barry [5]). In this regard,
we model electoral competition as a standard non-cooperative game played
by two candidates who strive to maximize their vote shares (or their proba-
bility of holding office). Specifically, we extend the static two-party electoral
competition model studied in Carbonell-Nicolau and Ok [11] by allowing the
parties to reveal their tax platforms gradually in more than one period. The
candidates reveal—when it is their turn to do so—small pieces of information
concerning their platform and must commit to any current and past announce-
ments.3,4 We assume a discrete money unit and formulate this scenario as a
finite extensive game. Imposing a smallest money unit ε > 0 means that all
money amounts (tax liabilities, pre-tax income levels, etc.) must be multiples
of ε. This, together with the assumption that, when it is their turn to speak,

Ort́ın ([28],[29]), Roemer [35], Benabou [6], Berliant and Gouveia [7], Austen-Smith [2],
Hindriks [21], Kranich [22], and De Donder and Hindriks [15].)

3This assumption is discussed in Subsection 2.1.
4The dynamical process may be interpreted as a stylized instance of political campaign-

ing.
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the candidates must provide some information (however minimal this infor-
mation may be) about their prospective tax policy, implies that tax functions
are described in finite time. Finiteness of the strategy spaces guarantees the
existence of a subgame perfect equilibrium.

The theory has a number of desirable features. First, equilibria always
exist, even though the set of admissible tax policies is multidimensional. Sec-
ond, the Nash set can be characterized generically, and its components give
sharp predictions. Third, the features of equilibrium tax policies depend only
on empirically meaningful fundamentals—the shape of the income distribution
and the government’s target revenue.

We show that, at each (generic) component of the Nash set, equilibrium
tax schemes lie within a small set of admissible policies that benefit the more
populous voter groups and place the burden of taxation on income groups
with fewer voters. When the income distribution resembles a log-normal den-
sity function, the features of an equilibrium tax schedule are reminiscent of
Director’s law of income redistribution.5

Finally, our model allows for the introduction of sources of voter hetero-
geneity other than pre-tax income, such as marital status, immigration status,
etc., according to which tax structures may discriminate between taxpayers.
Results are obtained for any given partition of the population consisting on
various groups of ‘similar’ individuals (where the relation of similarity is de-
fined in terms of the individuals’ pre-tax income and possibly in terms of other
attributes that may be relevant for tax purposes).

A number of research avenues have been explored to study collective decision-
making under nonlinear tax schemes.6 Nonetheless, the forces at work in our
model—and their implications for equilibrium outcomes and Director’s law—
have (to the best of our knowledge) not been highlighted. We argue that equi-
librium outcomes can be viewed as consequence of the fact that the candidates
have a desire to render their policies ambiguous (or flexible), and contrast this
idea with a related (albeit different) notion: delay of electoral commitment.
The candidates tend to make ambiguous announcements in order to minimize
the amount of tax that is precisely assigned to particular voter groups (or,
in other words, in order to maximize the amount of tax whose incidence is

5On the other hand, the results suggest a u-shaped pattern of effective marginal tax
rates, which is observed in the data on US effective marginal tax rates (see, for instance,
[9]).

6See, for instance, Aumann and Kurz [1], Hettich and Winer [20], Lindbeck and Weibull
[25], Chen [13], Myerson [33], Lizzeri and Persico [26], Laslier and Picard [23], Carbonell-
Nicolau and Klor [10], Carbonell-Nicolau and Ok [11], Dekel, Jackson, and Wolinsky [16],
and Ledyard [24].
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left unspecified). Intuitively, obscuring future moves gives flexibility to shape
policy through time. We believe that our analysis emphasizes effects that are
likely to play a role in more general settings (encompassing, e.g., endogenous
labor supply and party ideology).

The convenience of introducing a discrete money unit in a dynamic model of
electoral competition was first exploited by Dekel, Jackson, and Wolinsky [16].
Our analysis differs from that in [16] in the following respects: in [16], voters’
heterogeneity arises from differences in (observable) preference biases towards
one candidate (or fixed platform), not from differences in initial endowments,
and candidates try to offset the biases by offering money payments (taken
from candidate-specific endowments) to voters, rather than collecting taxes
from different groups. Absent any voter preference bias, the setting in [16]
features N identical voters, and in this case our exercise is not meaningful.
Consequently, our characterization of the effects of income taxation on pre-
tax income distributions is not possible within the setting of [16]. In addition,
unlike [16] we provide a full analysis of the entire set of Nash equilibria of (a
slight perturbation of) the electoral game.

The paper is organized as follows. Section 2 introduces the setup and
discusses the modeling strategy. The results appear in Section 3. Subsection
3.1 contains an example, and the general results are provided in Subsections
3.2 and 3.3. Subsection 3.2.1 furnishes intuition for the general results and
discusses the effects of population grouping on equilibrium outcomes. Section
4 concludes. The proofs are relegated to Section 5.

2. The model

Society consists of a continuum of individuals and two political parties, denoted
as A and B. Let X be a large positive real, and, for +∞ > ε > 0, define

Xε := {0, ε, 2ε, ...} ∩
[
0, X

]
.

The set Xε represents the universe of possible pre-tax income levels (multiples
of ε). We refer to ε as the money unit for Xε.

Fix a nonempty finite set A. The set Aε := Xε × A represents a set of
individual attributes. Each individual is characterized by an element (x, a)
of Aε, which is a description of the individual’s pre-tax income x along with
other attributes a that may be relevant for tax purposes (e.g., single/married,
homeowner/renter, etc.).7

7Imagine a situation where society has identified a partition of the set of all individuals
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A pre-tax income distribution is defined as an element of

D :=

d ∈ ⋃
ε>0

[0, 1]Aε :
∑

(x,a)∈Aε

d(x, a) = 1

 .

A distribution d ∈ D determines the measure d(x, a) of individuals with char-
acteristic (x, a). For d ∈ D, let ε(d) denote the money unit corresponding
to the domain of d. In the remainder of the paper, {d > 0} shall be used to
designate the set of characteristics (x, a) that are assigned positive mass:{

(x, a) ∈ Aε(d) : d(x, a) > 0
}

=: {d > 0} .

Let

M :=

(d, r) : d ∈ D, 0 ≤ r ≤
∑

(x,a)∈Aε(d)

d(x, a)x

 .

Each tuple (d, r) inM consists of an income distribution d and a target revenue
r. A tax policy in (d, r) ∈ M is a map t : {d > 0} → Xε(d) that assigns to
each vector of attributes (x, a) a total tax liability t(x, a) with the property
that 0 ≤ t(x, a) ≤ x for all x ∈ {d > 0}. The first inequality rules out negative
taxation, that is, subsidies.8 The second inequality says that an individual can
never be required to pay more than her endowment. Let P(d,r) represent the
set of all tax policies.

A tax policy t is admissible for (d, r) ∈M if∑
(x,a)

t(x, a)d(x, a) ≥ r.

That is, t is admissible if it collects at least the target revenue r. The set of
all tax policies that are admissible for (d, r) is designated by T(d,r).

such that each element of the partition contains individuals that are identical with respect
to a number of characteristics (pre-tax income, marital status, immigrant status, etc.).
Tax structures cannot discriminate between people belonging to the same element of the
partition, and may discriminate between members of different elements of the partition.
Thus, the partition is a specification of the relation of ‘similarity’ between individuals that is
necessary to objectify the notion of horizontal equity (here we are referring to the traditional
public finance concept of horizontal equity; see Berliant and Strauss [8]). In this paper, we
take this partition as given. In terms of our notation, the population is partitioned into as
many groups as there are elements in Aε, and each (x, a) ∈ Aε can be interpreted as the list
of characteristics (including pre-tax income) shared by the members of group (x, a). (If A
is a singleton, then income is the only source of discrimination.)

8Allowing for subsidies would not change the essence of our results.
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Before the election, each candidate advocates an admissible tax policy, pos-
sibly revealed gradually as follows. There is a number of rounds 1, 2, .... The
candidates take actions in each round as indicated next. Choose (d, r) ∈ M.
In round 1, candidate A announces a mapping f1 ∈ P(d,r). Any such mapping
is called an announcement , and may be interpreted as a way of raising part
(or all) of the required revenue r. By proposing f1, candidate A commits to
levying (at least) f1(x, a) on voter group (x, a). If

∑
(x,a) f1(x, a)d(x, a) < r,

then f1 falls short of collecting the target revenue. In this case, by announc-
ing f1, candidate A reveals only part of her proposed policy. In subsequent
rounds, the candidate will indicate how the remainder of the required rev-
enue, r −

∑
(x,a) f1(x, a)d(x, a), will be collected. Also in round 1, candidate

B makes an announcement g1 ∈ P(d,r), with a similar interpretation. The an-
nouncements are revealed sequentially. Some candidate moves first and then
the opponent takes an action having observed the other player’s move. Na-
ture determines the order of moves. To avoid difficulties generated by an
asymmetric treatment of the players (as will become clear our game features
a second-mover advantage), we shall assume that each candidate has a 50%
chance of moving first.

Again in round 2, nature determines whether A moves first or B does.
Candidate A’s second announcement, f2 ∈ P(d,r), is made public in round 2,
after A’s observation of B’s first announcement, g1, and possibly B’s second
announcement (if A moves second in round 2); f2 must be consistent with pre-
vious announcements made by A in the sense that f2 ≥ f1.

9 After observing
A’s first proposal and possibly A’s second move (if B moves second in round
2), candidate B makes a second announcement, g2, also in round 2. This an-
nouncement must be consistent with B’s first proposal, g1, as specified above.
The parties make proposals according to this time frame, each proposal being
consistent with previous proposals as indicated. In each round, each candidate
has a 50% chance of moving first.10

In any given period, a candidate’s announcement f is final if f ∈ T(d,r).
With a final announcement, a candidate discloses all information about its ad-
vocated tax policy and commits to its implementation, conditional on winning
the election. The sequence of campaign promises reaches an end when both
parties have made a final announcement.11

9This assumption is discussed in Subsection 2.1.
10We know that most of our results would prevail if actions were taken simultaneously

in each round, or if nature chose whether the moves are sequential or simultaneous at the
beginning of each round. In the latter case, the probability of sequential moves could be
history-dependent.

11Observe that an announcement f ∈ P(d,r) could also be interpreted as a “promise” that
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We assume that, when it is one candidate’s turn to make an announcement,
this candidate must give new information about its prospective policy. More
precisely, given two successive announcements f and g of the same candidate
such that f is not final, g 6= f .12

After each candidate has fully specified a final proposal, the election takes
place. Each voter casts a ballot for one of the two candidates. The candidate
that receives the most votes wins the election and implements her proposed
tax policy. Ties are broken via an equal probability rule. Voters vote for the
candidate whose final announcement most favors their economic interests. In
other words, each voter chooses the candidate who will enact, if elected, a
tax policy under which the voter’s disposable income is maximal. In case of
indifference, voters toss a fair coin to determine their choice.

The candidates are opportunistic; they wish to maximize their net plural-
ity, which is defined as the difference between their vote share and the vote
share of the opponent. Formally, if (f, g) represents the observed pair of final
announcements, a candidate i receives a payoff of

ui(d,r)(f, g) :=
∑

(x,a):f(x,a)<g(x,a)

d(x, a)−
∑

(x,a):f(x,a)>g(x,a)

d(x, a), (1)

if i = A, and ui(d,r)(f, g) := −uA(d,r)(f, g) if i = B.13

The above scenario can be embedded in the formal definition of a two-player
zero-sum extensive game G(d,r) parameterized by an income distribution d and
a revenue requirement r.14 We focus on the notion of Nash equilibrium and
subgame perfect equilibrium.

each group of individuals (x, a) will pay at most f(x, a) plus the maximum additional tax
this group could face given what is left to be collected.

12This assumption is discussed in Subsection 2.1.
13Other standard candidate objectives include the vote share and the probability of win-

ning. Assuming that the candidates maximize the vote share would not change any of the
results of the paper. Moreover, if uA(d,r) were defined as a continuous, strictly increasing, and
symmetric around zero transformation of the expression in (1), and similarly for uB(d,r), all
the results would remain unaltered. Observe that this transformation permits a pointwise
approximation of the candidates’ objective to the probability of winning. Finally, Theorem
1 is also true when the candidates’ objective is exactly the probability of winning (and not
just a pointwise approximation to it).

14Observe that the set of all possible histories is finite. Further, the game has finite
horizon (i.e., all histories are finite).
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2.1. Remarks on the modeling strategy

The model proposed here is in the tradition of the standard two-party electoral
competition model (Downs [18]). There is, however, an important difference
between the standard model and our model: the latter is richer than the former
in the sense that in the current model candidates have more flexibility in the
strategies they can use. For example, in the standard model, which is static,
the candidates must completely reveal their policy in one shot; by contrast,
in our model, the candidates could completely reveal their policy in the first
period if they wished, but may decide to wait to do so. It turns out that
this extra flexibility matters in that, in equilibrium, the players choose to wait
(more on this in Subsection 2.2).

In light of the above comparison between models, we can view our assump-
tion that the candidates must give new information about their prospective
tax policy (each time it is their turn to make an announcement) as a weak-
ening of the standard assumption that the candidates must completely reveal
their policy in one period.15

On the other hand, the assumption that the candidates must commit to
past announcements is also made in the standard model, where the candidates
are not allowed to change their actions once a policy has been chosen. It is
natural to assume that platform adjustments are costly in that they entail
reversing previous promises. In this paper (as in virtually all the literature on
electoral competition with commitment), we assume that it is too costly for
the candidates to rectify past moves.16

Finally, our model is one possible extension of the static model towards
models of gradual commitment, but there are obviously alternative formula-
tions. While the analysis of some of these alternatives lies outside the scope
of this paper, we discuss possible variants in Sections 3.2.1 and 4.

2.2. Second-mover advantage

The static (one-period) version of our model studied in Carbonell-Nicolau and
Ok [11] lacks a pure-strategy equilibrium. In fact, given any admissible tax

15Alternatively, one may assume that candidates may remain silent, each time it is their
turn to speak, at a cost. If the total cost incurred by a candidate is convex in the number of
times the candidate fails to provide new information, then the game can be shown to possess
an equilibrium. We conjecture that in this new game Theorem 1 would remain intact.

16One could envisage a game where, in each round, each candidate must either respect
foregoing announcements or incur a cost to amend them. This is related to the variant
proposed in footnote 15. We conjecture that the new game would not affect Theorem 1. A
thorough analysis is left for future research.
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function, it is always possible to find another tax policy meeting the revenue
requirement and defeating the original tax function under pairwise majority
voting. This would also be true here (at least for sufficiently small money units)
if the parties were constrained to fully reveal their tax policy in one period.
This means that each candidate i would like her opponent to completely reveal
their tax policy in the first round, since then i could commit to some tax
platform that defeats the opponent’s policy, after observing the opponent’s
first move.17 Obviously, in equilibrium, the opponent would never find it
optimal to make a final announcement in the first round. Thus, there is an
incentive for the candidates to reveal little information in each round, thereby
gaining leverage to react to the opponent’s announcements in future rounds.18

The intuition behind our main results is related to the second-mover ad-
vantage. This is discussed in Section 3.2.1.

3. Results

In the present model, the pre-tax income distribution is exogenously given, and
therefore individuals cannot escape excessive tax burdens by reducing their
labor supply. For this reason, in the equilibria described here, and absent any
limits on the extent to which individuals may be taxed, smaller voter groups
tend to be expropriated. This is obviously unrealistic and would not occur in a
model à la Mirrlees [32], with endogenous labor supply. Since the introduction
of distortionary taxation lies outside the scope of this paper, one might for
now be content with the assumption that, for each group (x, a), there is a
maximum (exogenously given) tax liability λ(x,a) ∈ Xε(d) that may be imposed
on group (x, a). This assumption would not change the results of the paper,
yet we have omitted it to ease notation.19

Our first result states, roughly speaking, that G(d,r) possesses a subgame
perfect equilibrium whose corresponding tax function is such that taxes are
borne by less populous voter groups. Before stating the general result, we
present a special case, with three income groups, which illustrates the idea
behind the proof of Theorem 1.

17Even if the second mover made a final announcement in the first round, it would be
possible for the first mover (for sufficiently small money units) to reveal little information
in the first round and then choose, in the second round (and after observing the opponent’s
final policy), some tax scheme ensuring victory.

18This feature of the model contrasts with the first-mover advantage exhibited by other
extensive forms, such as the bargaining game of alternating offers and the Stackelberg game.

19The results of Section 3, stated (with the obvious modifications) in terms of the upper
bounds λ(x,a), remain valid.
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3.1. An example

In this example we assume that the set A of individual attributes other than
income is a singleton, so that the tax system does not discriminate between
individuals whose pre-tax endowment is identical.

Consider a population consisting of nine individuals, two of them endowed
with (pre-tax) income $3, three of them endowed with $1 each, and the remain-
ing four in possession of $2 each.20 Let d denote the corresponding pre-tax
income distribution. Suppose that the money unit is set at ε(d) = $1.

Say r = 7. Observe that in this case no admissible tax policy leaves the
two poorest groups untaxed. We shall first construct one equilibrium profile
for this case and then look at the associated equilibrium tax policy. Let us
suppose that candidate B plays only strategies that increase taxes by $1 in
each round. This simplifies the description of the following strategy of A, but
a similar treatment is possible if B plays any kind of strategy. Throughout
the sequel, we consider paths of play in which player A is always the first
mover (the worst-case scenario for this player). By determining A’s payoffs
along these paths at a given strategy profile, we can find a lower bound for
this player’s payoff in the game.

Suppose that A starts announcing that $1 will be collected from the two
richest individuals. Consider a path of play where B’s first-round action does
not coincide with A’s announcement. In this case A can imitate B’s first-round
action and proceed as follows in subsequent rounds:

• If B keeps collecting revenue from groups other than the richest group,
A can keep imitating B’s moves until A falls $m short of meeting the
revenue requirement, where m ≤ 4. At this point, A can finish collecting
the revenue from the richest group. This clearly secures a payoff of at
least 0 against B’s moves.

• If B chooses to collect $1 from the richest group in some round t (and, in
previous rounds, A has imitated B’s actions) then at the end of round t
both announcements coincide, and both candidates’ collected revenue is
at least $5, so A can meet the revenue constraint by incrementing taxes
on the richest group, and this guarantees a payoff of at least 0.

Now consider a path of play where B’s first-round action coincides with A’s
initial announcement. Suppose that in the second round A levies an additional
dollar on the richest group. If B’s second-round action does not coincide with

20While this distribution is not exactly a member of D, it can be transformed into a
member of D without altering the essence of the example.
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A’s second announcement, A can proceed as before to secure a payoff of at
least 0. If, on the other hand, B’s second-round action coincides with A’s
second announcement, A can meet target revenue by levying an additional
dollar on the poorest group. This gives A a minimum payoff of 0.

We have argued that an action plan specifying, in each round, an announce-
ment for A contingent on B’s action in the preceding round may be obtained
that secures a payoff of at least 0 against any strategy of B. While this ac-
tion plan does not constitute a full contingent plan for A, one can prove that
an equilibrium strategy profile µ in G(d,r) may be constructed in which both
players’ moves along the equilibrium path are consistent with the said action
plan. This results in the implementation of a tax policy t satisfying

t(x) =


3 if x = 3,

1 if x = 1,

0 if x = 2.

Observe that t exempts the more populated group from taxation.
To see how this argument interacts with the choice of a money unit, observe

that if ε(d) = $0.01 the previous argument gives an equilibrium tax policy

t(x) =


3.5 if x = 3,

0 if x = 1,

0 if x = 2,

which exempts the two more populated groups from taxation. Thus, smaller
money units lead to equilibrium tax policies that are closer to the tax func-
tion that maximizes the number of exemptions on the more populous income
groups. This idea appears in Theorem 1 (which generalizes this example to ar-
bitrary income distributions) in terms of an error “band” around the said tax
function: given an (arbitrarily small) error margin, there exists a sufficiently
small money unit such that there is an equilibrium tax policy within the cor-
responding neighborhood of the tax function that maximizes exemptions on
the more populous income groups.

3.2. Characterizing an equilibrium

Let Ẽ(d,r) be the set of all admissible tax policies t ∈ T(d,r) such that for all
(x, a),

t(x, a) > 0⇒ t|{(y,b):d(y,b)<d(x,a)} = i|{(y,b):d(y,b)<d(x,a)},
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where i : {d > 0} → R is defined by i(x, a) := x.21 The set Ẽ(d,r) contains those
admissible tax policies that tax more populous groups only if less numerous
groups have been taxed to the fullest extent. Define

E(d,r) :=
{
t ∈ Ẽ(d,r) : there is no τ ∈ T(d,r) with τ � t

}
.

Thus, E(d,r) is the set of admissible tax policies that levy r on the less numerous
groups, leaving the more numerous groups untaxed.

The result below depends on a parameter +∞ > η > 0, which may be
interpreted as an error margin for the graph of an equilibrium tax policy.
Given η and a model (d, r) ∈ M, consider the following statement: the tax
policy implemented at a subgame perfect equilibrium of G(d,r) lies in E(d,r) with
an error margin of η or, more precisely, it lies in Nη

(
E(d,r)

)
.22 Obviously, if η is

very large, then the assertion is vacuous. If, on the other hand, η is small, then
the equilibrium policy lies (approximately) in E(d,r), and this characterizes the
equilibrium policy quite sharply, given the ‘smallness’ of E(d,r) within the set
of all admissible tax policies.

We state our result for all the members of a sub-class of models in M,
which depends on η. Roughly speaking, we require that the money unit ε(d)
be sufficiently small relative to the error margin η. This imposes an upper
bound on ε(d) that decreases with the error margin. If, for example, the error
margin η is 100 times the money unit ε(d), and ε(d) is taken to be one cent of
a dollar, then Theorem 1 says that the graph of an equilibrium tax schedule
lies within a neighborhood of radius one dollar of an element of E(d,r).

Theorem 1. Suppose that +∞ > η > 0. There exists +∞ > εη > 0 such that
for every (d, r) ∈ M with ε(d) ≤ εη, G(d,r) has a subgame perfect equilibrium
whose corresponding tax policy lies in Nη

(
E(d,r)

)
.

Clearly, the content of Theorem 1 is meaningful only if η is a small number,
and the informativeness of the theorem is inversely related to the size of η. One
can ensure a precise statement by choosing a small η. The following example
illustrates the relationship between the error margin and the magnitude of the
money unit using real data.

Example 1. Figure 1 depicts the US household income distribution for the
year 2004. The data depicted can be presented as an element of D, for some

21Here, t|{(y,b):d(y,b)<d(x,a)} stands for the restriction of t to the domain
{(y, b) : d(y, b) < d(x, a)}, etc.

22Here Nη
(
E(d,r)

)
denotes the set

⋃
t∈E(d,r) Nη(t), where Nη(t) stands for the η-

neighborhood of t in T(d,r) (relative to the sup metric).
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Source: U.S. Census Bureau, Current Population Survey, 2005 Annual Social and
Economic Supplement

Figure 1. US Income Distribution for Households: 
2004
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choice of a money unit. (In this example we assume that the set A of individual
attributes other than income is a singleton, so that the tax system does not
discriminate between individuals whose pre-tax endowment is identical.) Let
this distribution be denoted by dUS, where ε(dUS) = $0.01 (i.e., say that the
money unit is one cent of a dollar). Let rUS be the total amount of taxes
collected by the Internal Revenue Service in 2004.23 If one sets η = $1.74,
then the model (dUS, rUS) is such that the tax policy implemented at some
subgame perfect equilibrium of G(dUS,rUS) lies in Nη

(
E(dUS,rUS)

)
. Thus, if one

takes the money unit to be one cent of a dollar, Theorem 1 gives, with an error
margin of at most $1.74, an equilibrium tax policy in E(dUS,rUS).

Observe the implications of Theorem 1 for the features of the equilibrium
tax policy in a society where the income distribution is of a log-normal type
(Figure 2).24 For this type of distribution, at the equilibrium of Theorem 1,
the tax revenue is collected from the tails of the distribution. This is con-
sistent with Director’s law of public income redistribution, which states that
‘public expenditures are made for the primary benefit of the middle classes,
and financed with taxes which are borne in considerable part by the poor and
rich’ (Stigler [39]).25

3.2.1. Discussion

It is useful to outline some intuition for Theorem 1. Given our discussion
in Subsection 2.2, it may appear that incrementing taxes for smaller groups

23Net collections for individual income tax, IRS Data Book 2004, Table 1.
24This type of distribution is empirically relevant: the fact that income obeys a log-normal

distribution is widespread. The log-normal distribution has the probability density func-
tion

f(x;µ, σ) =
exp

(
−(ln x−µ)2

2σ2

)
xσ
√

2π
,

for x > 0, where µ and σ are the mean and standard deviation of the variable’s logarithm,
respectively. Discrete analogues of f can be defined as follows. Given a partition I =
{(0, δ), [δ, 2δ), ...} of the positive real line into intervals of length δ > 0, the discrete version
fI of f given I is

fI(x;µ, σ) =


1
δ

∫ δ
0
f(y;µ, σ)dy if 0 < x < δ,

1
δ

∫ 2δ

δ
f(y;µ, σ)dy if δ ≤ x < 2δ,
...

...

25On the other hand, the locus of equilibrium marginal tax rates against income is rem-
iniscent of a u-shaped pattern. A first look at some US data (see, for instance, [9]) reveals
that effective marginal tax rates (e.g., for single taxpayers) first decrease and then increase.
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will serve the candidates’ purpose: In each round, the candidates harden their
platforms by incrementing taxes for some voter group, and individuals within
this group are treated symmetrically. Because the size of commitment (mea-
sured in terms of tax revenue) is proportional to the size of the group on which
the tax rate is levied, and the candidates prefer seeing the opponent’s move
before taking an action, incrementing taxes for the smaller groups (as in the
equilibrium of Theorem 1) implies a lesser commitment.

In light of this argument, one may be tempted to conclude that the candi-
dates’ desire to delay electoral commitment is the main driving force behind
Theorem 1. It turns out that this effect alone does not explain the result. In-
deed, there are situations in which incrementing taxes for small groups implies
a higher amount of commitment than incrementing taxes for larger groups.
This is illustrated in the following example.

Suppose that there are three income groups x1 = 1, x2 = 2, and x3 = 3 (xi
denotes group i’s endowment) with sizes .35, .4, and .25, respectively. Suppose
that the revenue requirement is r = .78. It is clear that the revenue cannot
be collected by taxing group x3 only, while it is possible to meet the revenue
requirement by taxing group x2 only. Therefore, if a candidate’s first move is to
increment group x3’s tax liability by ε, this candidate is committing to taxing
not only group x3, but also either group x1 or x2. By contrast, incrementing
group x2 tax liability entails no commitment as to whether other groups will
be taxed. Moreover, note that the size of group x3 plus the size of either x1

or x2 exceeds the size of group x2.
Theorem 1 tells us that, in equilibrium, the candidates start by increment-

ing taxes for the smallest group, in spite of the fact that they could choose
actions that entail less commitment. To see that this strategy cannot be
beaten by a strategy whereby the opponent taxes group x2 only, suppose that
candidate A chooses to increment group x2’s taxes by ε in each round, while
candidate B starts levying taxes on group x3. After the first round, B can
imitate A’s move in the previous round and keep doing this until a point is
reached in which A has collected all revenue, say kε, from group x2, while
B has committed to levying ε on group x3 and (k − 1)ε on group x2. At
this point, if ε is sufficiently small, B can collect what is left to be collected
from group x3, thereby ensuring that the members of group x2 will vote for
B. Given A’s position, this gives electoral victory to B.

Rather than delaying commitment, the candidates tend to make ambigu-
ous announcements in order to minimize the amount of tax that is precisely
assigned to particular voter groups (or, in other words, in order to maximize
the amount of tax whose incidence is left unspecified). Intuitively, obscuring
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future moves gives flexibility to shape policy through time.26

We conclude this section with a discussion of the effects of population
grouping on equilibrium outcomes.

Even though our model can handle partitions of the population that depend
not only on income but also on an arbitrary set of attributes other than income,
in the sequel we shall confine our attention to partitions based solely on income,
since these partitions correspond to a stylized case in which our theory relates
to Director’s law.27

Suppose that the true (pre-tax) distribution of income is represented by a
(Borel) probability measure p over some subset S of R+.28 One can evaluate
the robustness of equilibrium tax policies to the choice of discrete grouping
by posing (and answering) the following question: are there drastic changes
in equilibrium tax policies for perturbations of p with finite support that are
“close” to p? (Evidently, our model can only handle probability measures with
finite support.)

If p itself has finite support and S (interpreted as the universe of income
levels) is finite, then any slight perturbation of p relative to standard topologies
for the set of (Borel) probability measures on S will give equilibria that are
close to equilibria of the game induced by p.29

To be a bit more precise, consider any sequence (pn) of probability measures
on S converging weakly to p, and let r be target revenue, so that each (pn, r)
can be identified with a member of M (looking at sequences (pn, rn) with
rn → r would leave our argument intact). Then the equilibrium outcomes
characterized by Theorem 1 are similar along the sequence (pn, r) for n large,
and the corresponding sequence of equilibrium tax policies in T(pn,r) converges
(when T(pn,r) is endowed, for example, with the sup metric) to an equilibrium
tax policy for the game induced by (p, r).

26The reader may wonder what would happen in a different game whereby the candidates
promise upper bounds to the voter groups. That is, suppose that, starting from an initial
situation where everybody is taxed to the fullest extent, the candidates reduce taxes decre-
mentally up to the point where the required amount of revenue is just barely collected. It
can be shown, at least in the context of an example, that Theorem 1 survives if one changes
the rules of the game according to this story.

27Note however that more generally our theory would be consistent with the tax treatment
of mortgage interest paid by homeowners, as long as the group of beneficiaries of the said
policy is sufficiently numerous. In this case the partition of the population would need to
accommodate attributes other than income.

28Here p can be thought of as the “true” income distribution as (commonly) perceived by
the two candidates.

29One could use, for instance, strong topologies such as the one induced by the total
variation metric ρs (where ρs(µ, ν) := sup {|µ(B)− ν(B)| : B measurable}), or the weak*
topology.
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To illustrate, suppose that the initial income distribution is uniform, say
with three income groups, and consider a slight perturbation of the uniform
distribution resulting in one group’s size being slightly above the other two
sizes. For the perturbation, our results predict an outcome in which the smaller
groups are expropriated, and the larger group is residually taxed to meet the
revenue (Theorem 1 says that there is at least one subgame-perfect equilibrium
with these features, and Theorem 2 says that for slightly perturbed versions of
G(d,r) any Nash equilibrium has these features). This equilibrium outcome is
still an equilibrium outcome for the game in which the distribution is exactly
uniform, but in this case other equilibria emerge.30,31

So far we have assumed that p has finite support. What if one insists upon
modeling the true distribution as one having non-finite support? For con-
creteness, let p be represented by a probability density function f : [0, X]→ R
with f(x) > 0 for all x. In this case the previous robustness exercise entails
evaluating equilibrium outcomes induced by a sequence of discrete probabil-
ity mass functions converging (in some sense) to f . Here the weak* topology
will not give the stability of equilibrium outcomes obtained above.32 In fact,
even when f is, say, log normal, the said topology is weak enough to permit
approximations of f (or p) via a sequence of measures with finite support
for which the tails (of the corresponding probability mass functions) contain
groups of larger size than those located around the mode of f . However, such
approximations to f will not generally respect the moments of f . Further-
more, there are alternative discrete versions of a continuous distribution that
approximate the moments of f more accurately (such approximations rely on
on the Gaussian quadrature method of numerical integration; see, e.g., Miller

30If the income distribution is uniform, Theorem 1 still applies, but its conclusion loses
precision, since in this case the set Nη(E(d,r)) is “large.” But distributions for which several
income groups have exactly the same size (such as the uniform distribution) are nongeneric.
Our results give sharp predictions for a large family of generic income distributions (more
precisely, for a subset of models (d, r) ∈ M that is open and dense in M (Theorem 2)).
By contrast, lack of precision appears to be a feature of the equilibrium set in the standard
static model: the results in [11] suggest that the set of mixed equilibria is large even in
generic games.

31If p has finite support but one insists on viewing p as a member of the class of (Borel)
probability measures over [0, X] (where X is a large positive real), the above conclusion
remains intact if one considers the topology induced by ρs (footnote 29) or other strong
topologies (such as those induced by the Radon metric or the Wasserstein distances). For
reasons explained below, in this case the weak* topology is too weak to sustain the sought
robustness.

32On the other hand, under the topology induced by ρs (footnote 29) (and under other
strong topologies) it is not possible to approach a nonatomic probability measure that assigns
positive mass to every open set by a probability measure with finite support.
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and Rice [31]). If one considers discrete approximations to f such that the
moments of the discrete distributions converge to those of f , then robustness
of equilibrium outcomes is restored.

3.3. On the analysis of other equilibria

Theorem 1 states that the game G(d,r) has a subgame perfect equilibrium whose
corresponding tax policy lies, approximately, in E(d,r). However, the theorem
does not say anything about the features of other Nash equilibria in G(d,r).
We can provide a complete description of the Nash set for perturbed versions
of G(d,r). We show that there are perturbations of G(d,r) such that at each
component of the Nash set, any equilibrium tax policy lies, approximately, in
E(d,r).

We think of G(d,r) as a member of an enriched class of games where the
players may not have perfect information about the order of moves, and where
the second mover may receive distorted information about the first mover’s
action. Consider the following extension of the game analyzed in the previous
section. In each round, the players do not observe nature’s choice of the order
of moves. Rather, they observe signals that contain information on the order
of moves. Moreover, the first mover’s actions are only indirectly observable by
the second mover through a (not necessarily perfect) signal.

Formally, let h be any history of announcements in G(d,r). In the round
that follows h, nature determines who will be the first mover (in that round)
and then sends a private message to each player. Each message is an element of
{0, 1}. If 0 is observed by player i, i’s signal is interpreted as saying that i is the
first mover in the round that follows h. If player i is chosen as the first mover,
nature sends a message (mA,mB) ∈ {0, 1}2 with probability χ

(h,i)
(d,r)(mA,mB),

where mA is the message sent to A and mB is the message sent to B. Each
mi is private information of player i. If player i is chosen to be the first mover
and nature sends the message m = (mA,mB), the sequence of actions occurs
as follows:

• If mi = 0, then i chooses an announcement. If m−i = 0, where −i 6= i,
then i’s move is followed by −i’s move. Before making a choice, the
second mover does not have any information on the first mover’s action.
If, on the other hand, m−i = 1, then i’s move is followed by nature’s
choice of a message to −i. The content of the message is an announce-
ment feasible for i in the round that follows h. This message signals i’s
move (which is not directly observed by −i) and need not be completely
accurate. If i chooses g, the message received by −i is f with probability
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ϑ−i(d,r)(h, i,m, g)(f) (thus, ϑ−i(d,r)(h, i,m, g) is a probability measure on the
set of all the announcements that are feasible for i in the round that
follows h). After receiving the signal, −i chooses an announcement.

• If mi = 1 (i.e., if i receives information indicating that i is the second
mover, even though i is the actual first mover), then nature sends a mes-
sage to i. The content of the message is an announcement feasible for
−i (−i 6= i) in the round that follows h. The message received by i is f
with probability ϑi(d,r)(h, i,m)(f). After receiving the message, i chooses
an announcement. To describe what happens next, we distinguish two
cases. If m−i = 0, then i’s move is followed by −i’s choice of an an-
nouncement. In this case, −i takes action without receiving any signal
on i’s move. If m−i = 1, then i’s move is followed by nature’s choice of a
message to −i. The content of the message is an announcement feasible
for i in the round that follows h. This message signals i’s previous move
(which is not directly observed by −i). If i chooses g, then the content
of the message is f with probability ϑ−i(d,r)(h, i,m, g)(f). After receiving
the signal, −i chooses an announcement.

If player i receives message 0 and ψ
(h,i)
(d,r) is a probability measure on {0, 1}

representing i’s prior beliefs on the identity of the first mover at the beginning
of the round that follows h, then, by Bayes’ rule, i believes that she is the first
mover with probability

ψ
(h,i)
(d,r)

(0)
(
χ

(h,i)
(d,r)

(0,0)+χ
(h,i)
(d,r)

(0,1)
)

ψ
(h,i)
(d,r)

(0)
(
χ

(h,i)
(d,r)

(0,0)+χ
(h,i)
(d,r)

(0,1)
)
+ψ

(h,i)
(d,r)

(1)
(
χ

(h,−i)
(d,r)

(0,0)+χ
(h,−i)
(d,r)

(0,1)
) ,

where −i 6= i. Posterior beliefs about the first mover’s action given the mes-
sages received by a player can be formed similarly.33

At the beginning of each round, any uncertainty concerning previous rounds
vanishes, and the players observe the choices made by their opponent (as well
as their own) in the preceding round.

In order to emphasize the dependence of the new game on the signals sent
by nature in each round, we shall designate our game by G(d,r)(λ(d,r)), where

λ(d,r) =
(
χ(d,r),ϑ(d,r)

)
=

({
χ

(h,i)
(d,r)

}
(h,i)

,
{
ϑi(d,r)(h, i,m)

}
(h,i,m)

,
{
ϑ−i(d,r)(h, i,m, g)

}
(h,i,m,g)
i 6=−i

)
.

33The details are cumbersome. We omit the exact derivation in the general case, which
is not needed for our purposes.
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We shall often omit the second subscript and simply write G(d,r)(λ). Note that
G(d,r)(λ) is now an extensive zero-sum game with imperfect information. We
study Nash equilibria of this game.

Let Λ(d,r) be the set of all maps like λ(d,r). Each member λ of Λ(d,r)

describes the signals received by the players in each round of G(d,r)(λ). A
member λ of Λ(d,r) is perfect if the signals are completely accurate. Formally,
Λ(d,r) is perfect if the following is satisfied:

• For each (h, i) and every (mA,mB),

χ
(h,i)
(d,r)(mA,mB) =


1 if (mA,mB) = (0, 1) and i = A,

1 if (mA,mB) = (1, 0) and i = B,

0 elsewhere.

• For each (h, i,m, g), ϑ−i(d,r)(h, i,m, g) assigns full support to g, where −i 6=
i.

Figure 3 illustrates the extensive form of G(d,r)(λ), in a given round, when
λ = (χ,ϑ) satisfies

supp
(
χ(h,i)

)
∈

{
{(0, 0), (0, 1)} if i = A,

{(0, 0), (1, 0)} if i = B,

for each (h, i), and (χ,ϑ) is otherwise identical to a perfect signal.34 At the
beginning of the round, nature (N in Figure 3) chooses the first mover (either
A or B). Then nature sends signals about the order of moves to the players.
If it chooses (mA,mB) = (0, 0), each player is told that she is the first mover.
If (0, 1) is chosen, then player A is told that she is the first mover and player
B is told that she is the second mover, and so on. If each mi is 0, both players
choose an announcement without receiving any information about the first
mover’s action. If (mA,mB) = (0, 1), then A moves first and nature sends an
accurate signal to B about A’s action, and so on. In Figure 3, decision nodes
belonging to the same information set are linked using dashed lines.

Note that if λ is perfect, the game G(d,r)(λ) coincides with G(d,r). We
shall consider versions G(d,r)(λ) of G(d,r) that are close to G(d,r). To make this
statement precise, we need the following notation.

34This case will be particularly relevant for our purposes; it describes a situation where the
actual first mover always receives an accurate signal, but the second mover may sometimes
receive a signal indicating that she is moving first. In all other instances, λ is like a perfect
signal.
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We view D as a metric space with metric %D, where %D is defined as follows.
Let %0 be the discrete metric on A (i.e., %0 : A2 → R, %0(a, b) := 1 if a 6= b,
%0(a, b) := 0 if a = b). Define % : (R× A× [0, 1])2 → R by

% ((x, a, d), (y, b, δ)) := max {|x− y|, %0(a, b), |d− δ|} .

Given d ∈ D, we define the graph of d as

gr(d) := {(x, a, d(x, a)) : (x, a) ∈ {d > 0}} .

Observe that each gr(d) is a subset of R×A× [0, 1]. Identify the members of D
with their graphs and define the distance between distributions in D to be the
Hausdorff distance between their graphs in R×A× [0, 1], where R×A× [0, 1]
is viewed as a metric space with associated metric %. That is, given d, δ ∈ D,
let

%D(d, δ) := h (gr(d), gr(δ)) ,

where h (gr(d), gr(δ)) stands for the Hausdorff distance between gr(d) and gr(δ)
as induced by %.35 Take M as a metric space with associated metric

%M ((d, r), (δ, r)) := max {%D(d, δ), |r − r|} .

View any subsetM′ ofM as a metric subspace ofM (with its relative topol-
ogy). If a statement is true for all members of an open and dense subset of
M′, we say that it is generically true in M′.

Let %Λ(d,r)
be a metric on Λ(d,r) such that

%Λ(d,r)
((χ,ϑ) , (ψ,θ)) = max

{
max
(h,i,m)

∣∣∣χ(h,i)
(d,r)(m)− ψ(h,i)

(d,r)(m)
∣∣∣ ,

max
(h,i,m,f)

∣∣ϑi(d,r)(h, i,m)(f)− θi(d,r)(h, i,m)(f)
∣∣ ,

max
(h,i,m,g,f)
i 6=−i

∣∣∣ϑ−i(d,r)(h, i,m, g)(f)− θ−i(d,r)(h, i,m, g)(f)
∣∣∣ }.

Let G(d,r) :=
{
G(d,r)(λ) : λ ∈ Λ(d,r)

}
be a metric space with associated metric

%G(d,r)
, where

%G(d,r)

(
G(d,r)(λ), G(d,r)(λ

′)
)

:= %Λ(d,r)
(λ,λ′).

35One could also require that the distance between the money unit associated to each
distribution be factored in. The following (more stringent) alternative definition of %D could
also be adopted without altering our results: %D(d, δ) := max {h(gr(d), gr(δ)), |ε(d)− ε(δ)|}.
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By a neighborhood of G(d,r)(λ) we mean an open subset of G(d,r) containing
G(d,r)(λ). We may think of the game G(d,r)(λ) as a perturbed version of G(d,r)

(recall that G(d,r) = G(d,r)(θ) if θ is perfect) if G(d,r)(λ) lies within a small
neighborhood of G(d,r).

Note that, for each member of Ẽ(d,r) not in E(d,r), there exists another tax
policy that meets the revenue constraint and makes some group of voters
strictly better off without making any other voter group worse off. Some of
these policies cannot, in principle, be ruled out as equilibrium outcomes of
G(d,r)(λ). In fact, in equilibrium, the last move of a player could be optimal
and, at the same time, overtax some voter group (in the sense that one could
reduce the tax burden and still meet the revenue requirement). This could
happen if suppressing the tax excess did not switch the group’s support from
one candidate to the other.36 To avoid situations where some voter group is
soaked excessively (in the sense that some candidate keeps taxing them even
when the revenue requirement has been met), we assume that the candidates
are forced to choose final announcements in

O(d,r) :=
{
t ∈ T(d,r) : there is no τ ∈ T(d,r) with τ � t

}
.37

The statement below refers to the version of G(d,r)(λ) in which the candidates’
final announcements must be elements of O(d,r). We slightly abuse notation
and denote this game again by G(d,r)(λ). It is worth noting that G(d,r)(λ) has
a subgame perfect equilibrium. In fact, this game has finite horizon, and each
subgame has a Nash equilibrium (e.g., Mamer and Schilling [27]).

Theorem 2 says that (for a sufficiently small money unit) the components of
the Nash set in perturbations ofG(d,r) have the same features as the equilibrium
of Theorem 1, in the sense that, for all these components, any equilibrium tax
policy lies, approximately, in E(d,r).

For +∞ > ε > 0 and 1 > θ > 0, define the set

M(ε, θ) :=
{

(d, r) ∈M : ε(d) < ε, r∑
(x,a) d(x,a)x

< θ
}
.

This set contains all the pairs (d, r) for which the money unit ε(d) is smaller
than ε and the revenue requirement as a fraction of total income lies below θ.

Theorem 2. Suppose that +∞ > η > 0 and 1 > θ > 0. There exists
+∞ > ε(η,θ) > 0 such that, generically in M

(
ε(η,θ), θ

)
, any neighborhood

of G(d,r) contains a game G(d,r)(λ) such that the tax policy implemented at any
Nash equilibrium of G(d,r)(λ) lies in Nη

(
E(d,r)

)
.

36Observe that this feature of some equilibria is particularly stark in a model with exoge-
nous labor supply.

37Without this assumption, Theorem 2 is also valid with Ẽ(d,r) replacing E(d,r).

The proof is relegated to Section 5.
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4. Concluding remarks

We have modeled electoral competition between two candidates as a dynamical
process in which each candidate gradually commits to a tax schedule that is to
be implemented if she is elected by a majority of voters. We have characterized
the Nash set of the associated game. At each component of this set, equilibrium
tax schedules take a very particular form, which is reminiscent of Director’s
law of public income redistribution (Stigler [39]).

This paper has proposed a particular extensive form as a representation
of the dynamical campaigning process, but other rules of the game could be
envisaged. For example, the candidates could announce an arbitrary subset
of the set of all tax policies in the first round, and then refine this subset in
subsequent rounds. Another possibility would be for the players to announce
intervals of possible tax liabilities for each voter group, each interval being
a refinement of intervals announced in previous rounds. Since our analysis
does not readily extend to these alternative formulations, the study of these
variations is left for future research.

Finally, extending the analysis to the case of endogenous labor supply is
desirable for at least two reasons. First, in a model à la Mirrlees [32], the limit
on the extent to which a voter group may be soaked would be endogenous,
and would depend on elasticities. Second, the predictions of the current model,
augmented to allow for distortionary taxation, would give new insight on the
interplay of the candidates’ incentives to favor certain voter groups and the
distortion of labor supply embedded in income redistribution.38

5. Proofs

The proof of Theorem 1 is omitted and available from the author upon request.
The argument for this proof was illustrated in Section 3.1. Moreover, Theorem
1 can be viewed as a special case of Theorem 2.39

38If one could interpret equilibrium tax schedules as optimal ones, for some (endogenously
determined) social welfare weights, then the machinery developed within the framework of
optimal income taxation could be used to understand the features of equilibrium outcomes.

39Note however that Theorem 2 refers to a perturbation of G(d,r), while Theorem 1 is
about G(d,r).
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5.1. Theorem 2: preliminaries

In the interest of brevity, we shall confine attention here to a variant of G(d,r)

in which the players are constrained to incrementing taxes by exactly ε(d) on
exactly one income group in each round (this is the game G∗(d,r) = G∗(d,r)(λ),

where λ is perfect, defined below). This game is easier to handle, and permits
a shorter proof. Given our discussion of the second-mover advantage in Sec-
tion 2.2, in principle it is intuitive that forcing the players to disclose minimal
information in each round does not really affect the optimality of their strate-
gies in the full-fledged version G(d,r). The variant of Theorem 2 proven here
is stated at the end of this subsection. For a more detailed treatment of the
general game G(d,r), the reader is referred to Carbonell-Nicolau [12].

Define F∗(d,r) : P(d,r) ⇒ P(d,r) by

F∗(d,r)(f)

:=


g ∈ P(d,r) :

 g(x, a) = f(x, a) + ε(d),

some (x, a) with f(x, a) < x,

g = f elsewhere


 if f is not final,

{f} if f is final.

Define T(d,r) : P(d,r) ⇒ T(d,r) by T(d,r)(f) :=
{
g ∈ O(d,r) : g ≥ f

}
and Z(d,r) :

P(d,r) ⇒ Aε(d) by

Z(d,r)(f) := arg min
(x,a)∈{d>0}

(x−f(x,a)−ε(d))d(x,a)≥max(y,b) d(y,b)ε(d)

+
∑

(y,b):d(y,b)<d(x,a)(y−f(y,b))d(y,b)

d(x, a).

Given (x, a) ∈ {d > 0}, define ϕ
(x,a)
(d,r) : P(d,r) → P(d,r) by

ϕ
(x,a)
(d,r)(f)(y, b) :=

{
f(y, b) + ε(d) if (y, b) = (x, a),

f(y, b) otherwise.

Let G∗(d,r)(λ) be a game exactly like G(d,r)(λ) with the following constraints

on the actions available to the players: (1) at the beginning of the game,
both players are forced to choose an announcement fA1 := 0 =: fB1 ; and
(2) in round k = 2, 3, ..., each player i is forced to choose an announcement
f ik ∈ F∗(d,r)(f

i
k−1). When λ is perfect, we often denote G∗(d,r)(λ) as G∗(d,r). Let

Λ∗(d,r) be the analogue of Λ(d,r) (that is, the set of all possible λ describing
the information structure in G∗(d,r)(λ)). The set Λ∗(d,r) can be viewed as a
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metric space with corresponding metric %Λ∗(d,r)
, where the definition of %Λ∗(d,r)

is analogous to that of %Λ(d,r)
(Subsection 3.3). One can then view G∗(d,r) :={

G∗(d,r)(λ) : λ ∈ Λ∗(d,r)

}
as a metric space with associated metric %G∗

(d,r)
, where

%G∗
(d,r)

(
G∗(d,r)(λ), G∗(d,r)(λ

′)
)

:= %Λ∗(d,r)
(λ,λ′). By a neighborhood of G∗(d,r)(λ)

we mean an open subset of G∗(d,r) containing G∗(d,r)(λ).

By the subgame of G∗(d,r)(λ) induced by h we mean the subgame of

G∗(d,r)(λ) that starts immediately after the history of announcements h in

G∗(d,r)(λ), before nature chooses the order of moves in the round that fol-

lows h. We denote this subgame by Γ∗h(d,r)(λ), and represent its value as

v∗h(d,r)(λ) =
(
v∗

(h,A)
(d,r) (λ), v∗

(h,B)
(d,r) (λ)

)
.40

A perfect λ in Λ∗(d,r) is the analogue of a perfect signal in Λ(d,r) (see
Section 3.3). A member λ = (χ,ϑ) of Λ∗(d,r) is symmetric in Λ∗(d,r) if the
following holds:

• For each h whose last two announcements are identical, the following
holds: χ(h,A) = χ(h,B) for all h; ϑA(h,A,m) = ϑB(h,B,m) for all m; and
ϑA(h,B,m, g) = ϑB(h,A,m, g) for all (m, g).

• For each h whose last two announcements are identical and each super-
history (h, f1, g1, ..., fk, gk) of h in G∗(d,r)(λ), the following holds:

◦ χ((h,f1,g1,...,fk,gk),A) = χ((h,g1,f1,...,gk,fk),B).

◦ ϑA((h, f1, g1, ..., fk, gk), A,m) = ϑB((h, g1, f1, ..., gk, fk), B,m) for all
m.

◦ ϑA((h, f1, g1, ..., fk, gk), B,m, g) = ϑB((h, g1, f1, ..., gk, fk), A,m, g)
for all (m, g).

A symmetric λ in Λ(d,r) is defined analogously.
Let H(d,r) be a map that assigns to each history of announcements

h = (f1, g1, ..., fk, gk) in G∗(d,r) the set H(d,r)(h) of all histories of announce-

ments (t1, τ1, ..., tk, τk) in G∗(d,r) such that for some κ for which fκ = gκ, (tl, τl) =

(fl, gl) for l = 1, ..., κ, and (if κ < k) (tκ+1, τκ+1, ..., tk, τk) =
(gκ+1, fκ+1, ..., gk, fk).

Let M◦ be the set of all (d, r) ∈ M for which
∑

(x,a)∈X d(x, a)

6=
∑

(x,a)∈Y d(x, a) whenever {d > 0} ⊇ X 6= Y ⊆ {d > 0}.

40Each Γ∗h(d,r)(λ) is a special case of the zero-sum game of incomplete information studied
by Mamer and Schilling [27]. By Sion [37], this game has a value. Similar statements are
true for Γh(d,r)(λ) (to be defined next).
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Let T ◦(d,r) be the set of all f ∈ O(d,r) such that there exist f1, ..., fk and

(x2, a2), ..., (xk, ak) satisfying the following three conditions: (1) f1 = 0 and
fk = f ; (2) for all κ = 2, ..., k, (xκ, aκ) ∈ Z(d,r)(fκ−1) if Z(d,r)(fκ−1) 6= ∅; and
(3) for all κ = 2, ..., k,

fκ =

{
ϕ

(xκ,aκ)
(d,r) (fκ−1) if fκ−1 is not final,

fκ−1 if fκ−1 is final.

(If r = 0 then T ◦(d,r) is simply {0}.) Let E∗(d,r) be the set of all t ∈ O(d,r)

satisfying t ≤ gτ for some τ ∈ T ◦(d,r), where

gτ (x, a) :=

x if d(x, a) < max
(y,b):τ(y,b)>0

d(y, b),

τ(x, a) if d(x, a) = max
(y,b):τ(y,b)>0

d(y, b).

For +∞ > η > 0, let M∗
η be the set of all (d, r) ∈ M satisfying the

following:

• For any non-final f ∈ P(d,r) for which f ≤ g, some g ∈ O(d,r), Z(d,r)(f) 6=
∅.

• For all f ∈ T ◦(d,r) and all (x, a) with f(x, a) > 0,

η − ξ(x,a)ε(d) ≥
∑
(y,b):

d(y,b)<d(x,a)

20
d(y,b)

×

max
(z,c)

d(z, c)ε(d) +
∑
(z,c):

d(z,c)<d(x,a)

(z − f(z, c))d(z, c)

 ,

(2)

where ξ(x,a) := 2 + 1
d(x,a)

∑
(y,b):d(y,b)≤d(x,a) d(y, b).

Let Λ•(d,r) be the set of all symmetric λ ∈ Λ∗(d,r) satisfying the following

property: Suppose that h = (fA1 , f
B
1 , ..., f

A
k , f

B
k ) is a history of announcements

in G∗(d,r)(λ) such that fAk 6= fBk . Suppose that there is a player i such that for

any announcement f i that is feasible for i in the round that follows h (i.e., any
member of F∗(d,r)(f

i
k)), there exists an announcement f j that the opponent j

may choose (in the same round) in F∗(d,r)(f
j
k) such that i’s value in Γ∗

(h,fA,fB)
(d,r) (λ)

is negative. Then the value of Γ∗h(d,r)(λ) is nonzero.
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Let Λ◦(d,r) be the set of all (χ,ϑ) in Λ∗(d,r) such that the following is satisfied:

for each (h, i), supp
(
χ(h,i)

)
6= {(0, 0)},

supp
(
χ(h,i)

)
∈

{
{(0, 0), (0, 1)} if i = A,

{(0, 0), (1, 0)} if i = B,

and (χ,ϑ) is otherwise identical to a perfect signal in Λ∗(d,r). Each member of
Λ◦(d,r) has the property that the actual first mover always receives an accurate
signal, but the second mover may sometimes receive a signal indicating that
she is moving first. In all other instances, the members of Λ◦(d,r) are like perfect
signals.

The next section is devoted to proving the following variant of Theorem 2:

Theorem 2’. Suppose that +∞ > η > 0 and 1 > θ > 0. There exists
+∞ > ε(η,θ) > 0 such that, generically in M

(
ε(η,θ), θ

)
, any neighborhood of

G∗(d,r) contains a game G∗(d,r)(λ) such that the tax policy implemented at any

Nash equilibrium of G∗(d,r)(λ) lies in Nη

(
E(d,r)

)
.

5.2. Proof of Theorem 2’

Lemma 1. Suppose that +∞ > η > 0 and (d, r) ∈ M∗
η ∩M◦. Let θ be a

perfect signal in Λ∗(d,r). Fix any open subset O of Λ∗(d,r) containing θ. Then
O ∩Λ•(d,r) ∩Λ◦(d,r) 6= ∅.

Proof. Suppose that +∞ > η > 0 and (d, r) ∈ M∗
η ∩M◦. Let λ0 = (χ0,ϑ0)

be a perfect signal in Λ∗(d,r). If λ0 ∈ Λ•(d,r)∩Λ◦(d,r), there is nothing to prove, so
suppose that λ0 /∈ Λ•(d,r) ∩Λ◦(d,r). Since λ0 ∈ Λ◦(d,r), we must have λ0 /∈ Λ•(d,r).
Fix any open subset O of Λ∗(d,r) containing λ0.

LetH1 be the set of all histories of announcements h in G∗(d,r)(λ0) satisfying

the following: (i) the last pair of announcements (gA, gB) in h has gA 6= gB;
(ii) there is a player i such that for any announcement f i that is feasible
for i in the round that follows h (i.e., any member of F∗(d,r)(g

i)), there exists

an announcement f j that the opponent j may choose (in the same round,

in F∗(d,r)(g
j)) such that v∗

((h,fA,fB),i)
(d,r) (λ0) < 0; (iii) v∗h(d,r)(λ0) = 0; and (iv)

there is no super-history h′ of h different from h such that (1) the last pair
of announcements (tA, tB) in h′ has tA 6= tB, (2) there is a player i such
that for any announcement τ i ∈ F∗(d,r)(t

i), there exists an announcement τ j

that the opponent j may choose (in the same round, in F∗(d,r)(t
j)) such that

v∗
((h′,τA,τB),i)
(d,r) (λ0) < 0, and (3) v∗h

′

(d,r)(λ0) = 0. Because λ0 /∈ Λ•(d,r), since λ0
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is symmetric, we have H1 6= ∅. Let λ1ε = (χ1ε,ϑ1ε) be an element of Λ∗(d,r)
exactly like λ0 except for the following:

• Take h1 ∈ H1. For some 1 > ε > 0,

χ
(h1,A)
1ε (m) =


1− ε if m = (0, 1),

ε if m = (0, 0),

0 elsewhere,

and

χ
(h1,B)
1ε (m) =

{
1 if m = (1, 0),

0 elsewhere.

Moreover, for all h ∈ H(d,r)(h1), χ
(h1,A)
1ε = χ

(h,B)
1ε and χ

(h1,B)
1ε = χ

(h,A)
1ε .

• Let h2 ∈ H1 \
(
{h1} ∪ H(d,r)(h1)

)
. Then, χ

(h2,A)
1ε = χ

(h1,A)
1ε and χ

(h2,B)
1ε =

χ
(h1,B)
1ε . Moreover, for all h ∈ H(d,r)(h2), χ

(h2,A)
1ε = χ

(h,B)
1ε and χ

(h2,B)
1ε =

χ
(h,A)
1ε .

• Let h3 ∈ H1 \
(
∪2
l=1

(
{hl} ∪ H(d,r)(hl)

))
and proceed as in the previous

steps until χ
(h,i)
1ε has been defined for each h ∈ H1 and each i.

Claim 1. There exists a symmetric λ1 = (χ1,ϑ1) ∈ Λ◦(d,r) such that v∗h(d,r)(λ1) 6=
0 for each h ∈ H1, and λ1 ∈ O.

Proof. Let H∗1 be the set of all h ∈ H1 for which, given ε, there exists ε′ < ε
such that v∗h(d,r)(λ1ε′) 6= 0. Define H′1 := H1 \ H∗1. Suppose that H′1 6= ∅ (if
this set is empty, ignore the ensuing argument and go straight to the next
paragraph). Let λ′1ε = (χ′1ε,ϑ

′
1ε) be an element of Λ∗(d,r) that is exactly like

λ1ε except for the following:

• Take h1 ∈ H′1. Then

χ′
(h1,B)
1ε (m) =


1− ε if m = (1, 0),

ε if m = (0, 0),

0 elsewhere,

and

χ′
(h1,A)
1ε (m) =

{
1 if m = (0, 1),

0 elsewhere.

Moreover, for all h ∈ H(d,r)(h1), χ
′(h1,A)
1ε = χ′

(h,B)
1ε and χ′

(h1,B)
1ε = χ′

(h,A)
1ε .
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• Let h2 ∈ H′1 \
(
{h1} ∪ H(d,r)(h1)

)
. Then, χ′

(h2,A)
1ε = χ′

(h1,A)
1ε and χ′

(h2,B)
1ε =

χ′
(h1,B)
1ε . Moreover, for all h ∈ H(d,r)(h2), χ

′(h2,A)
1ε = χ′

(h,B)
1ε and χ′

(h2,B)
1ε =

χ′
(h,A)
1ε .

• Let h3 ∈ H′1 \
(
∪2
l=1

(
{hl} ∪ H(d,r)(hl)

))
and proceed as in the previous

steps until χ′
(h,i)
1ε has been defined for each h ∈ H′1 and each i.

Clearly, each λ′1ε belongs to Λ◦(d,r). We claim that, for ε sufficiently small,

v∗h(d,r)(λ
′
1ε) 6= 0 for each h ∈ H′1. We momentarily take this statement for

granted and relegate its proof to the next paragraph. If, for ε sufficiently small,
v∗h(d,r)(λ

′
1ε) 6= 0 for each h ∈ H′1, then, for ε sufficiently small, v∗h(d,r)(λ

′
1ε) 6= 0

for each h ∈ H1, and λ′1ε ∈ O. Thus, since λ′1ε is symmetric by construction,
the proof of Claim 1 is completed by taking λ1 := λ′1ε (ε sufficiently small).

We now turn to showing that v∗h(d,r)(λ
′
1ε) 6= 0 for each h ∈ H′1, for ε

sufficiently small. Fix h ∈ H′1. For ε sufficiently small, λ1ε is accurate enough
that the players’ equilibrium behavior along the equilibrium path inG∗(d,r)(λ1ε),
in the round that follows h, is as follows:

(a) For each i, if the content of i’s first message is 0, then i’s equilibrium
behavior strategy αi has support within

arg min
f i

(
max
f−i

v∗
((h,fA,fB),−i)
(d,r) (λ1ε)

)
, −i 6= i,

at the corresponding information set of i.

(b) For each i, if the content of i’s first message is 1 and the second message
says ‘f−i’ (−i 6= i), i’s equilibrium behavior strategy has support within

arg max
f i

v∗
((h,fA,fB),i)
(d,r) (λ1ε)

at the corresponding information set of i.

Analogous statements hold for G∗(d,r)(λ
′
1ε).

Since h ∈ H′1, h ∈ H1, and so v∗h(d,r)(λ0) = 0. Hence, in view of (a) and
(b),

v∗
(h,A)
(d,r) (λ0)

= 1
2

min
fB

max
fA

v∗
((h,fA,fB),A)
(d,r) (λ0) + 1

2
max
fA

min
fB

v∗
((h,fA,fB),A)
(d,r) (λ0)

= 0.

(3)
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Moreover, since h ∈ H′1, v∗h(d,r)(λ1ε) = 0, and therefore

0 = v∗
(h,A)
(d,r) (λ1ε) = 1

2
min
fB

max
fA

v∗
((h,fA,fB),A)
(d,r) (λ1ε)

+ 1
2

(
ε
∑

(fA,fB)

αA(fA)αB(fB)v∗
((h,fA,fB),A)
(d,r) (λ1ε)

+ (1− ε) max
fA

min
fB

v∗
((h,fA,fB),A)
(d,r) (λ1ε)

)
.

We can replace λ1ε by λ0 in this equation, for λ1ε and λ0 coincide at the
beginning of the round that follows any history of announcements of the form
(h, fA, fB) . Hence, using (3), we obtain∑

(fA,fB)

αA(fA)αB(fB)v∗
((h,fA,fB),A)
(d,r) (λ0) = max

fA
min
fB

v∗
((h,fA,fB),A)
(d,r) (λ0).

Since we know that the right-hand side of this equation is negative, so is the
left-hand side, and therefore∑

(fA,fB)

αA(fA)αB(fB)v∗
((h,fA,fB),B)
(d,r) (λ0) > 0. (4)

Moreover,

v∗
(h,B)
(d,r) (λ′1ε) = 1

2
min
fA

max
fB

v∗
((h,fA,fB),B)
(d,r) (λ′1ε)

+ 1
2

(
ε
∑

(fA,fB)

αA(fA)αB(fB)v∗
((h,fA,fB),B)
(d,r) (λ′1ε)

+ (1− ε) max
fB

min
fA

v∗
((h,fA,fB),B)
(d,r) (λ′1ε)

)
.

As before, we can replace λ1ε by λ0 in this equation. Therefore, since equation

(3) holds true and minfA maxfB v
∗((h,fA,fB),B)
(d,r) (λ0) > 0, it follows (in view of

(4)) that v∗
(h,B)
(d,r) (λ′1ε) > 0, as we sought. �

Claim 2. For each h ∈ H1, there is no super-history h′ (including h) of h
such that (1) the last pair of announcements (tA, tB) in h′ has tA 6= tB, (2)
there is a player i such that for any announcement τ i ∈ F∗(d,r)(t

i), there exists

an announcement τ j that the opponent j may choose (in the same round, in

F∗(d,r)(t
j)) such that v∗

((h′,τA,τB),i)
(d,r) (λ1) < 0, and (3) v∗h

′

(d,r)(λ1) = 0.
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Proof. Take h ∈ H1 and a super-history h′ of h. If h′ = h, the statement
follows immediately from Claim 1. If h 6= h′, the statement follows from (iv)
and the fact that when h 6= h′ the choice of λ1 (in the proof of Claim 1) entails

v∗
((h′,τA,τB),i)
(d,r) (λ0) = v∗

((h′,τA,τB),i)
(d,r) (λ1) and v∗h

′

(d,r)(λ0) = v∗h
′

(d,r)(λ1). �

Since λ1 ∈ O ∩ Λ◦(d,r) (Claim 1), if λ1 ∈ Λ•(d,r), the proof is complete.
Suppose that λ1 /∈ Λ•(d,r). Let H2 be the set of all histories of announcements
h in G∗(d,r)(λ1) satisfying the following: (1) the last pair of announcements

(gA, gB) in h has gA 6= gB; (2) there is a player i such that for any announce-
ment f i ∈ F∗(d,r)(g

i), there exists an announcement f j that the opponent j

may choose (in the same round, in F∗(d,r)(g
j)) such that v∗

((h,fA,fB),i)
(d,r) (λ1) < 0;

(3) v∗h(d,r)(λ1) = 0; and (4) there is no super-history h′ of h different from h

such that (a) the last pair of announcements (tA, tB) in h′ has tA 6= tB, (b)
there is a player i such that for any announcement τ i ∈ F∗(d,r)(t

i), there exists

an announcement τ j that the opponent j may choose (in the same round, in

F∗(d,r)(t
j)) such that v∗

((h′,τA,τB),i)
(d,r) (λ1) < 0, and (c) v∗h

′

(d,r)(λ1) = 0. Because

λ1 /∈ Λ•(d,r), since λ1 is symmetric (Claim 1), we have H2 6= ∅. Moreover, by
Claim 2, and letting H and H◦1 represent, respectively, the set of all histories
of announcements in G∗(d,r) and the set of all super-histories (in G∗(d,r)) of the

members of H1 (including H1), we must have H2 ⊆ H \ H◦1. Reasoning as
before, one can obtain the analogue of λ1, λ2, in O ∩ Λ◦(d,r). If λ2 ∈ Λ•(d,r),
the proof is complete. Otherwise, one can define the analogue of H2, H3, and
show that H3 ⊆ H \H◦2, where H◦2 is the analogue of H◦1. Eventually, there is
an element of the sequence H\H◦1,H\H◦2, ... that becomes ∅, and some λk is
obtained in O ∩Λ◦(d,r) with λk ∈ Λ•(d,r). �

Lemma 2. Suppose that +∞ > η > 0 and 1 > θ > 0. Then M
(
ε(η,θ), θ

)
⊆

M∗
η for some +∞ > ε(η,θ) > 0.

Proof. Suppose that +∞ > η > 0. It is easy to see that there exists +∞ >
εη > 0 such that any member of {(d, r) ∈M : ε(d) ≤ εη} satisfies the second
condition in the definition of M∗

η (see (2)).41

We show that there exists +∞ > εθ > 0 such that any member of{
(d, r) ∈M : ε(d) ≤ εθ and r∑

(x,a) d(x,a)x
≤ θ
}

satisfies the first condition in

41As ε(d) decreases, given f ∈ T ◦(d,r), (x, a) with f(x, a) > 0, and (z, c) with d(z, c) <
d(x, a), z− f(z, c) decreases, and one can take z− f(z, c) below any positive number if ε(d)
is sufficiently small.
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the definition of M∗
η. Given (d, r) ∈ M, define the sets X0

(d,r), X
1
(d,r), ... in-

ductively as follows: X0
(d,r) := arg min(x,a)∈{d>0} d(x, a), and, for k = 1, 2, ...,

Xk
(d,r) := arg min

(x,a)∈{d>0}\
(⋃k−1

l=0 X
l
(d,r)

) d(x, a).

Define τ(d,r) inductively as follows:

• τ(d,r)(x, a) := max
f∈P(d,r):

(x−f(x,a)−ε(d))d(x,a)
≥max(y,b) d(y,b)ε(d)

f(x, a) for all (x, a) ∈ X0
(d,r);

• for k = 1, 2, ..., let

τ(d,r)(x, a) := max
f∈P(d,r):

(x−f(x,a)−ε(d))d(x,a)≥max(y,b) d(y,b)ε(d)

+
∑

(y,b):d(y,b)<d(x,a)(y−f(y,b))d(y,b)

f(x, a)

for all (x, a) ∈ Xk
(d,r).

Note that the choice of τ(d,r) entails that, for any (d, r) with ε(d) sufficiently
small, say ε(d) ≤ εθ, ∑

(x,a) τ(d,r)(x,a)d(x,a)∑
(x,a) xd(x,a)

> θ. (5)

Now fix any (d, r) ∈ M with ε(d) ≤ εθ and r∑
(x,a) d(x,a)x

≤ θ. The first

condition in the definition of M∗
η says that for any non-final f ∈ P(d,r) for

which f ≤ g, some g ∈ O(d,r), Z(d,r)(f) 6= ∅. Fix a non-final f ∈ P(d,r)

for which f ≤ g, some g ∈ O(d,r). Because ε(d) ≤ εθ (so (5) holds) and
r∑

(x,a) d(x,a)x
≤ θ, there exists (x, a) such that f(x, a) ≤ τ(d,r)(x, a). Clearly,

the choice of τ(d,r) entails Z(d,r)

(
τ(d,r)

)
3 (x, a) for all (x, a) ∈ {d > 0}. In

particular, Z(d,r)

(
τ(d,r)

)
3 (x, a). Therefore, since f(x, a) ≤ τ(d,r)(x, a), it follows

that Z(d,r)(f) 6= ∅.
We conclude that any member of{

(d, r) ∈M : ε(d) ≤ εθ and
r∑

(x,a) d(x, a)x
≤ θ

}

satisfies the first condition in the definition ofM∗
η. It only remains to observe

that M
(
ε(η,θ), θ

)
⊆M∗

η holds for any 0 < ε(η,θ) < min {εη, εθ}. �
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Lemma 3. Suppose that (d, r) ∈ M◦ and λ ∈ Λ•(d,r). Suppose that

h = (fA1 , f
B
1 , ..., f

A
k , f

B
k ) is a history of announcements in G∗(d,r)(λ) such that

fAk 6= fBk . If the value of Γ∗h(d,r)(λ) is zero, there exists a Nash equilibrium

in Γ∗h(d,r)(λ) that generates a unique history of announcements in Γ∗h(d,r)(λ)
whose last two elements are identical.

Proof. Suppose that (d, r) ∈ M◦ and λ ∈ Λ•(d,r). Suppose that

h = (fA1 , f
B
1 , ..., f

A
k , f

B
k ) is a history of announcements in G∗(d,r)(λ) such that

fAk 6= fBk , and let the value of Γ∗h(d,r)(λ) be zero. We proceed by induction on
the number of rounds left until the end of the game.

If the set F∗(d,r)(f
A
k )×F∗(d,r)(f

B
k ) contains only pairs of final announcements,

then, since (1) λ ∈ Λ•(d,r), (2) h = (fA1 , f
B
1 , ..., f

A
k , f

B
k ) is a history of announce-

ments in G∗(d,r)(λ) such that fAk 6= fBk , and (3) the value of Γ∗h(d,r)(λ) is zero,

for any player i, there exists f i ∈ F∗(d,r)(f
i
k) such that for all τ j ∈ F∗(d,r)(f

j
k)

(j 6= i), v∗
((h,f i,τ j),i)
(d,r) (λ) ≥ 0.42 It follows that there is an equilibrium in

Γ∗h(d,r)(λ) that prescribes play of (fA, fB) (with probability one) in the first

round of Γ∗h(d,r)(λ). Moreover, since v∗
((h,fA,fB),i)
(d,r) (λ) ≥ 0 for each i, we have

v∗
(h,fA,fB)
(d,r) (λ) = 0. Therefore, since (d, r) ∈ M◦ and, by assumption, each

f i is final, fA = fB must hold. We have thus obtained a Nash equilibrium
in Γ∗h(d,r)(λ) that generates a unique history of announcements in Γ∗h(d,r)(λ)
whose last two elements are identical.

Now suppose that the following has been proven: Suppose that
h = (fA1 , f

B
1 , ..., f

A
k , f

B
k ) is a history of announcements in G∗(d,r)(λ) such that

fAk 6= fBk , and let the value of Γ∗h(d,r)(λ) be zero. Suppose that (τAκ , τ
B
κ ) is a pair

of final announcements for any history (τA1 , τ
B
1 , ..., τ

A
κ , τ

B
κ ) of announcements in

Γ∗h(d,r)(λ) having length κ. Then there exists a Nash equilibrium in Γ∗h(d,r)(λ)

that generates a unique history of announcements in Γ∗h(d,r)(λ) whose last two
elements are identical.

Suppose that h = (fA1 , f
B
1 , ..., f

A
k , f

B
k ) is a history of announcements in

G∗(d,r)(λ) such that fAk 6= fBk , and let the value of Γ∗h(d,r)(λ) be zero. Suppose

that (τAκ+1, τ
B
κ+1) is a pair of final announcements for any history

(τA1 , τ
B
1 , ..., τ

A
κ+1, τ

B
κ+1) of announcements in Γ∗h(d,r)(λ) having length κ+ 1. We

show that there exists a Nash equilibrium in Γ∗h(d,r)(λ) that generates a unique

history of announcements in Γ∗h(d,r)(λ) whose last two elements are identical.

As before, there exists an equilibrium in Γ∗h(d,r)(λ) that prescribes play of

42By v∗((h,f
i,τj),i)

(d,r) (λ) we mean v∗
((h,fA,τB),i)
(d,r) (λ) if i = A and v∗

((h,τA,fB),i)
(d,r) (λ) if i = B.
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(fA, fB) in the first round of the game, and v∗
(h,fA,fB)
(d,r) (λ) = 0. If fA = fB,

the proof is complete. Otherwise, we have a history (h, fA, fB) with fA 6=
fB and v∗

(h,fA,fB)
(d,r) (λ) = 0, and the induction hypothesis gives the desired

conclusion. �

Lemma 4. Suppose that +∞ > η > 0 and (d, r) ∈ M∗
η. Let h be a his-

tory of announcements in G∗(d,r)(λ), where λ is symmetric in Λ∗(d,r). Suppose
that the last two announcements in h are identical and equal to f , and let
T(d,r)(f)∩E∗(d,r) 6= ∅. Then either T(d,r)(f) ⊆ Nη

(
E(d,r)

)
or there exists a Nash

equilibrium in Γ∗h(d,r)(λ) that generates a unique history of announcements in

Γ∗h(d,r)(λ) whose last two elements are identical.

Proof. While the general proof is long, the essence of the argument is relatively
straightforward, and can be illustrated within the example of Section 3.1 (the
details are available upon request). In this example, assuming the antecedent
of the lemma, it is easy to see that, if T(d,r)(f) * Nη

(
E(d,r)

)
, then, for some

(y, b) ∈ Z(d,r)(f), the following map is not final:

(x, a) 7→

{
x if d(x, a) < d(y, b),

f(x, a) elsewhere.
(6)

(This is also true in general.) Any player i’s choice of ϕ
(y,b)
(d,r)(f) in the round

that follows h is optimal. In fact, if the opponent chooses ϕ
(z,c)
(d,r)(f) with

d(z, c) = d(y, b), then (z, c) = (y, b);43 since λ is symmetric, choosing the same
action gives both players a payoff of zero, and zero is the value of Γ∗h(d,r)(λ)
(since λ is symmetric and the last two announcements in h equal f). If the

opponent chooses ϕ
(z,c)
(d,r)(f) with d(z, c) < d(y, b), then, since the map (6) is not

final, she cannot win the election outright. One can show that, by choosing
ϕ

(z,c)
(d,r)(f) with d(z, c) < d(y, b), the opponent can secure at most a payoff of

zero. If the opponent chooses ϕ
(z,c)
(d,r)(f) with d(z, c) > d(y, b), then two cases

are possible: (1) i can keep taxing group (y, b) until the revenue constraint
is met, thereby defeating her opponent; (2) otherwise, the map (x, a) 7→ x

if d(x, a) < d(y, b), (x, a) 7→ ϕ
(z,c)
(d,r)(f)(x, a) elsewhere, is not final, and i can

choose ϕ
(z,c)
(d,r)

(
ϕ

(y,b)
(d,r)(f)

)
after ϕ

(y,b)
(d,r)(f). In this case, the argument can be re-

peated (with ϕ
(y,b)
(d,r)(f) replacing f). A finite number of iterations will give the

desired result. �
43This is true in the example and, in general, if (d, r) ∈ M◦. While the statement of

Lemma 4 covers in principle cases where (d, r) /∈ M◦, proving it only for the cases where
(d, r) ∈M◦ suffices for the proof of Theorem 2.
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Lemma 5. Suppose that +∞ > η > 0 and (d, r) ∈ M∗
η ∩M◦. Let λ be sym-

metric in Λ◦(d,r). Let h = (fA1 , f
B
1 , ..., f

A
k , f

B
k ) be a history of announcements

in G∗(d,r)(λ) satisfying the following: (1) there exist (x, a) and (y, b) and i and
j such that

f jk(x, a) = f ik(x, a) + ε(d), f ik(y, b) = f jk(y, b) + ε(d), f ik = f jk elsewhere, (7)

and f ik(y, b) > t(y, b) for all t ∈ E∗(d,r), and (2) fAk and fBk are not final. Let

σi be a strategy profile in Γ∗h(d,r)(λ) that prescribes ϕ
(x,a)
(d,r)(f

i
k) in the first round

of Γ∗h(d,r)(λ). Then, there is a strategy σj in Γ∗h(d,r)(λ) that secures a positive

payoff in Γ∗h(d,r)(λ) against σi.

Proof. The details are cumbersome (and available upon request), but the gen-

eral idea of the proof is simple. Since (7) holds and σi prescribes ϕ
(x,a)
(d,r)(f

i
k)

in the first round of Γ∗h(d,r)(λ), it suffices to show that there is a strategy νj

in Γ∗h
′

(d,r)(λ) that secures a positive payoff against νi, where the last two ele-

ments of h′ are identical and equal to f jk , and νi prescribes ϕ
(y,b)
(d,r)(f

j
k) in the

first round of Γ∗h
′

(d,r)(λ). Observe that, because (1) f jk is not final, (2) f jk ≤ g
for some g ∈ O(d,r) (for h is a history of announcements in G∗(d,r)(λ)), and (3)

(d, r) ∈ M∗
η, we have Z(d,r)(f

j
k) 6= ∅. Therefore, the argument in the proof of

Lemma 4 can be used to see that there is a strategy νj in Γ∗h
′

(d,r)(λ) that se-
cures a nonnegative payoff against νi. Imagine for a moment that λ is perfect.
Consider a strategy µj in Γ∗h

′

(d,r)(λ) that mimics νj except that, each time it is
j’s time to move second, j increases her tax policy by ε(d) at the point where
i increased her tax policy as a first mover. Because f ik(y, b) > t(y, b) for all
t ∈ E∗(d,r), for each non-final f ∈ T(d,r)(f

j
k) and every (z, c) ∈ Z(d,r)(f), we have

d(z, c) < d(y, b). Thus, µj ensures, against νi, a zero payoff when it mimics νj
and a positive payoff in the event in which j moves second in each round of
Γ∗h

′

(d,r)(λ). The same argument is valid if λ ∈ Λ◦(d,r). �

Lemma 6. Suppose that (d, r) ∈ M. Suppose that λ is symmetric in Λ∗(d,r).

Let h be a history in G∗(d,r)(λ) whose last pair of announcements is (fA, fB),

where fA 6= fB. Let σ = (σA, σB) be a strategy profile in Γ∗h(d,r)(λ) with fol-

lowing property: σ is a Nash equilibrium in Γ∗h(d,r)(λ), and play of σ generates

a unique history of announcements in Γ∗h(d,r)(λ) whose last two elements are

identical. Let (fA1 , f
B
1 , ..., f

A
k , f

B
k ) be a history generated under play of σ. Sup-

pose that k > 1, fA` 6= fB` for all ` = 1, ..., k − 1, and fAk = fBk . Suppose that

fA1 = ϕ
(x,a)
(d,r)(f

A) and fA2 = ϕ
(y,b)
(d,r)(f

A
1 ), where (x, a) 6= (y, b). Then the value of

Γ∗
(
h,ϕ

(y,b)
(d,r)

(fA),fB1

)
(d,r) (λ) is zero. Analogous statements are true for player B.
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Proof. Assume the antecedent. We prove the statement for player A (the
argument for B is similar). By the property of σ and the fact that λ is

symmetric, the value of Γ∗h(d,r)(λ) is zero. Let h′ :=
(
h, ϕ

(y,b)
(d,r)(f

A), fB1

)
. We

show that v∗
(h′,A)
(d,r) (λ) ≥ 0. To see this, it suffices to show that

v∗
((
h′,ϕ

(x,a)
(d,r)

(
ϕ

(y,b)
(d,r)

(fA)
)
,τB
)
,A
)

(d,r) (λ) ≥ 0

for any announcement τB that is feasible for B in the first round of Γ∗h
′

(d,r)(λ).

Observe that
(
ϕ

(x,a)
(d,r)

(
ϕ

(y,b)
(d,r)(f

A)
)
, τB

)
= (fA2 , τ

B). Further,

v∗
((h,fA1 ,fB1 ,fA2 ,τB),A)
(d,r) (λ) ≥ 0,

since the choice of fA2 is optimal in the round that follows (h, fA1 , f
B
1 ) (and σ is

a Nash equilibrium in Γ∗h(d,r)(λ) that generates a unique history of announce-

ments (fA1 , f
B
1 , ..., f

A
k , f

B
k ) in Γ∗h(d,r)(λ) whose last two elements are identical).

Therefore, v∗
((
h′,ϕ

(x,a)
(d,r)

(
ϕ

(y,b)
(d,r)

(fA)
)
,τB
)
,A
)

(d,r) (λ) = v∗
((h,fA1 ,fB1 ,fA2 ,τB),A)
(d,r) (λ) ≥ 0, as de-

sired.
Because the value of Γ∗h(d,r)(λ) is zero and there exists an optimal play of B

that prescribes fB1 in the first round of Γ∗h(d,r)(λ), regardless of nature’s choices

(of the order of moves and the signals), we must have v∗
(h′,B)
(d,r) (λ) ≥ 0. Hence,

since we know that v∗
(h′,A)
(d,r) (λ) ≥ 0, we obtain v∗h

′

(d,r)(λ) = 0, as we sought. �

Lemma 7. Suppose that (d, r) ∈ M◦ and λ ∈ Λ•(d,r) ∩ Λ◦(d,r). Let

h = (fA1 , f
B
1 , ..., f

A
k , f

B
k ) be a history of announcements in G∗(d,r)(λ) such that

T(d,r)(f
i
k) ∩ E∗(d,r) 6= ∅ for each i. Let σ = (σA, σB) be a Nash equilibrium in

Γ∗h(d,r)(λ) that generates a unique history of announcements in Γ∗h(d,r)(λ) whose
last two components are identical. Given a player i, suppose that σi prescribes
gi in the round that follows h. Then T(d,r)(g

i) ∩ E∗(d,r) 6= ∅.

Proof. Assume the antecedent. We fix a player i, assume that T(d,r)(g
i) ∩

E∗(d,r) = ∅, and derive a contradiction. Because T(d,r)(f
i
k) ∩ E∗(d,r) 6= ∅ and

T(d,r)(g
i) ∩ E∗(d,r) = ∅, gi = ϕ

(x,a)
(d,r)(f

i
k) for some (x, a). The choice of (x, a),

along with the fact that T(d,r)(f
i
k) ∩ E∗(d,r) 6= ∅ and T(d,r)(g

i) ∩ E∗(d,r) = ∅,
entails gi(x, a) > gτ (x, a) for all τ ∈ T ◦(d,r) (gτ was defined in Section 5.1). By

assumption, play of σ in Γ∗h(d,r)(λ) generates a unique history of announcements

(τA1 , τ
B
1 , ..., τ

A
l , τ

B
l ) in Γ∗h(d,r)(λ) whose last two elements are identical (τAl =
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τBl ). Either l = 1 or l > 1. Both cases can be dealt with using a similar
argument, so we only consider the case when l > 1.

Without loss of generality, assume τA` 6= τB` for all ` = 1, ..., l − 1. Since
τ i1 = gi and gi(x, a) > gτ (x, a) for all τ ∈ T ◦(d,r), we may pick the longest

sub-history (τA1 , τ
B
1 , ..., τ

A
m, τ

B
m) of (τA1 , τ

B
1 , ..., τ

A
l−1, τ

B
l−1) such that the following

is true:

(?) There exist a player ι and (y, b) with τ ιm+1 = ϕ
(y,b)
(d,r)(τ

ι
m) and τ ιm+1(y, b) >

gτ (y, b) for all τ ∈ T ◦(d,r).

Let h′ := (h, τA1 , τ
B
1 , ..., τ

A
m, τ

B
m). Two cases are possible: τAm(y, b) = τBm(y, b)

and τ ιm(y, b) < τ jm(y, b), where j 6= ι (the case when τ ιm(y, b) > τ jm(y, b) is
not possible, for in this case (τA1 , τ

B
1 , ..., τ

A
m, τ

B
m) would not be the longest sub-

history of (τA1 , τ
B
1 , ..., τ

A
l−1, τ

B
l−1) satisfying (?) (recall that τAl = τBl )). We

consider each case in turn.

Case 1. τAm(y, b) = τBm(y, b). Since τAl = τBl and (τA1 , τ
B
1 , ..., τ

A
m, τ

B
m) is the

longest sub-history of (τA1 , τ
B
1 , ..., τ

A
l−1, τ

B
l−1) such that (?) holds, in this case

we must have τAm+1(y, b) = τBm+1(y, b). On the other hand, we know that
τAm 6= τBm (for m < l). Since (1) (τA1 , τ

B
1 , ..., τ

A
m, τ

B
m) is the longest sub-history of

(τA1 , τ
B
1 , ..., τ

A
l−1, τ

B
l−1) such that (?) holds, (2) τAm 6= τBm , (3) τAm(y, b) = τBm(y, b),

and (4) τAl = τBl , letting j be ι’s opponent, τ jm+1 must be not final, so

we may write τ jm+2 = ϕ
(z,c)
(d,r)(τ

j
m+1) for some (z, c). Note that the fact that

(τA1 , τ
B
1 , ..., τ

A
m, τ

B
m) is the longest sub-history of (τA1 , τ

B
1 , ..., τ

A
l−1, τ

B
l−1) such that

(?) holds implies that (z, c) 6= (y, b). Thus, we have τ jm+1 = ϕ
(y,b)
(d,r)(τ

j
m),

τ jm+2 = ϕ
(z,c)
(d,r)(τ

j
m+1), and (z, c) 6= (y, b). Moreover, m + 2 ≤ l (indeed, we

have τAm 6= τBm and τAm+1 6= τBm+1). Therefore, by Lemma 6, the value of

Γ∗
(
h′,ϕ

(z,c)
(d,r)

(τ jm),τ ιm+1

)
(d,r) (λ) is zero.44 Since (1) (d, r) ∈ M◦, (2) λ ∈ Λ•(d,r), (3)

ϕ
(z,c)
(d,r)(τ

j
m) 6= τ ιm+1, and (4) the value of Γ∗

(
h′,ϕ

(z,c)
(d,r)

(τ jm),τ ιm+1

)
(d,r) (λ) is zero,45 Lemma

3 gives a Nash equilibrium ν = (νA, νB) in Γ∗
(
h′,ϕ

(z,c)
(d,r)

(τ jm),τ ιm+1

)
(d,r) (λ) that gen-

erates a unique history of announcements (tA1 , t
B
1 , ..., t

A
κ , t

B
κ ) whose last two

elements are identical (tAκ = tBκ ). We consider two sub-cases:

44By Γ∗
(
h′,ϕ

(z,c)
(d,r)(τ

j
m),τιm+1

)
(d,r) (λ) we mean Γ∗

(
h′,ϕ

(z,c)
(d,r)(τ

j
m),τιm+1

)
(d,r) (λ) if j = A and

Γ∗
(
h′,τιm+1,ϕ

(z,c)
(d,r)(τ

j
m)
)

(d,r) (λ) if j = B.
45See footnote 44.
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Case 1.1. κ = 1. To ease notation, let tj0 := ϕ
(z,c)
(d,r)(τ

j
m) and tι0 := τ ιm+1. We

have tA0 6= tB0 , tA0 and tB0 non-final, and (if κ = 1) tA1 = tB1 . Therefore, there
exist (x, a) and (y, b) and i1 and i2 such that

ti10 (x, a) = ti20 (x, a) + ε(d), ti20 (y, b) = ti10 (y, b) + ε(d), tA0 = tB0 elsewhere. (8)

Moreover, we have the following: (1) tA0 and tB0 are non-final; (2) tι0(y, b) =
τ ιm+1(y, b) > t(y, b) for all t ∈ E∗(d,r) (since τ ιm+1(y, b) > gτ (y, b) for all τ ∈ T ◦(d,r));
(3) since τAm(y, b) = τBm(y, b) and (z, c) 6= (y, b),

tj0(y, b) = ϕ
(z,c)
(d,r)(τ

j
m)(y, b) < ϕ

(y,b)
(d,r)(τ

j
m)(y, b) = τ ιm+1(y, b) = tι0(y, b),

and so, in view of (8), we have either (y, b) = (x, a) or (y, b) = (y, b). Without
loss of generality, say (y, b) = (x, a), so that j = i2 (and ι = i1); (4) and,

since tA1 = tB1 , νι is a strategy in Γ∗
(h′,tA0 ,tB0 )
(d,r) (λ) that prescribes ϕ

(y,b)
(d,r)(t

ι
0) in the

first round of Γ∗
(h′,tA0 ,tB0 )
(d,r) (λ). Consequently, by Lemma 5, νι is not optimal in

Γ∗
(h′,tA0 ,tB0 )
(d,r) (λ), thereby contradicting the fact that ν is a Nash equilibrium in

Γ∗
(h′,tA0 ,tB0 )
(d,r) (λ).

Case 1.2. κ > 1. In this case, one may proceed as before, i.e., one may pick
the longest sub-history (tA1 , t

B
1 , ..., t

A
n , t

B
n ) of (tA1 , t

B
1 , ..., t

A
κ−1, t

B
κ−1) such that the

analogue of (?) is satisfied. One may then consider the analogues of the current
Case 1 and Case 2 (below) and either obtain a contradiction or repeat the
argument once more, until a point is reached in which a contradiction arises.

Case 2. τ ιm(y, b) < τ jm(y, b), where j 6= ι. We consider three sub-cases:

Case 2.1. m + 1 = l and τ jm is final. In this case, τAm+1 = τBm+1, and ι

has an optimal strategy in Γ∗h
′

(d,r), σι, which chooses τ ιm+1 = ϕ
(y,b)
(d,r)(τ

ι
m) in the

first round of this game (regardless of nature’s choices). Therefore, since τ jm
is final by assumption, we must have τAm = τBm everywhere except at (y, b),
where τ ιm(y, b) < τ jm(y, b). Because τ ιm+1(y, b) > gτ (y, b) for all τ ∈ T ◦(d,r),
τ ιm(y, b) ≥ gτ (y, b) for all τ ∈ T ◦(d,r). We claim that this implies that there

exists (y, b) such that d(y, b) < d(y, b) and, for some positive integer l, the
following map is final:

(x, a) 7→

{
τ ιm(x, a) if (x, a) 6= (y, b),

τ ιm(x, a) + lε(d) if (x, a) = (y, b).
(9)

To see this, observe that we must have (y, b) ∈ Z(d,r)(τ
ι
m) for some (y, b) with

d(y, b) < d(y, b) (otherwise, since τ ιm(y, b) ≥ gτ (y, b) for all τ ∈ T ◦(d,r) and
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arg max(x,a):τ(x,a)>0 d(x, a) is a singleton for all τ ∈ T ◦(d,r) (because (d, r) ∈M◦),

τ ιm would be final, thereby contradicting that τ ιm+1 = ϕ
(y,b)
(d,r)(τ

ι
m)). But since

(y, b) ∈ Z(d,r)(τ
ι
m), we have

(y− τ ιm(y, b)− ε(d)) d(y, b) ≥ max
(x,a)

d(x, a)ε(d) ≥ d(y, b)ε(d).

Therefore, since τ jm is final and τAm = τBm everywhere except at (y, b), where
τ ιm(y, b) < τ jm(y, b), it follows that the map in (9) is final for some positive
integer l and some (y, b) with d(y, b) < d(y, b). But then, σι, which chooses

τ ιm+1 = ϕ
(y,b)
(d,r)(τ

ι
m) in the first round of Γ∗h

′

(d,r)(λ), cannot be optimal (in fact,

choosing the map in (9) in Γ∗h
′

(d,r)(λ) gives ι a higher payoff).

Case 2.2. m+ 1 = l and τ jm is not final. In this case, τAm+1 = τBm+1 (as in Case
2.1), and there exists (z, c) such that

τ jm(y, b) = τ ιm(y, b) + ε(d), τ ιm(z, c) = τ jm(z, c) + ε(d), and τAm = τBm elsewhere.

We omit the rest of the argument, which is similar to that for Case 1.1.

Case 2.3. m+ 1 < l. In this case, since (τA1 , τ
B
1 , ..., τ

A
m, τ

B
m) is the longest sub-

history of (τA1 , τ
B
1 , ..., τ

A
l−1, τ

B
l−1) such that (?) holds, there must exist (z, c) such

that τ ιm+2 = ϕ
(z,c)
(d,r)(τ

ι
m+1) and (z, c) 6= (y, b). Thus, we have τ ιm+1 = ϕ

(y,b)
(d,r)(τ

ι
m),

τ ιm+2 = ϕ
(z,c)
(d,r)(τ

ι
m+1), and (z, c) 6= (y, b). Now, by Lemma 6, the value of

Γ∗
(
h′,ϕ

(z,c)
(d,r)

(τ ιm),τ jm+1

)
(d,r) (λ) is zero. Since (d, r) ∈M• ∩M◦, ϕ

(z,c)
(d,r)(τ

ι
m) 6= τ jm+1, and

the value of Γ∗
(
h′,ϕ

(z,c)
(d,r)

(τ ιm),τ jm+1

)
(d,r) (λ) is zero, Lemma 3 gives a Nash equilibrium

in Γ∗
(
h′,ϕ

(z,c)
(d,r)

(τ ιm),τ jm+1

)
(d,r) (λ) that generates a unique history of announcements

whose last two elements are identical. One may now formulate the analogues
of Case 1 and Case 2 for the new history, and repeat the argument as needed,
until a contradiction is obtained. �

We omit the proof of the following lemma, which is similar to that of
Lemma 7.

Lemma 8. Suppose that (d, r) ∈ M◦ and λ ∈ Λ•(d,r). Let

h = (fA1 , f
B
1 , ..., f

A
k+1, f

B
k+1) be a history of announcements in G∗(d,r)(λ) such

that T(d,r)(f
ι
k)∩E∗(d,r) 6= ∅ for each ι, T(d,r)(f

i
k+1)∩E∗(d,r) 6= ∅ and T(d,r)(f

j
k+1)∩

E∗(d,r) = ∅ for some i, j. Then the value of Γ∗h(d,r)(λ) is nonzero.
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The proof of the following lemma is tedious but otherwise relatively straight-
forward. It is therefore omitted (yet available from the author upon request).

Lemma 9. Suppose that +∞ > η > 0 and (d, r) ∈ M∗
η ∩M◦. Then E∗(d,r) ⊆

Nη

(
E(d,r)

)
.

Lemma 10. Suppose that +∞ > η > 0, (d, r) ∈ M∗
η ∩M◦, and λ ∈ Λ•(d,r) ∩

Λ◦(d,r). Then the tax policy implemented at any Nash equilibrium of G∗(d,r)(λ)

lies in Nη

(
E(d,r)

)
.

Proof. Suppose that +∞ > η > 0, (d, r) ∈ M∗
η ∩ M◦, and λ ∈ Λ•(d,r) ∩

Λ◦(d,r). Suppose that σ = (σA, σB) is a strategy profile in G∗(d,r)(λ). Let h =

(fA1 , f
B
1 , ..., f

A
k , f

B
k ) be any history of announcements in G∗(d,r)(λ) generated

under play of σ. We know that f i1 = 0 for each i, and therefore T(d,r)(f
i
1) ∩

E∗(d,r) 6= ∅ for each i. If T(d,r)(f
ι
k) ⊆ Nη

(
E(d,r)

)
for each ι, there is nothing to

prove, so suppose that it is not true that T(d,r)(f
ι
k) ⊆ Nη

(
E(d,r)

)
for each ι.

Let (h, fAk+1, f
B
k+1) be a super-history of h in G∗(d,r)(λ) generated under play of

σ, and suppose that T(d,r)(f
i
k+1) ∩ E∗(d,r) = ∅ for some i. We first show that σ

is not a Nash equilibrium of G∗(d,r)(λ).

Observe that, because T(d,r)(f
i
k+1) ∩ E∗(d,r) = ∅ and T(d,r)(f

i
1) ∩ E∗(d,r) 6= ∅,

there must exist some κ = 1, ..., k with T(d,r)(f
i
κ)∩E∗(d,r) 6= ∅ and T(d,r)(f

i
κ+1)∩

E∗(d,r) = ∅. There is no loss of generality in assuming that i’s opponent j satisfies

T(d,r)(f
j
κ) ∩ E∗(d,r) 6= ∅. Let hl := (fA1 , f

B
1 , ..., f

A
l , f

B
l ) for each l = 1, ..., κ. We

consider two cases:

Case 1. Either fAκ 6= fBκ and the value of Γ∗hκ(d,r)(λ) is zero or fAκ = fBκ .

If fAκ = fBκ , since T(d,r)(f
ι
κ) ∩ E∗(d,r) 6= ∅ for each ι, Lemma 4 implies that

either T(d,r)(f
ι
κ) ⊆ Nη

(
E(d,r)

)
for each ι or there exists a Nash equilibrium

in Γ∗hκ(d,r)(λ) that generates a unique history of announcements in Γ∗hκ(d,r)(λ)

whose last two elements are identical. Thus, if fAκ = fBκ , it suffices to consider
the case where T(d,r)(f

ι
κ) * Nη

(
E(d,r)

)
(recall that we are assuming that it is

not true that T(d,r)(f
ι
k) ⊆ Nη

(
E(d,r)

)
for each ι).

There exists a Nash equilibrium µ in Γ∗hκ(d,r)(λ) that generates a unique

history of announcements in Γ∗hκ(d,r)(λ) whose last two elements are identical

(this follows from Lemma 3 if fAκ 6= fBκ and the value of Γ∗hκ(d,r)(λ) is zero,

and from Lemma 4 if fAκ = fBκ and T(d,r)(f
ι
κ) * Nη

(
E(d,r)

)
). Therefore,

since λ is symmetric and Γ∗hκ(d,r)(λ) is zero-sum, the value of Γ∗hκ(d,r)(λ) is zero.

Since the value of Γ∗hκ(d,r)(λ) is zero, letting (tA, tB) be a history in Γ∗hκ(d,r)(λ)
that is generated with probability one under play of µ, and letting j be i’s
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opponent, we must have v∗
((hκ,tj ,t),j)
(d,r) (λ) ≥ 0 for any t ∈ F∗(d,r)(f

i
κ).

46 Since

Γ∗hk(d,r)(λ) is zero-sum, this implies v∗
((hκ,tj ,t),i)
(d,r) (λ) ≤ 0 for any such t. Observe

that we cannot have T(d,r)(t
j) ∩ E∗(d,r) = ∅, for, if this equality held, since

T(d,r)(f
ι
κ)∩E∗(d,r) 6= ∅ for each ι, µ would not be a Nash equilibrium in Γ∗hκ(d,r)(λ)

by Lemma 7. So we must have T(d,r)(t
j)∩E∗(d,r) 6= ∅. Because T(d,r)(f

ι
κ)∩E∗(d,r) 6=

∅ for each ι, T(d,r)(t
j) ∩ E∗(d,r) 6= ∅, and T(d,r)(f

i
κ+1) ∩ E∗(d,r) = ∅, Lemma 8

implies that the value of Γ∗
(hκ,tj ,f iκ+1)

(d,r) (λ) is nonzero.47 Since v∗
((hκ,tj ,t),i)
(d,r) (λ) ≤ 0

for any t ∈ F∗(d,r)(f
i
κ), we must have, in particular, v∗

((hκ,tj ,f iκ+1),i)
(d,r) (λ) ≤ 0. This

inequality, together with the fact that the value of Γ∗
(hκ,tj ,f iκ+1)

(d,r) (λ) is nonzero,

gives v∗
((hκ,tj ,f iκ+1),i)
(d,r) (λ) < 0. Therefore, since v∗

((hκ,tA,tB),i)
(d,r) (λ) = 0 and hκ

is reached with positive probability under play of σ in G∗(d,r)(λ), if player i

chooses f iκ+1 under play of σ as a first mover in the round that follows hκ,
then σ is not a Nash equilibrium in G∗(d,r)(λ).

Suppose that player i chooses f iκ+1 under play of σ as a second mover
in the round that follows hκ. Since λ ∈ Λ◦(d,r) (so λ is symmetric) and

there exists a Nash equilibrium in Γ∗hκ(d,r)(λ) that generates a unique history

of announcements in Γ∗hκ(d,r)(λ) whose last two elements are identical, at any

equilibrium of Γ∗hκ(d,r)(λ), in the first round of the game, the first mover, say

player ι, must choose some τ ι ∈ F∗(d,r)(f
ι
κ) with v∗

((hκ,τ ι,τ),ι)
(d,r) (λ) ≥ 0 for all

τ ∈ F∗(d,r)(f
−ι
κ ), −ι 6= ι.48 Since we are assuming that player i chooses f iκ+1

under play of σ as a second mover in the round that follows hκ, f
j
κ+1 must

have the properties of τ ι. We claim that T(d,r)(f
j
κ+1) ∩ E∗(d,r) 6= ∅. To show

this, we assume T(d,r)(f
j
κ+1) ∩ E∗(d,r) = ∅ and derive a contradiction. Suppose

that T(d,r)(f
j
κ+1) ∩ E∗(d,r) = ∅. Recall that (tA, tB) represents the history in

Γ∗hκ(d,r)(λ) that is generated with probability one under play of µ. Observe

that we cannot have T(d,r)(t
i) ∩ E∗(d,r) = ∅, for, if this equality held, since

T(d,r)(f
ι
κ)∩E∗(d,r) 6= ∅ for each ι, µ would not be a Nash equilibrium in Γ∗hκ(d,r)(λ)

by Lemma 7. So we must have T(d,r)(t
i) ∩ E∗(d,r) 6= ∅. But then Lemma 8 im-

plies that the value of Γ∗
(hκ,fjκ+1,t

i)
(d,r) (λ) is nonzero, thereby contradicting the

46By v∗((hκ,t
j ,t),j)

(d,r) (λ) we mean v∗
((hκ,t

j ,t),j)
(d,r) (λ) if j = A and v∗

((hκ,t,t
j),j)

(d,r) (λ) if j = B.
47By Γ∗

(hκ,t
j ,fiκ+1)

(d,r) (λ) we mean Γ∗
(hκ,f

i
κ+1,t

j)

(d,r) (λ) if i = A and Γ∗
(hκ,t

j ,fiκ+1)

(d,r) (λ) if i = B.
48By v∗((hκ,τ

ι,τ),ι)
(d,r) (λ) we mean v∗

((hκ,τ
ι,τ),ι)

(d,r) (λ) if ι = A and v∗
((hκ,τ,τ

ι),ι)
(d,r) (λ) if ι = B.
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fact that f jκ+1 has the properties of τ ι. Thus, T(d,r)(f
j
κ+1) ∩ E∗(d,r) 6= ∅. In this

case, Lemma 8 implies that the value of Γ∗
(hκ,fAκ+1,f

B
κ+1)

(d,r) (λ) is nonzero. Since

there exists a Nash equilibrium in Γ∗hκ(d,r)(λ) that generates a unique history of

announcements in Γ∗hκ(d,r)(λ) whose last two elements are identical, there exists

(τA, τB) ∈ F∗(d,r)(f
A
κ ) × F∗(d,r)(f

B
κ ) such that for each ι, v∗

((hκ,τ ι,τ),ι)
(d,r) (λ) ≥ 0 for

all τ ∈ F∗(d,r)(f
−ι
κ ), −ι 6= ι.49 This, together with the fact that the value of

Γ∗
(hκ,fAκ+1,f

B
κ+1)

(d,r) (λ) is nonzero, implies that the restriction of σ to Γ∗hκ(d,r)(λ) is

not a Nash equilibrium in Γ∗hκ(d,r)(λ). Hence, because hκ is reached with posi-

tive probability under play of σ in G∗(d,r)(λ), σ cannot be a Nash equilibrium

in G∗(d,r)(λ).

Case 2. fAκ 6= fBκ and the value of Γ∗hκ(d,r)(λ) is nonzero. Since the value of

G∗(d,r)(λ) is zero and the value of Γ∗hκ(d,r)(λ) is nonzero, there must exist some

` = 1, ..., κ− 1 (note that κ > 1) such that the value of Γ∗h`(d,r)(λ) is zero and

the value of Γ∗
h`+1

(d,r)(λ) is nonzero. If the last two announcements in h` are

identical and equal to f , Lemma 4 says that either T(d,r)(f) ⊆ Nη

(
E(d,r)

)
or

there exists a Nash equilibrium in Γ∗h`(d,r)(λ) that generates a unique history of

announcements in Γ∗h`(d,r)(λ) whose last two elements are identical. Since we

are assuming that it is not true that T(d,r)(f
ι
k) ⊆ Nη

(
E(d,r)

)
for each ι, in this

case there must exist a Nash equilibrium in Γ∗h`(d,r)(λ) that generates a unique

history of announcements in Γ∗h`(d,r)(λ) whose last two elements are identical.
The same is true if the last two announcements in h` are not identical, for,
in this case, since Γ∗h`(d,r) has value zero, one can use Lemma 3 to reach that
conclusion.

Therefore, in all cases, there is a Nash equilibrium in Γ∗h`(d,r)(λ) that gen-

erates a unique history of announcements in Γ∗h`(d,r)(λ) whose last two ele-
ments are identical. This implies that each player ι can choose an announce-
ment tι in F∗(d,r)(f

ι
`) such that v∗

((h`,t
ι,t),ι)

(d,r) (λ) ≥ 0 for all t ∈ F∗(d,r)(f
−ι
` ),

−ι 6= ι.50 At any equilibrium of Γ∗h`(d,r)(λ), in the first round of the game,
the first mover, say player ι, must choose one such tι. And the second
mover, say player −ι, must choose, in equilibrium, a strategy that prescribes,
for any announcement t of the first mover in the first round of Γ∗h`(d,r)(λ),

some τt such that v∗
((h`,τt,t),−ι)
(d,r) (λ) ≥ 0. Hence, for any history of announce-

49Here, the analogue of footnote 48 applies.
50See footnote 49.
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ments (tA1 , t
B
1 , ..., t

A
l , t

B
l ) in Γ∗h`(d,r)(λ) generated under play of an equilibrium

in Γ∗h`(d,r)(λ), Γ∗
(h`,t

A
1 ,t

B
1 )

(d,r) (λ) must have value zero. But then, since the value of

Γ∗
h`+1

(d,r)(λ) is nonzero and hκ is reached with positive probability under play of

σ in G∗(d,r)(λ), σ cannot be a Nash equilibrium of G∗(d,r)(λ).

We have shown that if (1) h = (fA1 , f
B
1 , ..., f

A
k , f

B
k ) is a history of an-

nouncements in G∗(d,r)(λ) generated under play of σ, (2) it is not true that

T(d,r)(f
ι
k) ⊆ Nη

(
E(d,r)

)
for each ι, (3) (h, fAk+1, f

B
k+1) is a super-history of h in

G∗(d,r)(λ) generated under play of σ, and (4) T(d,r)(f
i
k+1)∩E∗(d,r) = ∅ for some i,

then σ is not a Nash equilibrium in G∗(d,r)(λ). Since σ was an arbitrary profile

in G∗(d,r)(λ), we conclude that any history (tA1 , t
B
1 , ..., t

A
l , t

B
l ) of announcements

in G∗(d,r)(λ) generated under play of a Nash equilibrium in G∗(d,r)(λ) must sat-

isfy either T(d,r)(t
ι
l) ⊆ Nη

(
E(d,r)

)
for each ι or T(d,r)(t

ι
l) ∩ E∗(d,r) 6= ∅ for each ι.

Now Lemma 10 is obtained via Lemma 9. �

Proof of Theorem 2’. Suppose that +∞ > η > 0 and 1 > θ > 0. Take any
(d, r) ∈M∗

η∩M◦. By Lemma 1, there exists G(d,r)(λ) arbitrarily close to G(d,r)

such that λ ∈ Λ•(d,r)∩Λ◦(d,r). By Lemma 10, The tax policy implemented at any

Nash equilibrium of G∗(d,r)(λ) lies in Nη

(
E(d,r)

)
. By Lemma 2, M

(
ε(η,θ), θ

)
⊆

M∗
η for some +∞ > ε(η,θ) > 0. Moreover, M

(
ε(η,θ), θ

)
∩M◦ is clearly open

and dense inM
(
ε(η,θ), θ

)
. Therefore, because (d, r) was arbitrary inM∗

η∩M◦

and G(d,r)(λ) was arbitrarily close to G(d,r), the desired result follows. �
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