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Abstract
The notion of communication equilibrium extends Aumann’s (J Math Econ 1:67–96,
1974, https://doi.org/10.1016/0304-4068(74)90037-8) correlated equilibrium con-
cept for complete information games to the case of incomplete information. This paper
shows that this solution concept has the following property: for the class of incomplete
information games with compact metric type and action spaces, and with payoff func-
tions jointly measurable and continuous in actions, limits of Bayes-Nash equilibria of
finite approximations to an infinite gameare communication equilibria (and, in general,
not Bayes-Nash equilibria) of the limit game. Stinchcombe’s (J Econ Theory 146:638–
655, 2011b, https://doi.org/10.1016/j.jet.2010.12.006) extension ofAumann’s (JMath
Econ 1:67–96, 1974, https://doi.org/10.1016/0304-4068(74)90037-8) solution con-
cept to the case of incomplete information fails to satisfy this condition.

Keywords Infinite games of incomplete information · Bayes-Nash equilibrium ·
Communication equilibrium · Correlated equilibrium · Strategic approximation of an
infinite game

JEL Classification C72

1 Introduction

The aim of this paper is to understand which solution concepts for incomplete infor-
mation games with infinitely many actions and types (henceforth infinite games) are
generally “good” predictors of Bayes-Nash equilibrium behavior in “nearby” games
with finitely many strategies. It is shown that, from this perspective, the notion of
communication equilibrium, which extends Aumann’s (1974) correlated equilibrium
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concept for complete information games to the case of incomplete information, is
generally more appropriate than the Bayes-Nash solution concept or the notion of
correlated equilibrium formulated in Stinchcombe (2011b).

A communication equilibrium is a particular type of correlated strategy (i.e., a
mixture over action profiles for every type profile), interpreted as a mixture over action
profiles recommended by a mediator for each reported type profile. A player can be
dishonest, misreporting her type, and, in addition, a player can be disobedient, playing
somemixture over the player’s actions (conditional on the player’s type) instead of the
action recommended by the mediator. A communication equilibrium is a correlated
strategy that is immune to misreporting and disobedience.

The notion of communication equilibrium employed here extends that used in
Myerson (1991, Sect. 6.3, p. 258) for finite games (see alsoMyerson (1982) and Forges
(1986, 1990, 1993)) and differs from Stinchcombe’s (2011b) correlated equilibrium,
in the sense that there are correlated equilibria that fail to be communication equilibria,
and vice versa.

Roughly speaking, a strategic approximation of an infinite game of incomplete
information is defined as a countable set of behavioral strategy profiles with the fol-
lowing property: given any sequence of games whose finite sets of behavioral strategy
profiles eventually include every member of the countable set, limits of Bayes-Nash
equilibria of the finite games are “equilibria” of the infinite game. This definition is
based on a notion introduced by Reny (2011b) for normal-form games.1

Of course, the definition of a strategic approximation must specify what it means
for a sequence of behavioral strategy profiles to converge to a point. This paper iden-
tifies a topology on the space of correlated strategies that guarantees the existence of
strategic approximations, and argues that coarser topologies are too weak to warrant
the existence of a strategic approximation.

If one requires that limits of Bayes-Nash equilibria of approximating games be
Bayes-Nash equilibria of the infinite game, then strategic approximations do not gener-
ally exist. Indeed, in this case, one canfind simple games forwhich there are convergent
sequences of Bayes-Nash equilibria whose limit points are not Bayes-Nash equilibria
(see Sect. 4). A similar problem arises if one requires that limits of Bayes-Nash equi-
libria of approximating games be correlated equilibria of the limit game, according to
the notion of correlated equilibrium defined in Stinchcombe (2011b) (see Sect. 4).

There are two ways around this problem. The first is to use finer topologies for the
notion of convergence in the definition of a strategic approximation. The second is to
modify the equilibrium concept for the limit game. We pursue the second idea, using
the communication equilibrium concept, which allows us to prove the existence of a
strategic approximation for a wider class of topologies.

This paper confines attention to the classG of all the incomplete information games
with compact, metric type and action spaces and with payoff functions jointly mea-
surable and continuous in actions. The main result identifies a topology for which all
the members of G admit a strategic approximation. This topology can be argued to

1 Alternative notions of an approximation to an infinite game via a sequence of finite games have been
considered by Stinchcombe (2005) and Stinchcombe (2005, 2011a), who shows that discretizing action
and type spaces, rather than spaces of behavioral strategies, is a rather delicate matter.
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Equilibria in infinite games of incomplete information 313

be the “weakest” possible topology, in the sense that, for weaker topologies, there are
games in G that do not admit a strategic approximation.

Strategic approximations lead naturally to the notion of “robust” communication
equilibrium profiles (i.e., robust to the finite perturbations considered in this paper),
and a corollary of our main result identifies sufficient conditions for existence of this
refinement.2

2 Preliminaries

Throughout the paper, the following definitions will be adopted. If Y is a metric space,
then B(Y ) will denote the σ -algebra of the Borel subsets of Y , �(Y ) will represent
the set of probability measures on (Y ,B(Y )), and Cb(Y ) will denote the set of all
bounded and continuous real-valued functions on Y .

Definition 1 The w-topology on �(Y ) is defined as the coarsest topology for which
all the functionals in

{
μ ∈ �(Y ) �→

∫
Y

f (y)μ(dy) ∈ R : f ∈ Cb(Y )

}

are continuous.

We shall refer to the notion of convergence of measures in�(Y )with respect to the
w-topology as weak convergence of measures and we shall write μα −→

w
μ to indicate

that the net of measures (μα) converges weakly to μ.
If Y is a complete, separable metric space, the w-topology on �(Y ) is metrizable,

and the Prokhorov metric defines a compatible metric (see Prokhorov 1956, Theorem
1.11). TheProkhorovmetric on�(Y ) is definedby themap��(Y ) : �(Y )×�(Y ) → R

given by

��(Y )(μ, ν) := inf {ε : ∀B ∈ B(Y ), μ(B) ≤ ν(Nε(B)) + ε} , (1)

where Nε(B) denotes the ε-neighborhood of B, i.e., Nε(B) := ⋃
b∈B Nε(b), and

Nε(b) denotes the ε-neighborhood of b in Y . An equivalent formulation (see e.g.,
Dudley 1968, p. 1564) is

��(Y )(μ, ν) := inf {ε : ∀closed B ⊆ Y , μ(B) ≤ ν(Nε(B)) + ε} . (2)

2 Stinchcombe (2011b) and Cotter (1991) establish existence of correlated equilibrium within the class
G. Other authors (see e.g., Milgrom and Weber 1985; Balder 1988; Carbonell-Nicolau and McLean 2018,
2019; He and Yannelis 2016) have proven existence of Bayes-Nash equilibria (and hence communication
equilibria) under the additional assumption of diffuse joint information of the players. See Simon (2003)
for a proof of the fact that equilibria need not exist if one drops the diffuseness assumption. In related
frameworks, such as the state-space framework of Yannelis and Rustichini (1991), Hellman and Levy
(2017), and Carbonell-Nicolau and McLean (2020), and the lattice framework of Athey (2001), McAdams
(2003) and Reny (2011a), existence results can be proven in which the requirement of diffuse information
is replaced by assumptions we do not make here.
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2.1 Games and strategies

Definition 2 A normal-formgame (or simply a game) is a collectionG = (Zi , fi )
N
i=1,

where N is a finite number of players, Zi is a nonempty set of actions for player i , and
fi : Z → R represents player i’s payoff function, defined on the set of action profiles
Z := ×N

i=1Zi .

Throughout the sequel, given N sets Z1, . . . , Z N , we adhere to the following con-
ventions,which are standard in the literature, even though they sometimes entail abuses
of notation: for i ∈ {1, . . . , N }, Z−i := × j �=i Z j ; given i , the set ×N

j=1Z j is some-
times represented as Zi × Z−i , and z = (zi , z−i ) ∈ Zi × Z−i is used for a member z
of ×N

j=1Z j .

Definition 3 A Bayesian game is a collection

� = (Ti , Xi , ui , p)N
i=1 ,

where

• {1, . . . , N } is a finite set of players;
• Ti is a nonempty, compact, metric space of types for player i ;
• Xi is a nonempty, compact, metric space of actions for player i ;
• ui is a real-valued map on T × X , where T := ×N

i=1Ti and X := ×N
i=1Xi ; it

represents player i’s payoff function, and it is assumed bounded and (B(T ×
X),B(R))-measurable; and

• p is a probability measure on (T ,B(T )), describing the players’ common priors
over type profiles.

This paper is concerned with Bayesian games � = (Ti , Xi , ui , p)N
i=1 such that

ui (t, ·) : X → R is continuous for each t ∈ T and i . The set of all such Bayesian
games will be denoted by G.

Definition 4 Suppose that � = (Ti , Xi , ui , p)N
i=1 is a Bayesian game. A behavioral

strategy for player i in � is a (B(Ti ),B(�(Xi )))-measurable mapμi : Ti → �(Xi ).

Given a Bayesian game � = (Ti , Xi , ui , p)N
i=1, the set of behavioral strategies for

player i in � is denoted by Ti , and we define T := ×N
i=1Ti ; the dependence of Ti

and T on � is not made explicit and will (hopefully) be clear from the context.
A behavioral strategy μi ∈ Ti describes the mixture μi (·|ti ) ∈ �(Xi ) over the

actions in Xi employed by the type ti of player i .
Given a Bayesian game � = (Ti , Xi , ui , p)N

i=1, define the normal-form game

G� := (Ti , Ui )
N
i=1 , (3)

where Ui : T → R is defined by

Ui (μ1, . . . , μN ) :=
∫

T

∫
X N

· · ·
∫

X1

ui (t, x)μ1(dx1|t1) · · · μN (dxN |tN )p(dt).
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Definition 5 Suppose that � = (Ti , Xi , ui , p)N
i=1 is a Bayesian game. A correlated

strategy in � is a (B(T ),B(�(X)))-measurable map μ : T → �(X).

Given a Bayesian game � = (Ti , Xi , ui , p)N
i=1, the set of correlated strategies in �

is denoted by M (here again the dependence ofM on � is not explicitly indicated).
A correlated strategy μ ∈ M specifies a mixture μ(t) ∈ �(X) over action profiles

in X conditional on every type profile t in T .
A strategy profile (μ1, . . . , μN ) ∈ T induces a correlated strategy μ in a natural

way. Indeed, given a strategy profile (μ1, . . . , μN ) ∈ T , the map μ : T → �(X)

defined by

μ(t) := N⊗
i=1

μi (ti )

is a correlated strategy inM .

2.2 Equilibrium

Definition 6 Suppose that G = (Zi , fi )
N
i=1 is a normal-form game. A strategy profile

z = (zi , z−i ) in ×N
i=1Zi is a Nash equilibrium of G if fi (yi , z−i ) ≤ fi (z) for every

yi ∈ Zi and i .

Definition 7 A Bayes-Nash equilibrium of a Bayesian game � = (Ti , Xi , ui , p)N
i=1

is a Nash equilibrium of the gameG� defined in (3), i.e., a profile (μ1, . . . , μN ) ∈ T
such that for each i ,

Ui (μi , μ−i ) ≥ Ui (νi , μ−i ), for all νi ∈ Ti .

Suppose that � = (Ti , Xi , ui , p)N
i=1 is a Bayesian game. For each i , let Ai be the

set of all (B(Ti × Xi ),B(�(Xi )))-measurable maps αi : Ti × Xi → �(Xi ), and let
Di be the set of all (B(Ti ),B(�(Ti )))-measurable maps ηi : Ti → �(Ti ).

Definition 8 Suppose that � = (Ti , Xi , ui , p)N
i=1 is a Bayesian game. A correlated

strategy μ ∈ M is a communication equilibrium of � if for each i and (αi , ηi ) ∈
Ai × Di ,

∫
T

∫
Ti

∫
X

∫
Xi

ui (t, yi , x−i )αi (dyi |ti , xi )μ(dx |τi , t−i )ηi (dτi |ti )p(dt)

≤
∫

T

∫
X

ui (t, x)μ(dx |t)p(dt).

A correlated strategy μ ∈ M can be viewed as a mixture μ(t) ∈ �(X) recom-
mended by a mediator for each given reported type profile t ∈ T . A player i can be
dishonest, misreporting her type according to ηi (which specifies a mixture over Ti ,
ηi (ti ), for each type ti ∈ Ti ), and, in addition, a player can be disobedient, playing the
mixture αi (ti , xi ) ∈ �(Xi ), when her type is ti , instead of the action xi recommended
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by the mediator. A communication equilibrium is a correlated strategy that is immune
to misreporting and disobedience.

Definition 8 extends Aumann’s (1974) notion of correlated equilibrium to games of
incomplete information. In the special case ofBayesian gameswith finitelymany types
and actions, Definition 8 coincides with the equilibrium concept defined in Myerson
(1991, Sect. 6.3, p. 258).

The next definition requires some terminology.
Let ([0, 1],B([0, 1]), λ) be the measure space of the unit interval with the σ -

algebra of the Borel subsets of [0, 1] and the normalization of the Lebesgue measure
over [0, 1].

Suppose that � = (Ti , Xi , ui , p)N
i=1 is a Bayesian game. For each i , let Xi be the

set of all (B(Ti × [0, 1]),B(�(Xi )))-measurable maps ϕi : Ti × [0, 1] → �(Xi ).
The following definition is introduced in Stinchcombe (2011b).

Definition 9 Suppose that � = (Ti , Xi , ui , p)N
i=1 is a Bayesian game. A profile ϕ =

(ϕ1, . . . , ϕN ) ∈ ×N
i=1Xi is a correlated equilibrium of � if

∫
T ×[0,1]

∫
X

ui (t, x)

[
N⊗

j=1
ϕ j (t j , a)

]
(dx)[p ⊗ λ](d(t, a)) ≥

∫
T ×[0,1]

∫
X

ui (t, x)

[
ψi (ti , ϕi (ti , a)) ⊗

[
⊗
j �=i

ϕ j (t j , a)

]]
(dx)[p ⊗ λ](d(t, a))

for each i and each (B(Ti ×�(Xi )),B(�(Xi )))-measurablemapψi : Ti ×�(Xi ) →
�(Xi ).

Definition 9 is also an extension of Aumann’s (1974) notion of correlated equilib-
rium to games of incomplete information.3

A correlated equilibrium (Definition 9), viewed as a correlated strategy (Def-
inition 5), need not be a communication equilibrium. Conversely, communication
equilibria need not exhibit the specific kind of correlation required in Definition 9, as
illustrated in Sect. 4.

To see that a correlated equilibrium need not be a communication equilibrium,
note first that a profile ϕ = (ϕ1, . . . , ϕN ) ∈ ×N

i=1Xi induces a correlated strategy
(Definition 5) μ : T → �(X) defined as follows:

μ(B|t) :=
∫

[0,1]

[
N⊗

i=1
ϕi (ti , a)

]
(B)λ(da). (4)

We claim that a correlated equilibrium ϕ of a Bayesian game � = (Ti , Xi , ui , p)N
i=1

need not induce (via (4)) a communication equilibrium of �. To see this, consider the
following game � = (Ti , Xi , ui , p)N

i=1, with N = 2, payoff-irrelevant type spaces
T1 = T2 := {0, 1}, action spaces X1 = X2 := {A, B}, and payoff bi-matrix

3 There are alternative ways of defining the notion of correlated equilibrium (see, e.g., Bergemann and
Morris 2016), which are not considered here.
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A B

A 2,1 1,1
B 1,1 2,1

Assume that p = p1 ⊗ p2, where each pi assigns 1
2 probability to each type. Now

define the profile ϕ = (ϕ1, ϕ2) ∈ X1 × X2 as follows:

ϕ1(t1, a) :=

⎧⎪⎨
⎪⎩

δA if t1 = 1,

δA if t1 = 0 and a ∈ [
0, 1

2

]
,

δB if t1 = 0 and a ∈ ( 1
2 , 1

]
,

(5)

and

ϕ2(t2, a) :=
{

δA if a ∈ [
0, 1

2

]
,

δB if a ∈ ( 1
2 , 1

]
,

(6)

where δA (resp. δB) denotes the Dirac measure on {A, B}with support {A} (resp. {B}).
The profile ϕ is a correlated equilibrium of �. Indeed, it is clear that player 2 cannot

profitably deviate, and, in addition, for each ψ1 : T1 × �(X1) → �(X1), we have

∫
T ×[0,1]

∫
X

u1(t, x) [ϕ1(t1, a) ⊗ ϕ2(t2, a)] (dx)[p ⊗ λ](d(t, a))

= 7

4
≥
∫

T ×[0,1]

∫
X

u1(t, x)

[ψ1 (t1, ϕ1(t1, a)) ⊗ ϕ2(t2, a)] (dx)[p ⊗ λ](d(t, a)).

To see that the last inequality holds, note that the only “events” (t, a) for which
the strategy ϕ1 does not attain the maximum payoff for player 1 (i.e., 2), given that
player 2’s strategy is ϕ2, are those in the set

{
(t, a) : t1 = 1 and a ∈ ( 1

2 , 1
]}
. Since

ϕ1|{(t1,a):t1=1} = δA, player 1 can only improve her payoff via a deviation of the
form ψ1 (t1, ϕ1(t1, a)) if ψ1(1, δA) assigns positive probability to the action B, i.e., if
ψ1(B|1, δA) > 0. But, for any such ψ1,

∫
T ×[0,1]

∫
X

u1(t, x) [ψ1 (t1, ϕ1(t1, a)) ⊗ ϕ2(t2, a)] (dx)[p ⊗ λ](d(t, a))

= 1

4
(2ψ1(A|1, δA) + ψ1(B|1, δA)) + 1

4
2

+ 1

4
(ψ1(A|1, δA) + 2ψ1(B|1, δA)) + 1

4
2

= 1

4
(2ψ1(A|1, δA) + 1 − ψ1(A|1, δA)) + 1

4
2

+ 1

4
(ψ1(A|1, δA) + 2[1 − ψ1(A|1, δA)]) + 1

4
2
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= 1

4
(1 + ψ1(A|1, δA)) + 1

4
2 + 1

4
(2 − ψ1(A|1, δA)) + 1

4
2

= 7

4
.

While ϕ is a correlated equilibrium of �, it is not a communication equilibrium of
�. Indeed, given ϕ (as defined by (5) and (6)), the corresponding correlated strategy
μ defined via (4) satisfies

∫
T

∫
X

u1(t, x)μ(dx |t)p(dt) = 7

4
,

and the misreporting strategy η1 ∈ D1 defined by η1(t1) := δ0 for all t1 ∈ T1 (where
δ0 denotes the Dirac measure in �(T1) with support {0}) yields
∫

T

∫
T1

∫
X

u1(t, x)μ(dx |τ1, t2)η1(dτ1|t1)p(dt) = 2 >
7

4
=
∫

T

∫
X

u1(t, x)μ(dx |t)p(dt).

Note that the scope for profitable deviations is less restrictive for the notion of com-
munication equilibrium vis-à-vis the correlated equilibrium concept.

2.3 Strategic approximations

The archetypal approach to the analysis of robustness of equilibrium points in infi-
nite games of complete information is based on the classic closed graph theorem for
the Nash equilibrium correspondence when the payoff functions are the parameters.
This classic result and its subsequent generalizations rely on continuity of the payoff
functions.4 Similar approximation results based on continuity of the expected payoff
functions have been developed for games of incomplete information by Milgrom and
Weber (1985, Theorem 2).5 In the presence of payoff discontinuities, “good” approx-
imations to an infinite game must eventually include strategies that are of particular
strategic significance to the players. This issue, which is pointed out in Simon (1987)
and Reny (2011b), does not arise in the context of continuous games. In fact, when
payoff functions are smooth, any strategy can be reasonably approximated by an arbi-
trary, nearby strategy. Thus, the notion of a “well-defined” approximating sequence of
games is necessarily more nuanced when the limit game exhibits payoff discontinu-
ities. These considerations motivate Reny’s (2011b) concept of a finite approximation
to an infinite normal-form game of complete information (Definition 2).

Definition 10 (Reny 2011b) Suppose thatG = (Zi , fi )
N
i=1 is a normal-formgame, and

let Z := ×N
i=1Zi be ametric space.A strategic approximationofG is a countable set of

strategies Z∞ = ×N
i=1Z∞

i contained in Z satisfying the following: if for each player i ,
Z1

i ⊆ Z2
i ⊆ · · · is an increasing sequence of finite subsets of Zi whose union contains

4 See, e.g., Lucchetti and Patrone (1986), Stinchcombe (2005), and Gürkan and Pang (2007).
5 See also the recent extensions in Prokopovych and Yannelis (2019) and He and Sun (2019).
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Z∞
i , and if for each n, zn is a Nash equilibrium of the game (Zn

j , f j |Zn
1×···×Zn

N
)N

j=1,
then any limit point of the sequence (zn) is a Nash equilibrium of G.

In our setting, the expected payoff functions exhibit marked discontinuities (see
Stinchcombe (2011a, b)). Consequently, we adopt Reny’s (2011b) approach.6

In light of Definition 10, the reader may be tempted to define a strategic approxima-
tion of a Bayesian game as a strategic approximation of the normal-form game defined
in (3). That is, given a Bayesian game � = (Ti , Xi , ui , p)N

i=1, a strategic approxima-
tion of � could be defined as a countable set of strategiesT ∞ = ×N

i=1T
∞

i contained
in T = ×N

i=1Ti satisfying the following: if for each player i , T 1
i ⊆ T 2

i ⊆ · · ·
is an increasing sequence of finite subsets of Ti whose union contains T ∞

i , if for
each n, μn is a Nash equilibrium of the game (T n

j , U j |T n
1 ×···×T n

N
)N

j=1, and if the
sequence (μn) “converges” to a point μ, then μ is a Bayes-Nash equilibrium of �.
Of course, this definition is not precise enough, for it does not specify the notion of
convergence for the sequence (μn). This paper introduces a topology for the space of
correlated strategies (which, as explained at the end of Sect. 2.1, contains the space
of behavioral strategy profiles for the Bayesian game �). For this topology, defining
a strategic approximation of a Bayesian game via Definition 10 (i.e., applying Def-
inition 10 directly to the normal-form game defined in (3)) is problematic. Indeed,
as illustrated in Sect. 4 below, limits of Bayes-Nash equilibria of sequences of finite
approximating games need not be Bayes-Nash equilibria of the limit game. Thus, an
alternative definition is needed in which the solution concept for the limit game is
weakened. This paper proposes the following definition.

Definition 11 Suppose that � = (Ti , Xi , ui , p)N
i=1 is a Bayesian game, and let

G� = (Ti , Ui )
N
i=1 be its corresponding normal form as defined in (3). A strategic

approximation of � is a countable set of strategies T ∞ = ×N
i=1T

∞
i contained in

T = ×N
i=1Ti satisfying the following: if for each player i , (T α

i ) is an increasing
net of finite subsets of Ti whose union contains T ∞

i , if for each α, μα is a Nash
equilibrium of the game (T α

j , U j |T α
1 ×···×T α

N
)N

j=1, and if the net (μ
α) “converges” to

a point μ, then μ is a communication equilibrium of �.

This definition raises three issues. First, the reader may wonder whether it would be
more appropriate to replace, in Definition 11, “communication equilibrium” by “cor-
related equilibrium,” as formulated in Definition 9. Section 4 illustrates that strategic
approximations defined in terms of correlated equilibrium limit points are problematic.

Second, what can be said about the existence of Nash equilibria in the finite games
(T α

j , U j |T α
1 ×···×T α

N
)N

j=1? The following result provides an answer.

Proposition Suppose that � = (Ti , Xi , ui , p)N
i=1 is a Bayesian game in G, and

let G� = (Ti , Ui )
N
i=1 represent its corresponding normal form, as defined in (3).

Given finite sets S1, . . . ,SN , where Si ⊆ Ti for each i , there are finite super-
sets S ′

1 ⊇ S1, . . . ,S
′
N ⊇ SN , where S ′

i ⊆ Ti for each i , such that the game
(S ′

j , U j |S ′
1×···×S ′

N
)N

j=1 possesses a Nash equilibrium.

6 Thanks to an anonymous referee for pointing out the limitations of standard approximation results in the
context of discontinuous games.
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Proof By Nash’s Theorem, the mixed extension of (Si , Ui |S1×···×SN )N
i=1 has a Nash

equilibrium (q1, . . . , qN ) ∈ ×N
i=1�(Si ), each qi induces a member μi ∈ Ti defined

by

μi (Bi |ti ) :=
∑

μi ∈Si

qi (μi )μi (Bi |ti ),

and μ = (μ1, . . . , μN ), so defined, is a Nash equilibrium of
(Si ∪ {μi }, Ui |(S1∪{μ1})×···×(SN ∪{μN }))N

i=1. ��
Third, note that the notion of convergence for the net (μα) in Definition 11 has not

been specified. Each profile of behavioral strategies (μ1, . . . , μN ) ∈ T in � can be
identified with a correlated strategy μ : T → �(X) inM defined by

μ(t) := N⊗
i=1

μi (ti ). (7)

Thus, if one views the elements of the net (μα) and the limit μ in Definition 11 as
members of M , a topology on M fully determines the notion of convergence in
Definition 11.

This paper considers a topology on the space M of correlated strategies of a
Bayesian game � = (Ti , Xi , ui , p)N

i=1, defined as follows.
Given a (B(Ti ),B(Ti ))-measurable map gi : Ti → Ti , define p ∗ gi ∈ �(T ) by

[p ∗ gi ](Ai × A−i ) :=
∫

Ti ×A−i

δgi (ti )(Ai )p(dt) (8)

for all measurable rectangles Ai × A−i ⊆ Ti × T−i inB(T ), where δgi (ti ) denotes the
Dirac measure in �(Ti ) with support {gi (ti )}.

Let P i denote the subset of �(T ) defined by

P i := {
p ∗ gi ∈ �(T ) : gi : Ti → Ti is (B(Ti ),B(Ti ))-measurable

}
,

and define

P :=
N⋃

i=1

P i . (9)

The map gi can be viewed as a “misreporting rule,” assigning a “reported type”
gi (ti ) ∈ Ti to each type ti ∈ Ti of player i , and the compound measure p ∗ gi defined
in (8) describes the distribution over type profiles induced by the misreporting rule
gi , a distribution whereby Nature first chooses a type profile (t1, . . . , tN ) ∈ T using
the prior p and then player i “switches” her type from ti to gi (ti ). The set of all such
distributions is denoted by P i . The members of P := ⋃N

i=1 P i can then be thought
of as “distorted priors” in the sense that, for each p̂ ∈ P , one and only one player i is
misreporting her type according to some rule gi .
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Given p̂ ∈ �(T ) and μ ∈ M , define the probability measure p̂ ⊗ μ ∈ �(T × X)

by

[ p̂ ⊗ μ](A × B) :=
∫

A
μ(B|t) p̂(dt) (10)

for all measurable rectangles A × B ⊆ T × X inB(T × X). The compound measure
p̂ ⊗ μ is a Borel probability measure on the Cartesian product T × X of type-actions
profiles whereby, first, a type profile t ∈ T is selected according to the “distorted prior”
p̂, and then, conditional on t , the correlated device μ(t) ∈ �(X) is implemented to
choose an action profile from X .

Now define the equivalence relation ∼⊆ M × M as follows:

μ ∼ ν ⇐⇒ ∀ p̂ ∈ P, ∃S ∈ B(T ) : p̂(S) = 1&∀t ∈ S, μ(t) = ν(t).

In words, μ and ν are equivalent if, for all p̂ ∈ P , μ and ν differ only on a p̂-null
subset of T . Note that, for p̂ ∈ P , p̂ ⊗ μ = p̂ ⊗ ν whenever μ ∼ ν.

Let M / ∼ be the set of equivalence classes of elements ofM generated by ∼,

M / ∼:= {[μ] : μ ∈ M } = {{ν ∈ M : ν ∼ μ} : μ ∈ M } .

Two correlated strategies in M belong to the same equivalence class if, for each
p̂ ∈ P , they coincide on a p̂-full measure subset of T .

Next, endow �(T × X) with the weak topology (Definition 1), and define, for each
p̂ ∈ P , the map ϑ p̂ : M / ∼→ �(T × X) by

ϑ p̂([μ]) := p̂ ⊗ μ.

The initial topology onM / ∼ generated by the family of maps {ϑ p̂} p̂∈P , denoted by
T, is the weakest topology onM / ∼ that makes all the functions ϑ p̂ continuous, and
a net ([μα]) inM / ∼ T-converges to a point [μ] ∈ M / ∼, denoted as

[μα] −→
T

[μ],

if and only if ϑ p̂([μα]) −→
w

ϑ p̂([μ]) for all p̂ ∈ P (see, e.g., Aliprantis and Border

2006, Lemma 2.52), i.e., if and only if

p̂ ⊗ μα −→
w

p̂ ⊗ μ, for all p̂ ∈ P .

We sometimes writeμα −→
T

μ for [μα] −→
T

[μ], hoping that no confusion will arise.

2.3.1 Remarks about the topologyT

Some remarks about the topology T are in order.
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To begin, we define two natural topologies on the set of correlated strategies, M ,
and compare them with the topology T.

First, consider the set

{p ⊗ μ : μ ∈ M }

of compound probabilitymeasures in�(T ×X) (recall the definition in (10)), endowed
with the relativization of theweak topology on�(T ×X) (Definition 1). Next, consider
the setM of all equivalence classes inM of correlated strategies that only differ on a
p-null subset of T (i.e., two elements μ and ν inM are in the same equivalence class
if there is a set S ∈ B(T ) such that p(S) = 1 andμ(t) = ν(t) for all t ∈ S). Let the set
M be provided with the initial topology onM generated by the mapμ ∈ M �→ p⊗μ,
so that a net ([μα]) converges to [μ] inM if and only if

p ⊗ μα −→
w

p ⊗ μ

(see, e.g., Aliprantis and Border 2006, Lemma 2.52). Note that the map [μ] �→ p ⊗μ

is a homeomorphism between M and {p ⊗ μ : μ ∈ M }, so that the relative weak
topology on {p ⊗ μ : μ ∈ M } can be viewed as a topology on (equivalence classes
in)M .

Clearly, the topology T is stronger than the weak topology on {p ⊗ μ : μ ∈ M },
i.e., [μα] −→

T
[μ] implies p⊗μα −→

w
p⊗μ.7 In addition, the topologyT is weaker than

the topology of uniform convergence onM , i.e., if the net (μα) converges uniformly
to μ inM (so that for each ε > 0, there exists α∗ such that, for all α ≥ α∗,

��(X)(μ
α(t), μ(t)) < ε, for all t ∈ T

(recall the definition of ��(X) in (1))), then [μα] −→
T

[μ].8 To see this, suppose that

(μα) converges uniformly to μ inM . It will be shown that

p̂ ⊗ μα −→
w

p̂ ⊗ μ, for all p̂ ∈ P,

which, recall, is equivalent to T-convergence of [μα] to [μ]. By the Portmanteau
Theorem (see, e.g., Aliprantis and Border 2006, Theorem 15.3), it suffices to show
that, for all p̂ ∈ P ,

∫
T ×X

f (t, x)[ p̂ ⊗ μα](d(t, x)) →
∫

T ×X
f (t, x)[ p̂ ⊗ μ](d(t, x)), (11)

7 While the implication is mathematically correct, the first statement is not, for the sets M / ∼ and M
differ from one another. Note that, for any μ ∈ M , the equivalence class [μ], viewed as a member of
M / ∼, is contained in the corresponding equivalence class from M, but the reverse containment does not
hold.
8 Again, the first assertion is an abuse of terminology.
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for all bounded continuous maps f : T × X → R. Fix p̂ ∈ P and a bounded
continuous map f : T × X → R. We claim that the net of maps

(
t ∈ T �→

∫
X

f (t, x)μα(dx |t)
)

(12)

converges uniformly to the map t ∈ T �→ ∫
X f (t, x)μ(dx |t). The proof of this fact

is relegated to “Appendix”. Because the net in (12) converges uniformly to the map
t ∈ T �→ ∫

X f (t, x)μ(dx |t), the LebesgueDominated Convergence Theorem for nets
(see, e.g., Dunford and Schwartz 1958, Theorem 7, p. 124) implies that (11) holds, as
we sought.

Next, we consider a standard topology onT , the set of behavioral strategy profiles.
This topology, which is used in Balder (1988) and in Carbonell-Nicolau and McLean
(2018), inter alia, is defined as the product narrow quotient topology on T , i.e., the
product topology on T induced by the quotient topology for the narrow topology
(see Balder 2001, Definition 1.3) on each factor Ti . More precisely, let pi be the
marginal projection of p into �(Xi ) (i.e., pi ∈ �(Xi ) and pi (B) := p(B × T−i ) for
all B ∈ B(Xi )), consider the narrow quotient topology on the equivalence classes in
Ti of transition probabilities that only differ on a pi -null set, and endow T with its
corresponding product topology. Letting pi ⊗μi (μi ∈ Ti ) be the compound measure
in �(Ti × Xi ) defined by

[pi ⊗ μi ](A × B) :=
∫

A
μi (B|ti )pi (dti )

for all measurable rectangles A × B ⊆ Ti × Xi inB(Ti × Xi ), this product topology
can be shown to be equivalent to the product weak topology on the set of distributional
strategy profiles, ×N

i=1Di , where Di := {pi ⊗ μi : μi ∈ Ti } (see Carbonell-Nicolau
and McLean 2018, Sect. 5.2).9

The relativization of the topology T on T (recall that each element (μ1, . . . , μN )

of T is identified with a correlated strategy μ : T → �(X) in M defined by (7)) is
fundamentally different from the product narrow quotient topology onT . Indeed, it is
possible for a sequence inT to converge, with respect to both topologies, to different
limit points. This is illustrated in Sect. 4, which presents an example in which T-
convergence (and even convergence with respect to the relative weak topology on
{p ⊗ μ : μ ∈ M }) induces correlation of actions across players in the limit, while
the product narrow quotient topology on T exhibits independent randomization over
actions across players in the limit.

3 Themain results

Recall that G denotes the space of all Bayesian games (Ti , Xi , ui , p)N
i=1 such that

ui (t, ·) : X → R is continuous for each t ∈ T and i . The first main result of this paper

9 See Castaing et al. (2004, ch. 2) for alternative formulations of these topologies.
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asserts that the topology T defined in the previous section guarantees the existence
of a strategic approximation of � (according to Definition 11) for all � ∈ G. We also
illustrate the fact thatT is the “weakest” possible topology ensuring that all the games
in G admit a strategic approximation, in the sense that, for weaker topologies, there
are games in G that do not admit a strategic approximation.

Theorem 1 The topologyT guarantees that every Bayesian game inG admits a strate-
gic approximation.

The formal proof of Theorem 1 is provided in Sect. 6. The idea of the proof is as
follows. Let � = (Ti , Xi , ui , p)N

i=1 be a Bayesian game in G. For each i , let Ci be
the set of all the continuous behavioral strategies in Ti . The space Ci , endowed with
the topology of uniform convergence of functions, is separable, and so a countable
dense subset Qi may be selected from Ci . The set Q := ×N

i=1Qi is a countable set
of strategies contained in T = ×N

i=1Ti , and it can be shown that Q is a strategic
approximation of � (in the sense of Definition 11). Specifically, if, for each player
i , (T α

i ) is an increasing net of finite subsets of Ti whose union contains Qi , i.e.,

T α
i ⊆ T

β
i whenever α ≤ β and

⋃
α T

α
i ⊇ Qi ; if, for each α, (μα

1 , . . . , μα
N ) is a

Nash equilibrium of the game

(T α
i , Ui |T α

1 ×···×T α
N
)N
i=1;

if, for each α, μα : T → �(X) denotes the correlated strategy inM defined by

μα(t) := N⊗
i=1

μα
i (ti );

and if [μα] −→
T

[μ] for some μ ∈ M , then μ is a communication equilibrium of �.

The proof that μ is a communication equilibrium of � proceeds by contradiction,
i.e., it is shown that the assumption that μ is not a communication equilibrium, so that
there exist i and (αi , ηi ) ∈ Ai × Di such that

∫
T ×X

ui (t, x)[p ⊗ μ](d(t, x))

<

∫
T

∫
Ti

∫
X

∫
Xi

ui (t, yi , x−i )αi (dyi |ti , xi )μ(dx |τi , t−i )ηi (dτi |ti )p(dt),

leads to an impossibility. Using the T-convergence of ([μα]) to [μ], it is possible
to extract sequences (T n

i ), i ∈ {1, . . . , N }, and (μn
1, . . . , μ

n
N ) such that, for large

enough n and for some ρ∗
i ∈ T n

i , one has Ui (ρ
∗
i , μn

−i ) > Ui (μ
n
1, . . . , μ

n
N ). This

gives the desired contradiction, since (μn
1, . . . , μ

n
N ) is a Nash equilibrium of the game

(T n
ι , Uι|T n

1 ×···×T n
N
)N
ι=1.

We now show that the topologyT is necessary for the games inG to admit a strategic
approximation.10 To this end, we consider a very simple Bayesian game, denoted by

10 The argument here is based on an example provided by an anonymous referee.

123



Equilibria in infinite games of incomplete information 325

� = (Ti , Xi , ui , p)N
i=1. There are two players (i.e., N = 2), and type spaces are

identical doubletons, T1 = T2 := {0, 1}. The common prior p is uniform on the
diagonal {(0, 0), (1, 1)}. Player 1 has one action, A, and player 2 has two actions, A
and B, so that X1 := {A} and X2 := {A, B}. Types are payoff-irrelevant, and the
payoff bi-matrix is as follows:

A B

A 1,1 2,0

There is a unique communication equilibrium μ : T → �(X) in this trivial game,
given by μ(t) := δ(A,A) for all t ∈ T , where δ(A,A) denotes the Dirac measure in
�(X) with support {(A, A)}. To see this, note that X = {(A, A), (A, B)} and suppose
that μ̂ is a correlated strategy in M such that μ̂({(A, B)}|t) > 0 for some t ∈ T . If
t ∈ {(0, 0), (1, 1)}, then it is clear that player 2 has an incentive to be disobedient,
playing A with probability 1 upon receiving the signal t2. If t ∈ {(0, 1), (1, 0)}, then
player 1 can improve her payoff by being dishonest, lying about her type (if t = (0, 1),
she reports τ1 = 0 upon receiving the signal t1 = 1, and if t = (1, 0), she reports
τ1 = 1 upon receiving the signal t1 = 0).

Now let T 1
i ⊆ T 2

i ⊆ · · · be an increasing sequence of finite subsets of Ti ,
i ∈ {1, 2}. (Here Ti is the set of all maps νi : {0, 1} → �(Xi ).) Let (μ∗

1, μ
∗
2) be the

unique Nash equilibrium of the normal form of �, (Ti , Ui )
2
i=1, i.e., μ∗

1(t1) := δA and
μ∗
2(t2) := δA. Then, for each n, (μn

1, μ
n
2) := (μ∗

1, μ
∗
2) is a Nash equilibrium of the

game (T n
i ∪ {μ∗

i }, Ui |(T n
1 ∪{μ∗

1})×(T n
2 ∪{μ∗

2}))
2
i=1.

Defineμn : T → �(X)byμn(t) := μn
1(t1)⊗μn

2(t2) and suppose that (μ
n)does not

T-converge toν inM . Then there exist i and p̂ ∈ P i such that p̂⊗μn does not converge
weakly to p̂⊗ν. But then there exists τ ∈ T such that ν(τ) �= μ∗

1(τ1)⊗μ∗
2(τ2) = μ(τ),

implying that ν is not a communication equilibrium of �. Thus, if one employs a
notion of convergence weaker than T-convergence in Definition 11, the game � does
not admit a strategic approximation.

3.1 On the existence of communication equilibrium

While the general existence of communication equilibria for the class G of Bayesian
games is an open question, Theorem 1 can be used to identify a subclass of G for
which “robust” communication equilibria exist (in the sense of Definition 11).11

11 Finding conditions under which the topology T is compact would be useful to establish the general
existence of communication equilibria within the class of games G. As per Exercise 2.48 in Megginson
(1998), the topology T is compact if and only if (i) ϑ p̂(M / ∼) is compact in �(T × X) for every p̂ ∈ P ;
and (ii) the image of M / ∼ in

∏
P �(T × X) under the map [μ] ∈ M / ∼�→ ( p̂ ⊗ μ) p̂∈P is closed.

While the first condition can be shown to hold, we have not been able to establish the second condition,
which requires the following: if ([μα]) is a net inM / ∼ such that

p̂ ⊗ μα −→
w

p̂ ⊗ μ p̂ for all p̂ ∈ P,
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Strategic approximations add a sense of robustness to the notion of communication
equilibrium. Indeed, if there is a sequence of Bayes-Nash equilibria of games with
finite, successively larger spaces of behavioral strategies, and if the sequence con-
verges, the limit point is, by virtue of Theorem 1, a communication equilibrium. This
equilibrium is “robust” in the sense that it describes Bayes-Nash equilibrium behavior
in “nearby” finite Bayesian games. Of course, such a “strategic approximation” is vac-
uous if such a sequence of approximating Bayes-Nash equilibria does not exist, and
so a natural question is whether the games inG can be shown to have “robust” approx-
imate communication equilibria. The following result provides, in certain cases, an
answer in the affirmative.

LetG∗ be the set of all Bayesian games (Ti , Xi , ui , p)N
i=1 inG satisfying the follow-

ing condition: Given an increasing sequence of finite subsets of Ti , T 1
i ⊆ T 2

i ⊆ · · ·
(i ∈ {1, . . . , N }), there exists (passing to a subsequence if necessary) a correspond-
ing sequence (μn

1, . . . , μ
n
N ), where each (μn

1, . . . , μ
n
N ) is a Nash equilibrium of

(T n
i , Ui |T n

1 ×···×T n
N
)N
i=1, such that the sequence of correlated strategies (μn) defined

by

μn(t) := N⊗
i=1

μn
i (ti ) (13)

satisfies

1

m

m∑
n=1

μn(t)
m→∞−−−−→

w
μ(t), for every t ∈ T , (14)

for some μ ∈ M .

Corollary (to Theorem 1) Suppose that � = (Ti , Xi , ui , p)N
i=1 is a Bayesian

game in G∗. Then there is (i) an increasing sequence of finite subsets of Ti ,
T 1

i ⊆ T 2
i ⊆ · · · (i ∈ {1, . . . , N }), and (ii) a Nash equilibrium (μn

1, . . . , μ
n
N ) of

(T n
i , Ui |T n

1 ×···×T n
N
)N
i=1, for each n, such that the sequence of correlated strategies

(μn) defined by (13) T-converges in M , and the limit point is a communication equi-
librium of �.

Proof By Theorem 1, � admits a strategic approximation T ∞ = ×N
i=1T

∞
i , and so,

because� ∈G∗, and given an increasing sequenceT 1
i ⊆ T 2

i ⊆ · · · offinite subsets of
Ti whose union containsT ∞

i (i ∈ {1, . . . , N }), there exists (passing to a subsequence
if necessary) a corresponding sequence (μn

1, . . . , μ
n
N ), where each (μn

1, . . . , μ
n
N ) is

a Nash equilibrium of (T n
i , Ui |T n

1 ×···×T n
N
)N
i=1, such that the sequence of correlated

strategies (μn) defined by (13) satisfies (14) for some μ ∈ M . Applying Theorem
2.6 in Balder (2001), it follows that p̂ ⊗ μn −→

w
p̂ ⊗ μ for all p̂ ∈ �(T ), implying,

where, for each p̂ ∈ P , μ p̂ is an element ofM , then there exists μ∗ ∈ M such that

p̂ ⊗ μ p̂ = p̂ ⊗ μ∗, for all p̂ ∈ P .
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in particular, that μn −→
T

μ. Because T ∞ is a strategic approximation of �, it follows

that μ is a communication equilibrium of �. ��

4 Discussion

To begin, we consider the existence—or lack thereof—of strategic approximations of
the normal form G� (defined in (3)) of a Bayesian game �, in the sense of applying
Definition 10 directly toG� . The following example illustrates that the normal form of
a Bayesian game may be approximated by a sequence of finite “subgames” for which
there is a corresponding sequence of Nash equilibria converging to a non-Nash equi-
librium profile in the limit game. Two modes of convergence for the sequence of Nash
equilibriumprofiles are considered. Thefirst convergencemode derives from the topol-
ogy on behavioral strategy profiles used in Balder (1988) and in Carbonell-Nicolau
and McLean (2018), inter alia, while the second is weaker than T-convergence.

Consider the following two-player Bayesian game taken fromMilgrom and Weber
(1985, Example 2). Suppose that each player’s type is a member of the [0, 1] interval,
and let the action set of each player be a doubleton, {1, 2}. The payoffs are independent
of the types, and are given by the standard “Battle of the Sexes” payoff bi-matrix:

1 2

1 2,1 0,0
2 0,0 1,2

Suppose that type profiles (t1, t2) are uniformly distributed on the 45◦ line in [0, 1]×
[0, 1].

Let � = (Ti , Xi , ui , p)N
i=1 denote the corresponding Bayesian game, and letG� =

(Ti , Ui )
N
i=1 represent its normal form, as defined in (3).

For each player i and each n ∈ N, let sn
i (ti ) be the strategy defined as12

sn
i (ti ) :=

{
1 if the integer part of nti is odd,

2 otherwise.

Now for each player i , let T 1
i ⊆ T 2

i ⊆ · · · be any increasing sequence of finite
behavioral strategy sets, and define Y n

i := T n
i ∪ {

sn
i

}
for each i and n. Clearly, for

each n, the strategy profile (sn
1 , sn

2 ) is a Nash equilibrium of the normal form in which
the players’ strategy spaces are Y n

1 and Y n
2 .

There are number of topologies that onemay consider when applyingDefinition 10.
For example, one may assume that the sequence (sn

1 , sn
2 )—or, more precisely, the

sequence (δsn
1
, δsn

2
) in T = T1 × T2, where δsn

i
denotes the map ti ∈ Ti �→ δsn

i (ti ) ∈
12 It is clear that these functions can be viewed as behavioral strategies that assign a Dirac probability
measure to each type.
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�(Xi ), andwhere δsn
i (ti ) represents theDiracmeasure in�(Xi )with support {sn

i (ti )}—
converges to a point (μ1, μ2) in T if and only if the sequence (p1 ⊗ δsn

1
, p2 ⊗ δsn

2
)

converges weakly to (p1 ⊗μ1, p2 ⊗μ2), i.e., if and only if pi ⊗ δsn
i
converges weakly

to pi ⊗ μi for each i , where each pi is the marginal projection of p into �(Xi ) (i.e.,
pi ∈ �(Xi ) and pi (B) := p(B × T−i ) for all B ∈ B(Xi )), and where pi ⊗ νi

(νi ∈ Ti ) is defined as the compound measure in �(Ti × Xi ) defined by

[pi ⊗ νi ](A × B) :=
∫

A
νi (B|ti )pi (dti )

for all measurable rectangles A × B ⊆ Ti × Xi in B(Ti × Xi ). Accordingly, Ti is
viewed as a subspace of�(Ti × Xi )with thew-topology (Definition 1), which renders
Ti metric.13

Using this convergence mode, the sequence (sn
i ) converges to a strategy in which

player i ignores her type and plays each action (1 or 2) with equal probability, and
the limit point for the sequence (sn

1 , sn
2 ) is clearly not a Nash equilibrium of G� .

Consequently, the game G� does not admit a strategic approximation in the sense of
Definition 10.

In terms of topologizingT , another possibility is to identify eachmember (μ1, μ2)

of T with the measure p ⊗ μ in �(T × X), where μ : T → �(X) is defined by
μ(t) := μ1(t1) ⊗ μ2(t2) and where p ⊗ μ is the compound measure defined by

[p ⊗ μ](A × B) :=
∫

A
μ(B|t)p(dt)

for all measurable rectangles A × B ⊆ T × X in B(T × X). Accordingly, T is
regarded as a subspace of �(T × X) with the w-topology (Definition 1). Note that,
because p ∈ P , the associated notion of convergence is weaker than T-convergence.

In this case, the sequence (sn
1 , sn

2 ) converges to a measure � in �(T × X) that
chooses (t1, t2) uniformly from the diagonal

{
(τ1, τ2) ∈ [0, 1]2 : τ1 = τ2

}
, and then,

conditional on (t1, t2), the action profiles (1, 1) and (2, 2) are selected equiprobably.
This limit point cannot possibly be generated by a measure of the form p ⊗ μ, where
μ(t) = μ1(t1) ⊗ μ2(t2) for all t ∈ T and (μ1, μ2) ∈ T , and so it is not a Nash
equilibrium ofG� . The conclusion is therefore the same as before: the game G� does
not admit a strategic approximation in the sense of Definition 10.

In light of this example, a natural next question is whether progress can be made
by weakening the solution concept for the limit game. This is precisely what Defini-
tion 11—which uses the weaker communication equilibrium concept—does, and the
main results from Sect. 3 provide an affirmative answer. However, an equally valid
question is whether one can replace, in Definition 11, “communication equilibrium”
by “correlated equilibrium” (in the sense of Definition 9), and consider the resulting

13 An equivalent topology is the product narrow topology onT (see Balder 2001, Definition 1.3), or, more
precisely, the product topology induced by the narrow quotient topology on the equivalence classes from
each factorTi of transition probabilities that only differ on a pi -null set. This product topology is equivalent
to the product weak topology on ×iDi , where Di := {pi ⊗ μi : μi ∈ Ti } (see Carbonell-Nicolau and
McLean 2018, Sect. 5.2).
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notion of strategic approximation in lieu of that in Definition 11. In the remainder of
this section, it is shown that this alternative to Definition 11 is problematic. Specif-
ically, it is shown that, for a slight variation of the example considered above, and
viewing T as a subspace of �(T × X) with the w-topology (which yields a conver-
gence mode weaker than T-convergence), and for any sequence of finite versions of
a Bayesian game that includes a particular sequence of behavioral strategy profiles in
T , there is a corresponding sequence of Nash equilibria converging to a correlated
strategy inM that is not a correlated strategy profile in ×N

i=1Xi (recall the definition
of Xi introduced immediately before Definition 9).

First, observe that the limit measure � from the previous example is expressible as
a measure of the form

σ(A × B) =
∫

A×[0,1]
[ϕ1(t1, a) ⊗ ϕ2(t2, a)] (B)[p ⊗ λ](d(t, a)) (15)

for all measurable rectangles A×B ⊆ T ×X inB(T ×X). Indeed, it suffices to define,
for each (t1, t2) ∈ T , ϕ1(·|(t1, a)) and ϕ2(·|(t2, a)) as the Dirac probability measure
supported on {1} if a ∈ [

0, 1
2

)
, and otherwise let ϕ1(·|(t1, a)) and ϕ2(·|(t2, a)) be the

Dirac probability measure supported on {2}. Thus, the limit measure � may be viewed
as a correlated profile in ×N

i=1Xi (see the definition of Xi introduced immediately
before Definition 9).

However, this is not true in general. Specifically, consider a variant of the above
game in which Nature chooses the type profiles

( 1
3 ,

1
3

)
,
(
1, 1

3

)
, and (1, 1), each with 1

4
probability, and randomizes uniformly over the diagonal

{
(τ1, τ2) ∈ [0, 1]2 : τ1 = τ2

}
with 1

4 probability. Suppose that the payoff bimatrix corresponding to the type profile(
1, 1

3

)
is given by

1 2

1 1,1 1,1
2 1,1 1,1

For each n, (sn
1 , sn

2 ) is a Nash equilibrium of the normal form in which the players’
strategy spaces areY n

1 andY n
2 . In addition, the sequence (sn

1 , sn
2 ) converges to a mea-

sure in �(T × X) that selects, conditional on (t1, t2), the action profiles (1, 1), (1, 2),
(2, 1), and (2, 2) with respective probabilities 1

3 ,
1
6 ,

1
6 , and

1
3 if (t1, t2) = (

1, 1
3

)
, and

(1, 1) and (2, 2) equiprobably otherwise. Note that in this case the conditional distri-
bution on actions for the limit measure is not constant, as in the previous example, but
rather depends on the type profile selected by Nature. Because p ⊗λ is a product mea-
sure (so that the conditional distribution of a does not vary with t), the limit measure
is not expressible as a measure of the form σ as defined in (15), and, consequently, it
cannot be viewed as a correlated equilibrium in the sense of Definition 9. The induced
limit correlated strategy is, as can be easily verified, a communication equilibrium.
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Similar arguments apply if one uses instead the topology T from Sect. 2.3 in Defi-
nition 11.14

5 Sketch of the proof of Theorem 1

The details of the proof of Theorem 1 are relegated to Sect. 6. In this section, we
present a sketch of the proof, outlining the main argument.

Theorem 1 asserts that the topology T guarantees that every Bayesian game in G
admits a strategic approximation.

Fix a game � = (Ti , Xi , ui , p)N
i=1 inG. For each i , letCi represent the set of all the

continuous members of the function space �(Xi )
Ti , and put C := ×N

i=1Ci . The space
Ci , endowed with the topology of uniform convergence of functions, is separable, and
so a countable dense subset Qi may be selected from Ci . The set Q := ×N

i=1Qi is
a countable set of strategies contained in T = ×N

i=1Ti and we claim that Q is a
strategic approximation of � (in the sense of Definition 11).

For each player i , let (T α
i ) be an increasing net of finite subsets ofTi whose union

contains Qi , i.e., T α
i ⊆ T

β
i whenever α ≤ β and

⋃
α T

α
i ⊇ Qi . Suppose that for

each α, (μα
1 , . . . , μα

N ) is a Nash equilibrium of the game

(T α
i , Ui |T α

1 ×···×T α
N
)N
i=1.

For each α, let μα : T → �(X) be the correlated strategy in M defined by

μα(t) := N⊗
i=1

μα
i (ti ).

Suppose that [μα] −→
T

[μ] for someμ ∈ M . We must show thatμ is a communication

equilibrium of �. To this end, we suppose that there exist i and profitable deviations
(αi , ηi ) ∈ Ai × Di such that

∫
T ×X

ui (t, x)[p ⊗ μ](d(t, x))

<

∫
T

∫
Ti

∫
X

∫
Xi

ui (t, yi , x−i )αi (dyi |ti , xi )μ(dx |τi , t−i )ηi (dτi |ti )p(dt),

14 For t = (t1, t2) ∈ T with t1 = t2, the sequence of measures

δs11 (t1)
⊗ δs12 (t2)

,
1

2
(δs11 (t1)

⊗ δs12 (t2)
) + 1

2
(δs21 (t1)

⊗ δs22 (t2)
),

1

3
(δs11 (t1)

⊗ δs12 (t2)
) + 1

3
(δs21 (t1)

⊗ δs22 (t2)
) + 1

3
(δs31 (t1)

⊗ δs32 (t2)
), . . .

(16)

converges weakly to the measure μ(t) ∈ �(X) defined by μ({1, 1}|t) = μ({2, 2}|t) = 1
2 . In general, for

every t = (t1, t2) ∈ T , the sequence (μn(t)) given in (16) convergesweakly to somemeasureμ(t) ∈ �(X).
Applying Theorem 2.6 in Balder (2001), it follows that p̂ ⊗ μn −→

w
p̂ ⊗ μ for all p̂ ∈ �(T ), and so, in

particular, μn −→
T

μ.
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and derive a contradiction.
We now outline the steps leading to the desired contradiction. The proofs of the

assertions made here can be found in Sect. 6.

1. There is no loss of generality in assuming that ηi satisfies the following: there
exists a (B(Ti ),B(Ti ))-measurable map gi : Ti → Ti such that ηi (ti ) = δgi (ti )

for each ti ∈ Ti , where δgi (ti ) denotes the Dirac measure in �(Ti ) with support
{gi (ti )}. (See Claim A.)

2. There are sequences (T n
1 , . . . ,T n

N ) and (μn
1, . . . , μ

n
N ) satisfying the following:

for each j , T 1
j ⊆ T 2

j ⊆ · · · and
⋃

n T
n
j ⊇ Q j ; for each j and n, T n

j
is a finite subset of T j and (μn

1, . . . , μ
n
N ) is a Nash equilibrium of the game

(T n
ι , Uι|T n

1 ×···×T n
N
)N
ι=1; and

p ⊗ μn −→
w

p ⊗ μ and [p ∗ gi ] ⊗ μn −→
w

[p ∗ gi ] ⊗ μ,

where μn : T → �(X) is the correlated strategy in M defined by μn(t) :=
⊗N

ι=1 μn
ι (tι) and p∗gi denotes the compoundmeasure defined in (8). (SeeClaimB.)

3. Define the correlated strategy μ∗ : T → �(X) obtained from μ when player i
misreports according to ηi and uses the deviation plan αi :

μ∗(Bi × B−i |t) :=
∫

Ti

∫
Xi ×B−i

αi (Bi |ti , xi )μ(dx |τi , t−i )ηi (dτi |ti )

for all Bi × B−i ⊆ Xi × X−i in B(Xi × X−i ). The correlated strategy μ∗ can
be “approximated” by an analogous transformation of the sequence (μn), in the
following sense:

p ⊗ ρn −→
w

p ⊗ μ∗,

where ρn : T → �(X) is defined by

ρn(t) := ρn
i (ti ) ⊗

[
⊗
j �=i

μn
j (t j )

]

and ρn
i ∈ Ti is obtained from μn

i when player i misreports according to ηi and
uses the deviation plan αi :

ρn
i (B|ti ) :=

∫
Ti

∫
Xi

αi (B|ti , xi )μ
n
i (dxi |τi )ηi (dτi |ti ).

(See Claim C.)
4. For large enough n, the behavioral strategy ρn

i from the previous item can be
“approximated” by a behavioral strategy ρi in the following sense: there exists
ρi ∈ Ti such that some subsequence of (ρ̂n), denoted again by (ρ̂n), satisfies

p ⊗ ρ̂n −→
w

p ⊗ μ∗,
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where ρ̂n : T → �(X) is defined by

ρ̂n(t) := ρi (ti ) ⊗
[

⊗
j �=i

μn
j (t j )

]
.

(See Claim D.)
5. There is no loss of generality in assuming that the behavioral strategy ρi from the

previous item is a member of Ci , in the following sense: there exists ρ∗
i ∈ Ci such

that

p ⊗ ρ̃n −→
w

p ⊗ μ∗∗,

where ρ̃n : T → �(X) is defined by

ρ̃n(t) := ρ∗
i (ti ) ⊗

[
⊗
j �=i

μn
j (t j )

]
,

and where μ∗∗ satisfies

∫
T ×X

ui (t, x)[p ⊗ μ](d(t, x)) <

∫
T ×X

ui (t, x)[p ⊗ μ∗∗](d(t, x)). (17)

(See Claim E.)
6. There exists a sequence (νn

i ) with νn
i ∈ T n

i for each n such that

p ⊗ νn −→
w

p ⊗ μ∗∗,

where νn : T → �(X) is defined by

νn(t) := νn
i (ti ) ⊗

[
⊗
j �=i

μn
j (t j )

]
.

(See the proof of Claim F.) Consequently, by Theorem 3.1 in Balder (2001),

∫
T ×X

ui (t, x)[p ⊗ νn](d(t, x)) →
∫

T ×X
ui (t, x)[p ⊗ μ∗∗](d(t, x)).

Similarly, because p ⊗ μn −→
w

p ⊗ μ (item 2), one obtains

∫
T ×X

ui (t, x)[p ⊗ μn](d(t, x)) →
∫

T ×X
ui (t, x)[p ⊗ μ](d(t, x)).

Consequently (using (17)),

∫
T ×X

ui (t, x)[p ⊗ μn](d(t, x)) →
∫

T ×X
ui (t, x)[p ⊗ μ](d(t, x))
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<

∫
T ×X

ui (t, x)[p ⊗ μ∗∗](d(t, x))

←
∫

T ×X
ui (t, x)[p ⊗ νn](d(t, x)),

and so it follows that there exists n∗∗ such that

Ui (ν
n∗∗
i , μn∗∗

−i ) =
∫

T ×X
ui (t, x)[p ⊗ νn∗∗ ](d(t, x))

>

∫
T ×X

ui (t, x)[p ⊗ μn∗∗ ](d(t, x))

= Ui (μ
n∗∗
1 , . . . , μn∗∗

N ), for all n ≥ n∗∗.

Since νn∗∗
i ∈ T n∗∗

i , this gives the desired contradiction, since (μn
1, . . . , μ

n
N ) is a

Nash equilibrium of the game (T n
ι , Uι|T n

1 ×···×T n
N
)N
ι=1.

6 Proof of Theorem 1

In preparation for the proof of Theorem 1, we introduce some terminology and develop
a series of lemmas. To keep the flow of the main argument, the proofs of most of the
lemmas are relegated to “Appendix”.

Let Y and Z be metric spaces, and let �(Y × Z) denote the set of all probability
measures on (Y ×Z ,B(Y )⊗B(Z)). The set of all bounded and continuous real-valued
functions on Z is denoted by Cb(Z).

Definition 12 The ws-topology on �(Y × Z) is the coarsest topology for which all
the functionals in

{
μ ∈ �(Y × Z) �→

∫
S×Z

f (z)μ(d(y, z)) ∈ R : (S, f ) ∈ B(Y ) × Cb(Z)

}

are continuous.

We sometimes write νn −→
ws

ν to indicate that the sequence of measures (νn)

converges to ν with respect to the ws-topology.

Definition 13 The s-topology on �(Y ) is the coarsest topology for which all the func-
tionals in

{μ ∈ �(Y ) �→ μ(S) ∈ R : S ∈ B(Y )}

are continuous.

Suppose that Y and Z are compact metric spaces. Given p ∈ �(Y ) and a
(B(Y ),B(�(Z)))-measurable map μ : Y → �(Z), define p ⊗ μ ∈ �(Y × Z)
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by

[p ⊗ μ](A × B) :=
∫

A
μ(B|y)p(dy)

for all A × B ⊆ Y × Z inB(Y × Z).
Let P p(Y × Z) be the set of all ν in �(Y × Z) that take the form ν = p ⊗ μ for

some μ : Y → �(Z).

Lemma 1 Suppose that Y and Z are compact metric spaces, and let p ∈ �(Y ). Then
P p(Y × Z) is compact.

Proof The assertion is established in the proof of Theorem 1 in Milgrom and Weber
(1985, p. 626). ��

Weak convergence of measures in P p(Y × Z) is equivalent to so-called weak-
strong (ws) convergence. The weak-strong topology was introduced by Schäl (1975),
and this paper utilizes results for this topology found in Balder (2001).

Lemma 2 Suppose that Y and Z are compact metric spaces. Given p ∈ �(Y ), a
sequence (νn) in P p(Y × Z) is weakly convergent with limit point ν ∈ P p(Y × Z)

if and only if

∫
Y×Z

f (y, z)νn(d(y, z)) →
∫

Y×Z
f (y, z)ν(d(y, z))

for every bounded (B(Y × Z),B(R))-measurable map f : Y × Z → R such that
f (y, ·) : Z → R is continuous for each y ∈ Y .

Proof Suppose that the sequence (νn) inP p(Y × Z) is weakly convergent with limit
point ν ∈ P p(Y × Z). Then the sequence (νn(· × Z)) converges to ν(· × Z) in
the s-topology (Definition 13), and so, applying Theorem 3.7(viii) in Schäl (1975), it
follows that (νn) converges to ν in the ws-topology. Conversely, if (νn) ws-converges
to ν in P p(Y × Z), then, by Theorem 3.7(viii) in Schäl (1975), it is clearly the case
that νn −→

w
ν. Thus, withinP p(Y × Z), weak convergence of measures is equivalent

to weak-strong convergence of measures. It only remains to observe that, by Theorem
3.1(b) in Balder (2001), νn −→

ws
ν is equivalent to the following condition:

∫
Y×Z

f (y, z)νn(d(y, z)) →
∫

Y×Z
f (y, z)ν(d(y, z))

for every bounded (B(Y × Z),B(R))-measurable map f : Y × Z → R such that
f (y, ·) : Z → R is continuous for each y ∈ Y . ��

The proofs of the following lemmas are relegated to “Appendix”.
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Lemma 3 Suppose that � = (Ti , Xi , ui , p)N
i=1 is a Bayesian game in G. Suppose that

(μ, αi , ηi ) ∈ M × Ai × Di and

∫
T

∫
X

ui (t, x)μ(dx |t)p(dt)

<

∫
T

∫
Ti

∫
X

∫
Xi

ui (t, yi , x−i )αi (dyi |ti , xi )μ(dx |τi , t−i )ηi (dτi |ti )p(dt).
(18)

Then there exist α∗
i ∈ Ai and η∗

i ∈ Di such that

∫
T

∫
X

ui (t, x)μ(dx |t)p(dt)

<

∫
T

∫
Ti

∫
X

∫
Xi

ui (t, yi , x−i )α
∗
i (dyi |ti , xi )μ(dx |τi , t−i )η

∗
i (dτi |ti )p(dt)

(19)

and the following conditions are satisfied: η∗
i is a simple function and there exists a

(B(Ti ),B(Ti ))-measurable map gi : Ti → Ti such that η∗
i (ti ) = δgi (ti ) for each

ti ∈ Ti ;15 the function ti ∈ Ti �→ α∗
i (ti , ·) ∈ �(Xi )

Xi is simple; and, for each ti ∈ Ti ,
the map xi ∈ Xi �→ α∗

i (ti , xi ) ∈ �(Xi ) is continuous.

Lemma 4 Suppose that � = (Ti , Xi , ui , p)N
i=1 is a Bayesian game. Suppose that (μn

i )

and (νn
i ) are sequences in Ti . Suppose that

��(Xi )(μ
n
i (ti ), ν

n
i (ti )) → 0, for every ti ∈ Ti . (20)

Suppose further that (μn
−i ) is a sequence in T−i . Then, for every subsequence (nk) of

(n),

��(X)

(
1

m

m∑
k=1

[
μ

nk
i (ti ) ⊗

[
⊗
j �=i

μ
nk
j (t j )

]]
,
1

m

m∑
k=1

[
ν

nk
i (ti ) ⊗

[
⊗
j �=i

μ
nk
j (t j )

]])
m→∞−−−−→ 0,

for every t ∈ T . (21)

We are now ready to prove Theorem 1.

Proof of Theorem 1 Fix a game � = (Ti , Xi , ui , p)N
i=1 in G. For each i , let Ci rep-

resent the set of all the continuous members of the function space �(Xi )
Ti , and put

C := ×N
i=1Ci . The space Ci , endowed with the topology of uniform convergence

of functions, is separable (see, e.g., Aliprantis and Border 2006, Lemma 3.99), and
so a countable dense subset Qi may be selected from Ci . The set Q := ×N

i=1Qi is
a countable set of strategies contained in T = ×N

i=1Ti and we claim that Q is a
strategic approximation of � (in the sense of Definition 11).

15 Recall that δgi (ti ) denotes the Dirac measure in �(Ti ) with support {gi (ti )}.
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For each player i , let (T α
i ) be an increasing net of finite subsets ofTi whose union

contains Qi , i.e., T α
i ⊆ T

β
i whenever α ≤ β and

⋃
α T

α
i ⊇ Qi . Suppose that for

each α, (μα
1 , . . . , μα

N ) is a Nash equilibrium of the game

(T α
i , Ui |T α

1 ×···×T α
N
)N
i=1.

For each α, let μα : T → �(X) be the correlated strategy in M defined by

μα(t) := N⊗
i=1

μα
i (ti ).

Suppose that [μα] −→
T

[μ] for someμ ∈ M . We must show thatμ is a communication

equilibrium of �. To this end, we suppose that there exist i and (αi , ηi ) ∈ Ai × Di

such that
∫

T ×X
ui (t, x)[p ⊗ μ](d(t, x))

<

∫
T

∫
Ti

∫
X

∫
Xi

ui (t, yi , x−i )αi (dyi |ti , xi )μ(dx |τi , t−i )ηi (dτi |ti )p(dt)
(22)

and derive a contradiction. ��
The proof proceeds in a series of claims.

Claim A There is no loss of generality in assuming that αi and ηi satisfy the following:
ηi is a simple function and there exists a (B(Ti ),B(Ti ))-measurable map gi : Ti → Ti

such that ηi (ti ) = δgi (ti ) for each ti ∈ Ti ; the function ti ∈ Ti �→ αi (ti , ·) ∈ �(Xi )
Xi

is simple; and, for each ti ∈ Ti , the map xi ∈ Xi �→ αi (ti , xi ) ∈ �(Xi ) is continuous.

Proof of Claim A The assertion follows immediately from Lemma 3. ��
Claim B There are sequences (T n

1 , . . . ,T n
N ) and (μn

1, . . . , μ
n
N ) satisfying the fol-

lowing: for each j , T 1
j ⊆ T 2

j ⊆ · · · and
⋃

n T
n
j ⊇ Q j ; for each j and n,

T n
j is a finite subset of T j and (μn

1, . . . , μ
n
N ) is a Nash equilibrium of the game

(T n
ι , Uι|T n

1 ×···×T n
N
)N
ι=1; and

p ⊗ μn −→
w

p ⊗ μ and [p ∗ gi ] ⊗ μn −→
w

[p ∗ gi ] ⊗ μ,

where μn : T → �(X) is the correlated strategy in M defined by μn(t) :=
⊗N

ι=1 μn
ι (tι).

Proof of Claim B Endow M with the metric dM : M × M → R defined by

dM (ν, θ) := max
{
��(X)(p ⊗ ν, p ⊗ θ), ��(X)([p ∗ gi ] ⊗ ν, [p ∗ gi ] ⊗ θ)

}
.

More precisely, the metric space (M , dM ) is the space of all equivalence classes of
members of M that are identical on a subset of T of full p-measure and a subset of
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T of full p ∗ gi -measure, i.e., the correlated strategies ν and θ in M are in the same
equivalence class if there exist S and S′ in B(T ) with p(S) = 1 = [p ∗ gi ](S′) such
that ν(t) = θ(t) for all t ∈ S ∪ S′.

Because [μα] −→
T

[μ], it follows that

p ⊗ μα −→
w

p ⊗ μ and [p ∗ gi ] ⊗ μα −→
w

[p ∗ gi ] ⊗ μ.

Consequently, dM (μα, μ) → 0. For each j , let {q1
j , q2

j , . . .} be an enumeration of
Q j . Note that there exist α1 and α j1 ( j ∈ {1, . . . , N }) such that μα ∈ N1(μ) for
all α ≥ α1 and q1

j ∈ T α
j for all α ≥ α j1 and all j . Since there exists α∗

1 with

α∗
1 ≥ α1 and α∗

1 ≥ α j1 for all j , it follows that μα ∈ N1(μ) and q1
j ∈ T α

j for all
j and all α ≥ α∗

1 . Next, note that there exist α2 and α j2 ( j ∈ {1, . . . , N }) such that
μα ∈ N 1

2
(μ) for all α ≥ α2 and q2

j ∈ T α
j for all α ≥ α j2 and all j . Since there exists

α∗
2 with α∗

2 ≥ α2 and α∗
2 ≥ α j2 for all j and α∗

2 ≥ α∗
1 , it follows that μα ∈ N 1

2
(μ)

and q1
j , q2

j ∈ T α
j for all j and all α ≥ α∗

2 . Proceeding inductively in this fashion

gives a sequence (α∗
n) such that the sequences (μn

1, . . . , μ
n
N ) := (μ

α∗
n

1 , . . . , μ
α∗

n
N ) and

(T n
1 , . . . ,T n

N ) := (T
α∗

n
1 , . . . ,T

α∗
n

N ) have the desired properties, i.e., for each j ,
T 1

j ⊆ T 2
j ⊆ · · · and

⋃
n T

n
j ⊇ Q j ; for each j and n, T n

j is a finite subset of T j

and (μn
1, . . . , μ

n
N ) is a Nash equilibrium of the game (T n

ι , Uι|T n
1 ×···×T n

N
)N
ι=1; and

p ⊗ μn −→
w

p ⊗ μ and [p ∗ gi ] ⊗ μn −→
w

[p ∗ gi ] ⊗ μ. ��
Define μ∗ : T → �(X) by

μ∗(Bi × B−i |t) :=
∫

Ti

∫
Xi ×B−i

αi (Bi |ti , xi )μ(dx |τi , t−i )ηi (dτi |ti ) (23)

for all Bi × B−i ⊆ Xi × X−i inB(Xi × X−i ).

Claim C We have p ⊗ ρn −→
w

p ⊗ μ∗, where ρn : T → �(X) is defined by

ρn(t) := ρn
i (ti ) ⊗

[
⊗
j �=i

μn
j (t j )

]
(24)

and ρn
i ∈ Ti is defined by

ρn
i (B|ti ) :=

∫
Ti

∫
Xi

αi (B|ti , xi )μ
n
i (dxi |τi )ηi (dτi |ti ). (25)
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Proof of Claim C Define μ̂n : T → �(X) and μ̂ : T → �(X) by

μ̂n(t) := μ̂n
i (ti ) ⊗

[
⊗
j �=i

μn
j (t j )

]
and μ̂(B|t) :=

∫
Ti

μ(B|τi , t−i )ηi (dτi |ti ),

where μ̂n
i ∈ Ti is defined by

μ̂n
i (B|ti ) :=

∫
Ti

μn
i (B|τi )ηi (dτi |ti ).

Note that p ⊗ μ̂n = [p ∗ gi ] ⊗ μn and p ⊗ μ̂ = [p ∗ gi ] ⊗ μ. Consequently, since
[p ∗ gi ] ⊗ μn −→

w
[p ∗ gi ] ⊗ μ (Claim B), it follows that p ⊗ μ̂n −→

w
p ⊗ μ̂. Now

Theorem 2.6 in Balder (2001) gives the following:

(I) Every subsequence of (μ̂n) has a further subsequence (μ̂nk ) satisfying the
following: for every subsequence (μ̂nkl ) of (μ̂nk ) there is a p-null set S ∈ B(T )

such that

1

m

m∑
l=1

μ̂nkl (t)
m→∞−−−−→

w
μ̂(t), for every t ∈ T \ S. (26)

It will now be shown that (I) implies the following:

(II) Every subsequence of (ρn) has a further subsequence (ρnk ) satisfying the
following: for every subsequence (ρnkl ) of (ρnk ) there is a p-null set S′ ∈ B(T )

such that

1

m

m∑
l=1

ρnkl (t)
m→∞−−−−→

w
μ∗(t), for every t ∈ T \ S′

(recall the definition of μ∗ given in (23)).

Given a subsequence of (n), there is, by virtue of (I), a subsequence (μ̂nk ) such
that, for a given subsequence (μ̂nkl ) of (μ̂nk ), there is a p-null set S ∈ B(T ) such that
(26) holds. To establish (II), it suffices to show that

1

m

m∑
l=1

ρnkl (t)
m→∞−−−−→

w
μ∗(t), for every t ∈ T \ S. (27)

For each m, define νm : T → �(X) by

νm(t) := 1

m

m∑
l=1

[
N⊗

i=1
μ̂

nkl
i (ti )

]
.
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Let α : T × X → �(X) be defined by

α(Bi × B−i |t, x) := αi (Bi |ti , xi ) ⊗
[

⊗
j �=i

δx j (B j )

]
.

For each t ∈ T , νm(t) ⊗ α(t, ·) is the measure in �(X × X) defined by

[νm(t) ⊗ α(t, ·)](A × B) :=
∫

A
α(B|t, x)νm(dx |t)

for all measurable rectangles A × B ⊆ X × X inB(X × X). Because (26) holds and,
for each ti ∈ Ti , the map xi ∈ Xi �→ αi (ti , xi ) ∈ �(Xi ) is continuous (Claim A), so
that, for each t ∈ T , the map x ∈ X �→ α(t, x) ∈ �(X) is continuous, Theorem 4 in
Kawabe (1994) gives

νm(t) ⊗ α(t, ·) −→
w

μ̂(t) ⊗ α(t, ·), for all t ∈ T \ S, (28)

where μ̂(t) ⊗ α(t, ·) is defined analogously to νm(t) ⊗ α(t, ·).
Let σm : T → �(X) and σ : T → �(X) be defined by

σm(B|t) := [νm(t) ⊗ α(t, ·)](X × B) and σ(B|t) := [μ̂(t) ⊗ α(t, ·)](X × B).

By Theorem 2.8(i) in Billingsley (1999), (28) implies that

σm(t) −→
w

σ(t), for all t ∈ T \ S. (29)

Note that

σm = 1

m

m∑
l=1

ρnkl and σ = μ∗ (30)

(see the definitions of ρn and μ∗ in (24) and (23), respectively). The second equality
is straightforward. To see that the first equality holds, note that, for any measurable
rectangle Bi × B−i ⊆ Xi × X−i inB(X),

σm(Bi × B−i |t) = [νm(t) ⊗ α(t, ·)](X × (Bi × B−i ))

=
∫

X
α(Bi × B−i |t, x)νm(dx |t)

=
∫

X

[
αi (Bi |ti , xi ) ⊗

[
⊗
j �=i

δx j (B j )

]][
1

m

m∑
l=1

[
μ̂

nkl
i (ti ) ⊗

[
⊗
j �=i

μ
nkl
j (t j )

]]]
(dx)

=
∫

Xi ×B−i

αi (Bi |ti , xi )

[
1

m

m∑
l=1

[
μ̂

nkl
i (ti ) ⊗

[
⊗
j �=i

μ
nkl
j (t j )

]]]
(dx)
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= 1

m

m∑
l=1

[∫
Xi ×B−i

αi (Bi |ti , xi )

[
μ̂

nkl
i (ti ) ⊗

[
⊗
j �=i

μ
nkl
j (t j )

]]
(dx)

]

= 1

m

m∑
l=1

[∫
Xi

αi (Bi |ti , xi )μ̂
nkl
i (dxi |ti )

[
⊗
j �=i

μ
nkl
j (t j )

]
(B−i )

]

= 1

m

m∑
l=1

[
ρ

nkl
i (Bi |ti )

[
⊗
j �=i

μ
nkl
j (t j )

]
(B−i )

]

= 1

m

m∑
l=1

ρnkl (Bi × B−i |t).

The desired convergence in (27) follows immediately from (29) and (30).
We conclude that (II) holds. Consequently, Theorem 2.6 in Balder (2001) implies

that p ⊗ ρn −→
w

p ⊗ μ∗, as we sought. ��

Claim D There exists ρi ∈ Ti such that some subsequence of (ρ̂n), denoted again by
(ρ̂n), satisfies p ⊗ ρ̂n −→

w
p ⊗ μ∗, where ρ̂n : T → �(X) is defined by

ρ̂n(t) := ρi (ti ) ⊗
[

⊗
j �=i

μn
j (t j )

]
.

Proof of ClaimD Recall the definition of ρn in (24). Because p ⊗ ρn −→
w

p ⊗ μ∗

(Claim C), Theorem 2.6 in Balder (2001) gives the following:

(III) Every subsequence of (ρn) has a further subsequence (ρnk ) satisfying the
following: for every subsequence (ρnkl ) of (ρnk ) there is a p-null set S∗ ∈ B(T )

such that

1

m

m∑
l=1

ρnkl (t)
m→∞−−−−→

w
μ∗(t), for every t ∈ T \ S∗.

Recall that the functions ηi : Ti → �(Ti ) and ti ∈ Ti �→ αi (ti , ·) ∈ �(Xi )
Xi

are simple (Claim A). This implies that the behavioral strategy ρn
i : Ti → �(Xi )

defined in (25) is a simple function and there is a finite partition of Ti such that each
ρn

i is constant on each partition element. Consequently, since�(Xi ) is compact, there
exists a subsequence of (ρn

i ), denoted again by (ρn
i ), that converges uniformly to some

ρi ∈ Ti . Hence

��(Xi )(ρ
n
i (ti ), ρi (ti )) → 0, for every ti ∈ Ti .

Applying Lemma 4 gives, for every subsequence (nk) of (n),

��(X)

(
1

m

m∑
k=1

[
ρ

nk
i (ti ) ⊗

[
⊗
j �=i

μ
nk
j (t j )

]]
,
1

m

m∑
k=1

[
ρi (ti ) ⊗

[
⊗
j �=i

μ
nk
j (t j )

]])
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m→∞−−−−→ 0, for every t ∈ T .

This, together with (III), implies the following:

(IV) Every subsequence of (ρ̂n) has a further subsequence (ρ̂nk ) satisfying the
following: for every subsequence (ρ̂nkl ) of (ρ̂nk ) there is a p-null set S′′ ∈ B(T )

such that

1

m

m∑
l=1

ρ̂nkl (t)
m→∞−−−−→

w
μ∗(t), for every t ∈ T \ S′′.

Given (IV), Theorem 2.6 in Balder (2001) implies that p ⊗ ρ̂n −→
w

p ⊗ μ∗. ��
Claim E There exists ρ∗

i ∈ Ci such that p ⊗ ρ̃n −→
w

p ⊗ μ∗∗, where ρ̃n : T → �(X)

is defined by

ρ̃n(t) := ρ∗
i (ti ) ⊗

[
⊗
j �=i

μn
j (t j )

]
, (31)

and where μ∗∗ satisfies

∫
T ×X

ui (t, x)[p ⊗ μ](d(t, x)) <

∫
T ×X

ui (t, x)[p ⊗ μ∗∗](d(t, x)). (32)

Proof of Claim E Because p ⊗ ρ̂n −→
w

p ⊗μ∗ (Claim D), Theorem 2.6 in Balder (2001)

gives the following:

(V) Every subsequence of (ρ̂n) has a further subsequence (ρ̂nk ) satisfying the
following: for every subsequence (ρ̂nkl ) of (ρ̂nk ) there is a p-null set S′′ ∈ B(T )

such that

1

m

m∑
l=1

ρ̂nkl (t)
m→∞−−−−→

w
μ∗(t), for every t ∈ T \ S′′. (33)

Next, we show that

1

m

m∑
n=1

ρ̂n(t) = ρi (ti ) ⊗
(
1

m

m∑
n=1

[
⊗
j �=i

μn
j (t j )

])
, for all t ∈ T . (34)

Fix t ∈ T and a measurable rectangle Bi × B−i ⊆ Xi × X−i inB(X). Then

1

m

m∑
n=1

ρ̂n(Bi × B−i |t) = 1

m

m∑
n=1

(
ρi (Bi |ti ) ·

[
⊗
j �=i

μn
j (t j )

]
(B−i )

)

= ρi (Bi |ti )
(
1

m

m∑
n=1

([
⊗
j �=i

μn
j (t j )

]
(B−i )

))
,
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implying (34).
In light of (34), (33) is expressible as

ρi (ti ) ⊗
(
1

m

m∑
l=1

[
⊗
j �=i

μ
nkl
j (t j )

])
m→∞−−−−→

w
μ∗(t), for every t ∈ T \ S′′.

Applying Theorem 2.8 in Billingsley (1999), this implies that

ρi (ti ) ⊗
(
1

m

m∑
l=1

[
⊗
j �=i

μ
nkl
j (t j )

])
m→∞−−−−→

w
ρi (t) ⊗ μ∗−i (t), for every t ∈ T \ S′′,

where μ∗−i (t) denotes the marginal projection of μ∗(t) into �(X−i ) (i.e., μ∗−i (t) ∈
�(X−i ) andμ∗−i (B−i |t) = μ∗(Xi × B−i |t)). Consequently, defining ν∗ : T → �(X)

by

ν∗(t) := ρi (ti ) ⊗ μ∗−i (t),

one obtains the following:

(VI) Every subsequence of (ρ̂n) has a further subsequence (ρ̂nk ) satisfying the
following: for every subsequence (ρ̂nkl ) of (ρ̂nk ) there is a p-null set S′′ ∈ B(T )

such that

1

m

m∑
l=1

ρ̂nkl (t) = ρi (ti ) ⊗
(
1

m

m∑
l=1

[
⊗
j �=i

μ
nkl
j (t j )

])

m→∞−−−−→
w

ν∗(t) = ρi (ti ) ⊗ μ∗−i (t), for all t ∈ T \ S′′.

By Theorem 2.6 in Balder (2001), this implies that p ⊗ ρ̂n −→
w

p ⊗ ν∗, and since

p ⊗ ρ̂n −→
w

p ⊗ μ∗ (Claim D), it follows that μ∗(t) = ν∗(t) for p-a.e. t ∈ T .

Now Luzin’s Theorem gives a sequence (An
i ) of compact subsets of Ti such that

p(An
i × T−i ) → 1 and ρi |An

i
is continuous for each n (here ρi is the measure given in

Claim D). By Theorem 4.1 in Dugundji (1951), each ρi |An
i
can be extended to a map

θn
i ∈ Ci . Define θn : T → �(X) by

θn(t) := θn
i (ti ) ⊗ μ∗−i (t),

and observe that

∫
T ×X

ui (t, x)[p ⊗ θn](d(t, x)) =
∫

An
i ×T−i

∫
X

ui (t, x)
[
θn

i (ti ) ⊗ μ∗−i (t)
]
(dx)p(dt)

+
∫

[Ti \An
i ]×T−i

∫
X

ui (t, x)
[
θn

i (ti ) ⊗ μ∗−i (t)
]
(dx)p(dt)
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=
∫

An
i ×T−i

∫
X

ui (t, x)
[
θn

i (ti ) ⊗ μ∗−i (t)
]
(dx)p(dt)

+
∫

[Ti \An
i ]×T−i

∫
X

ui (t, x)
[
θn

i (ti ) ⊗ μ∗−i (t)
]
(dx)p(dt)

+
∫

[Ti \Al
i ]×T−i

∫
X

ui (t, x)
[
ρi (ti ) ⊗ μ∗−i (t)

]
(dx)p(dt)

−
∫

[Ti \An
i ]×T−i

∫
X

ui (t, x)
[
ρi (ti ) ⊗ μ∗−i (t)

]
(dx)p(dt)

=
∫

T ×X
ui (t, x)[p ⊗ ν∗](d(t, x))

+
∫

[Ti \An
i ]×T−i

∫
X

ui (t, x)
[
θn

i (ti ) ⊗ μ∗−i (t)
]
(dx)p(dt)

−
∫

[Ti \An
i ]×T−i

∫
X

ui (t, x)
[
ρi (ti ) ⊗ μ∗−i (t)

]
(dx)p(dt)

→
∫

T ×X
ui (t, x)[p ⊗ ν∗](d(t, x))

=
∫

T ×X
ui (t, x)[p ⊗ μ∗](d(t, x)).

Consequently, in light of (22), it follows that (32) holds forμ∗∗ defined byμ∗∗ := θn∗

for some (sufficiently large) n∗.
Now let ρ̃n be defined as in (31), where ρ∗

i := θn∗
i ∈ Ci . Note that the proof will

be complete if we show that p ⊗ ρ̃n −→
w

p ⊗ μ∗∗. By Theorem 2.6 in Balder (2001),

it suffices to show the following:

(VII) Every subsequence of (ρ̃n) has a further subsequence (ρ̃nk ) satisfying the
following: for every subsequence (ρ̃nkl ) of (ρ̃nk ) there is a p-null set S̃ ∈ B(T )

such that

1

m

m∑
l=1

ρ̃nkl (t) = ρ∗
i (ti ) ⊗

(
1

m

m∑
l=1

[
⊗
j �=i

μ
nkl
j (t j )

])

m→∞−−−−→
w

μ∗∗(t) = ρ∗
i (t) ⊗ μ∗−i (t), for all t ∈ T \ S̃.

But (VII) follows from (VI). Indeed, given a subsequence of (n), (VI) gives a further
subsequence (nk) such that, for every subsequence (nkl ), there is a p-null set S′′ ∈
B(T ) such that

ρi (ti ) ⊗
(
1

m

m∑
l=1

[
⊗
j �=i

μ
nkl
j (t j )

])
m→∞−−−−→

w
ρi (ti ) ⊗ μ∗−i (t), for all t ∈ T \ S′′,
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implying (by Theorem 2.8 in Billingsley (1999)) that

ρ∗
i (ti ) ⊗

(
1

m

m∑
l=1

[
⊗
j �=i

μ
nkl
j (t j )

])
m→∞−−−−→

w
ρ∗

i (t) ⊗ μ∗−i (t), for all t ∈ T \ S′′. ��

Claim F There exist n and ρ∗
i ∈ T n

i such that Ui (ρ
∗
i , μn

−i ) > Ui (μ
n
1, . . . , μ

n
N ).

Proof of Claim F Let ρ∗
i ∈ Ci be the behavioral strategy given by Claim E. Recall that

the sequence (T n
1 , . . . ,T n

N ) satisfies T 1
j ⊆ T 2

j ⊆ · · · and
⋃

n T
n
j ⊇ Q j for each

j (Claim B), and that eachQ j is a countable, dense subset of T j (with respect to the
topology of uniform convergence). Consequently, there exists a sequence (νn

i ) with
νn

i ∈ T n
i for each n such that (νn

i ) converges to ρ∗
i uniformly. Therefore,

��(Xi )(ν
n
i (ti ), ρ

∗
i (ti )) → 0, for every ti ∈ Ti ,

and so Lemma 4 gives, for every subsequence (nk) of (n),

��(X)

(
1

m

m∑
k=1

[
ν

nk
i (ti ) ⊗

[
⊗
j �=i

μ
nk
j (t j )

]]
,
1

m

m∑
k=1

[
ρ∗

i (ti ) ⊗
[

⊗
j �=i

μ
nk
j (t j )

]])
m→∞−−−−→ 0,

for every t ∈ T .

(35)

Now since p ⊗ ρ̃n −→
w

p ⊗ μ∗∗ (Claim E), Theorem 2.6 in Balder (2001) gives the

following:

(VIII) Every subsequence of (ρ̃n) has a further subsequence (ρ̃nk ) satisfying the
following: for every subsequence (ρ̃nkl ) of (ρ̃nk ) there is a p-null set S̃ ∈ B(T )

such that

1

m

m∑
l=1

ρ̃nkl (t)
m→∞−−−−→

w
μ∗∗(t) = ρ∗

i (t) ⊗ μ∗−i (t), for all t ∈ T \ S̃.

Define νn : T → �(X) by

νn(t) := νn
i (ti ) ⊗

[
⊗
j �=i

μn
j (t j )

]
.

Combining (VIII) and (35) gives the following:

(IX) Every subsequence of (νn) has a further subsequence (νnk ) satisfying the
following: for every subsequence (νnkl ) of (νnk ) there is a p-null set Ŝ ∈ B(T )

such that

1

m

m∑
l=1

νnkl (t)
m→∞−−−−→

w
μ∗∗(t) = ρ∗

i (t) ⊗ μ∗−i (t), for all t ∈ T \ Ŝ.
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Again applying Theorem 2.6 in Balder (2001), we see that p ⊗ νn −→
w

p ⊗ μ∗∗.
Consequently, by Theorem 3.1 in Balder (2001),

∫
T ×X

ui (t, x)[p ⊗ νn](d(t, x)) →
∫

T ×X
ui (t, x)[p ⊗ μ∗∗](d(t, x)).

Similarly, because p ⊗ μn −→
w

p ⊗ μ (Claim B), one obtains

∫
T ×X

ui (t, x)[p ⊗ μn](d(t, x)) →
∫

T ×X
ui (t, x)[p ⊗ μ](d(t, x)).

Consequently (using (32)),

∫
T ×X

ui (t, x)[p ⊗ μn](d(t, x)) →
∫

T ×X
ui (t, x)[p ⊗ μ](d(t, x))

<

∫
T ×X

ui (t, x)[p ⊗ μ∗∗](d(t, x))

←
∫

T ×X
ui (t, x)[p ⊗ νn](d(t, x)),

and so it follows that there exists n∗∗ such that

Ui (ν
n∗∗
i , μn∗∗

−i ) =
∫

T ×X
ui (t, x)[p ⊗ νn∗∗ ](d(t, x))

>

∫
T ×X

ui (t, x)[p ⊗ μn∗∗ ](d(t, x))

= Ui (μ
n∗∗
1 , . . . , μn∗∗

N ), for all n ≥ n∗∗.

Since νn∗∗
i ∈ T n∗∗

i , the proof is complete. ��
Claim F gives the desired contradiction, since (μn

1, . . . , μ
n
N ) is a Nash equilibrium

of the game (T n
ι , Uι|T n

1 ×···×T n
N
)N
ι=1 (see Claim B).

We have shown that the topology T guarantees that every Bayesian game � in G
admits a strategic approximation. This finishes the proof of Theorem 1. ��

Appendix

To begin, we establish an unproven claim made in Sect. 2.3.1.
Let � = (Ti , Xi , ui , p)N

i=1 be a Bayesian game, and suppose that the net (μα)

converges uniformly to μ in M . Fix p̂ ∈ P and a bounded continuous map f :
T × X → R. We claim that the net of maps

(
t ∈ T �→

∫
X

f (t, x)μα(dx |t)
)

(36)
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converges uniformly to the map t ∈ T �→ ∫
X f (t, x)μ(dx |t).

Prior to proving this claim, we state and prove the following lemma.

Lemma 5 Suppose that Y , Z, and E are metric spaces with Y and Z compact. If (hα)

is a uniformly convergent net of maps hα : Y → Z with limit point h : Y → Z, and if
g : Y × Z → E is a continuous map, then the net (y ∈ Y �→ g(y, hα(y))) converges
uniformly to the map y ∈ Y �→ g(y, h(y)).

Proof Fix ε > 0. We must show that there exists α∗ such that, for all α ≥ α∗,

dE (g(y, hα(y)), g(y, h(y))) < ε, for all y ∈ Y . (37)

Because g is continuous and Y × Z is compact, g is uniformly continuous. Con-
sequently, there exists δ > 0 such that, for (y, z) and (y′, z′) in Y × Z , dY (y, y′) < δ

and dZ (z, z′) < δ imply that dE (g(y, z), g(y′, z′)) < ε.
From the uniform convergence of the net (hα) to h, one can choose α∗ such that, for

α ≥ α∗, dZ (hα(y), h(y)) < δ for all y ∈ Y . Consequently, for α ≥ α∗, one obtains
(37). ��

To see that the net of maps in (36) converges uniformly to the map t ∈ T �→∫
X f (t, x)μ(dx |t), we apply Lemma 5 with Y = T , Z = �(X), E = R, hα = μα ,

h = μ, and g defined by g(t, μ) := ∫
X f (t, x)μ(dx). The map g is continuous.

Indeed, suppose that (tn, μn) is a convergent sequence in T × �(X) with limit point
(t, μ) ∈ T × �(X). For each n, let δtn denote the Dirac measure in �(T ) with
support {tn}. Because the sequence (tn, μn) converges to (t, μ), the sequence (δtn , μn)

converges to (δt , μ) in �(T )×�(X) (see, e.g., Aliprantis and Border 2006, Theorem
15.8). Consequently, by Theorem 2.8(ii) in Billingsley (1999), δtn ⊗μn −→

w
δt ⊗μ, and

so the Portmanteau Theorem (see, e.g., Aliprantis and Border 2006, Theorem 15.3)
yields

g(tn, μn) =
∫

T ×X
f (τ, x)[δtn ⊗ μn](d(τ, x))

→
∫

T ×X
f (τ, x)[δt ⊗ μ](d(τ, x)) = g(t, μ).

Since (μα) converges uniformly to μ, and since g is continuous, Lemma 5
implies that the net of maps in (36) converges uniformly to the map t ∈ T �→∫

X f (t, x)μ(dx |t), as we sought.
The remainder of this appendix contains the proofs of the lemmas stated in Sect.

6. For the convenience of the reader, each proof is preceded by a restatement of its
corresponding lemma.
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Proof of Lemma 4

Lemma 3 Suppose that � = (Ti , Xi , ui , p)N
i=1 is a Bayesian game in G. Suppose that

(μ, αi , ηi ) ∈ M × Ai × Di and

∫
T

∫
X

ui (t, x)μ(dx |t)p(dt)

<

∫
T

∫
Ti

∫
X

∫
Xi

ui (t, yi , x−i )αi (dyi |ti , xi )μ(dx |τi , t−i )ηi (dτi |ti )p(dt).
(18)

Then there exist α∗
i ∈ Ai and η∗

i ∈ Di such that

∫
T

∫
X

ui (t, x)μ(dx |t)p(dt)

<

∫
T

∫
Ti

∫
X

∫
Xi

ui (t, yi , x−i )α
∗
i (dyi |ti , xi )μ(dx |τi , t−i )η

∗
i (dτi |ti )p(dt)

(19)

and the following conditions are satisfied: η∗
i is a simple function and there exists a

(B(Ti ),B(Ti ))-measurable map gi : Ti → Ti such that η∗
i (ti ) = δgi (ti ) for each

ti ∈ Ti ;16 the function ti ∈ Ti �→ α∗
i (ti , ·) ∈ �(Xi )

Xi is simple; and, for each ti ∈ Ti ,
the map xi ∈ Xi �→ α∗

i (ti , xi ) ∈ �(Xi ) is continuous.

Proof The proof is organized in four steps.

Step 1 There is no loss of generality in assuming that αi is continuous.

Proof of Step 1 Define p′ ∈ �(T ) by

p′(Ai × A−i ) :=
∫

Ti ×A−i

ηi (Ai |ti )p(dt)

for all Ai × A−i ⊆ Ti × T−i inB(T ), and define ρ ∈ �(T × X) by

ρ(A × B) :=
∫

A
μ(B|t)p′(dt)

for all A × B ⊆ T × X in B(T × X). By Luzin’s Theorem, there is a sequence
(K n) of compact subsets of Ti × Xi such that ρ(K n × T−i × X−i ) → 1 and αi |K n is
continuous for each n. Applying Theorem 4.1 of Dugundji (1951), each αi |K n can be
extended to a continuous map α̂n

i : Ti × Xi → �(Xi ). Define ϑn : T × X → R and
ϑ : T × X → R by

ϑn(t, x) :=
∫

Xi

ui (t, yi , x−i )̂α
n
i (dyi |ti , xi )

16 Recall that δgi (ti ) denotes the Dirac measure in �(Ti ) with support {gi (ti )}.
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and

ϑ(t, x) :=
∫

Xi

ui (t, yi , x−i )αi (dyi |ti , xi ).

Because ϑn = ϑ on K n × T−i × X−i , for each n, and since ρ(K n × T−i × X−i ) → 1,
it follows that

∫
T ×X

ϑn(t, x)ρ(d(t, x))

=
∫

T

∫
Ti

∫
X

∫
Xi

ui (t, yi , x−i )̂α
n
i (dyi |ti , xi )μ(dx |τi , t−i )ηi (dτi |ti )p(dt)

→
∫

T

∫
Ti

∫
X

∫
Xi

ui (t, yi , x−i )αi (dyi |ti , xi )μ(dx |τi , t−i )ηi (dτi |ti )p(dt)

=
∫

T ×X
ϑ(t, x)ρ(d(t, x)),

and in light of (18) we conclude that

∫
T

∫
X

ui (t, x)μ(dx |t)p(dt)

<

∫
T

∫
Ti

∫
X

∫
Xi

ui (t, yi , x−i )α
′
i (dyi |ti , xi )μ(dx |τi , t−i )ηi (dτi |ti )p(dt)

for some continuous α′
i ∈ Ai . ��

Step 2 There exists α∗
i ∈ Ai such that

∫
T

∫
X

ui (t, x)μ(dx |t)p(dt)

<

∫
T

∫
Ti

∫
X

∫
Xi

ui (t, yi , x−i )α
∗
i (dyi |ti , xi )μ(dx |τi , t−i )ηi (dτi |ti )p(dt)

(38)

and the following conditions are satisfied: the function ti ∈ Ti �→ α∗
i (ti , ·) ∈ �(Xi )

Xi

is simple, and, for each ti ∈ Ti , the map xi ∈ Xi �→ α∗
i (ti , xi ) ∈ �(Xi ) is continuous.

Proof of Step 2 Let C (Xi ,�(Xi )) represent the set of all the continuous functions
from Xi into �(Xi ), and endow the space C (Xi ,�(Xi )) with the supremum metric.
ThenC (Xi ,�(Xi )) is a separable metric space (see, e.g., Aliprantis and Border 2006,
Lemma 3.99). Define α̃i : Ti → C (Xi ,�(Xi )) by

[̃αi (ti )](xi ) := αi (ti , xi )

(recall that αi can be taken continuous by Step 1). Because αi is continuous, Theorem
4.55 in Aliprantis and Border (2006) implies that the map α̃i : Ti → C (Xi ,�(Xi ))

is (B(Ti ),B(C (Xi ,�(Xi ))))-measurable. Consequently, applying Theorem 4.38 in
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Aliprantis and Border (2006), it follows that α̃i is the pointwise limit of a sequence
(̃αn

i ) of (B(Ti ),B(C (Xi ,�(Xi ))))-measurable simple functions. Now, for each n,
define αn

i : Ti × Xi → �(Xi ) by

αn
i (ti , xi ) := [̃αn

i (ti )](xi ).

Note that it suffices to show that there exists n for which α∗
i := αn

i satisfies (38).
Applying Theorem 4.55 in Aliprantis and Border (2006), we see that (αn

i ) is a
sequence of (B(Ti × Xi ),B(�(Xi )))-measurable functions. We claim that (αn

i ) con-
verges to αi pointwise. To see this, fix (ti , xi ) ∈ Ti × Xi . It must be shown that
αn

i (ti , xi ) −→
w

αi (ti , xi ). We know that the sequence (̃αn
i ) converges to α̃i pointwise.

Consequently, the sequence (̃αn
i (ti )) of maps in C (Xi ,�(Xi )) converges uniformly

to α̃i (ti ) ∈ C (Xi ,�(Xi )), i.e., for each ε > 0, there exists M such that, for all n ≥ M
and xi ∈ Xi , we have

αn
i (ti , xi ) = [̃αn

i (ti )](xi ) ∈ Nε([̃αi (ti )](xi )) = Nε(αi (ti , xi )),

implying that αn
i (ti , xi ) −→

w
αi (ti , xi ).

Next, define θ : T × X → �(X) and θn : T × X → �(X) by

θ(Bi × B−i |t, x) := αi (Bi |ti , xi ) ⊗
[

⊗
j �=i

δx j (B j )

]
and

θn(Bi × B−i |t, x) := αn
i (Bi |ti , xi ) ⊗

[
⊗
j �=i

δx j (B j )

]

for all Bi × B−i ⊆ Xi × X−i inB(X), where δx j denotes the Dirac measure in�(X j )

with support {x j }. Define η : T → �(T ) by

η(Bi × B−i |t) := ηi (Bi |ti ) ⊗
[

⊗
j �=i

δt j (B j )

]

for all Bi × B−i ⊆ Ti × T−i inB(T ), and μ∗ : T → �(X) by

μ∗(B|t) :=
∫

T
μ(B|τ)η(dτ |t).

Because the sequence (αn
i ) converges to αi pointwise, it follows from Theorem

2.8(ii) in Billingsley (1999) that the sequence (θn) converges to θ pointwise. Conse-
quently, applying Theorem 2.6 in Balder (2001), it follows that

p ⊗ μ∗ ⊗ θn −→
w

p ⊗ μ∗ ⊗ θ,

where p ⊗ μ∗ ⊗ θ ∈ �(T × X × X) is defined by

[p ⊗ μ∗ ⊗ θ ](A × B × B ′) :=
∫

A×B
θ(B ′|(t, x))[p ⊗ μ∗](d(t, x))
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for all A × B × B ′ ⊆ T × X × X inB(T × X × X), and each p ⊗μ∗ ⊗ θn is defined
similarly.

Let ν ∈ �(T × X) (resp. νn ∈ �(T × X)) be defined by ν(A × B) := [p ⊗ μ∗ ⊗
θ ](A× X × B) (resp. νn(A× B) := [p⊗μ∗ ⊗θn](A× X × B)). By Theorem 2.8(i) in
Billingsley (1999), νn −→

w
ν. Therefore, since νn and ν are members ofP p′

(T × X),

Lemma 2 gives

∫
T

∫
Ti

∫
X

∫
Xi

ui (t, yi , x−i )α
n
i (dyi |ti , xi )μ(dx |τi , t−i )ηi (dτi |ti )p(dt)

=
∫

T ×X
ui (t, x)νn(d(t, x))

→
∫

T ×X
ui (t, x)ν(d(t, x))

=
∫

T

∫
Ti

∫
X

∫
Xi

ui (t, yi , x−i )αi (dyi |ti , xi )μ(dx |τi , t−i )ηi (dτi |ti )p(dt).

This, together with (18), gives (38). ��

Next, observe that

∫
T

∫
Ti

∫
X

∫
Xi

ui (t, yi , x−i )α
∗
i (dyi |ti , xi )μ(dx |τi , t−i )ηi (dτi |ti )p(dt)

=
∫

Ti

∫
T−i

∫
Ti

∫
X

∫
Xi

ui (t, yi , x−i )α
∗
i (dyi |ti , xi )

× μ(dx |τi , t−i )ηi (dτi |ti )p(dt−i |ti )pi (dti )

=
∫

Ti

∫
Ti

∫
T−i

∫
X

∫
Xi

ui (t, yi , x−i )α
∗
i (dyi |ti , xi )

× μ(dx |τi , t−i )p(dt−i |ti )ηi (dτi |ti )pi (dti ),

where pi represents the marginal projection of p into �(Ti ). Define ζ : Ti × Ti → R

by

ζ(ti , τi ) :=
∫

T−i

∫
X

∫
Xi

ui (t, yi , x−i )α
∗
i (dyi |ti , xi )μ(dx |τi , t−i )p(dt−i |ti ). (39)

Step 3 There exists a (B(Ti ),B(Ti ))-measurable map g : Ti → Ti such that

∫
T

∫
X

ui (t, x)μ(dx |t)p(dt) <

∫
Ti

ζ(ti , g(ti ))pi (dti ).

Proof of Step 3 Because the map ζ is (B(Ti × Ti ),B(R))-measurable, Theorem 2
in Brown and Purves (1973) gives, for each n, a (B(Ti ),B(Ti ))-measurable map

123



Equilibria in infinite games of incomplete information 351

gn : Ti → Ti such that for every ti ∈ Ti ,

ζ(ti , gn(ti )) ≥ sup
τi ∈Ti

ζ(ti , τi ) − 1

n
.

This, together with the fact that

sup
τi ∈Ti

ζ(ti , τi ) − 1

n
≥
∫

Ti

ζ(ti , τi )ηi (dτi |ti ) − 1

n
, for all ti ∈ Ti ,

gives

ζ(ti , gn(ti )) ≥
∫

Ti

ζ(ti , τi )ηi (dτi |ti ) − 1

n
, for all ti ∈ Ti ,

Consequently,

∫
Ti

ζ(ti , gn(ti ))pi (dti ) ≥
∫

Ti

∫
Ti

ζ(ti , τi )ηi (dτi |ti )pi (dti ) − 1

n
.

Because
∫

Ti

∫
Ti

ζ(ti , τi )ηi (dτi |ti )pi (dti ) >

∫
T

∫
X

ui (t, x)μ(dx |t)p(dt)

(Step 2), it follows that there exists a large enough n for which

∫
Ti

ζ(ti , gn(ti ))pi (dti ) >

∫
T

∫
X

ui (t, x)μ(dx |t)p(dt).

��
Step 4 There exists a simple map η∗

i ∈ Di such that

∫
T

∫
X

ui (t, x)μ(dx |t)p(dt) <

∫
Ti

∫
Ti

ζ(ti , τi )η
∗
i (dτi |ti )pi (dti ).

Proof of Step 4 Define λ ∈ �(Ti × Ti ) by

λ(A × B) :=
∫

A
δg(ti )(B)pi (dti ) (40)

for all A × B ⊆ Ti × Ti inB(Ti × Ti ), where g is the map from Step 3. Because the
map ζ defined in (39) is (B(Ti × Ti ),B(R))-measurable, Luzin’s Theorem gives a
sequence (Sn) of compact subsets of Ti ×Ti such that λ(Sn) → 1 and each ζ n := ζ |Sn

is continuous. Since Sn is compact, ζ n : Sn → R is uniformly continuous, and
so there exists δn > 0 such that di (ti , t̂i ) < δn and di (τi , τ̂i ) < δn implies that
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|ζ n(ti , τi ) − ζ n(t̂i , τ̂i )| < 1
n , where di is a compatible metric for Ti . In addition,

since Sn is compact, there exists a finite δn
2 -partition {P(n,1), . . . , P(n,kn)} of Sn (i.e., a

partition such that each P(n,k) has radius less than δn
2 ) consisting of sets inB(Ti ×Ti ).

For each n and k ∈ {1, . . . , kn}, let

P(n,k)
1 :=

{
ti ∈ Ti : ∃τi : (ti , τi ) ∈ P(n,k)

}
. (41)

Step 4.1 The partition {P(n,1), . . . , P(n,kn)} of Sn can be chosen to satisfy the follow-
ing: if (tk

i , τ k
i ) ∈ P(n,k) and (tκi , τ κ

i ) ∈ P(n,κ) for κ �= k, and if t̃ k
i ∈ P(n,k)

1 and

t̃κi ∈ P(n,κ)
1 , then (t̃ k

i , τ k
i ) �= (t̃κi , τ κ

i ).

Proof of Step 4.1 Note that there exists a finite set {(t1i , τ 1i ), . . . , (tkn
i , τ

kn
i )} ⊆ Sn such

that

Sn ⊆
kn⋃

k=1

(
Nδn/2(t

k
i ) × Nδn/2(τ

k
i )
)

.

(Here the δn/2-neighborhoods are neighborhoods in Ti .) Now define
A(n,1), . . . , A(n,kn) as follows:

• A(n,1) := Nδn/2(t1i ) × Nδn/2(τ
1
i );

• A(n,2) := (
Nδn/2(t2i ) × Nδn/2(τ

2
i )
) \ (Nδn/2(t1i ) × Nδn/2(τ

1
i )
)
;

• A(n,3) := (
Nδn/2(t3i ) × Nδn/2(τ

3
i )
) \ [(

Nδn/2(t1i ) × Nδn/2(τ
1
i )
)∪(

Nδn/2(t2i ) × Nδn/2(τ
2
i )
)]
; and so on.

Letting P(n,k) := A(n,k) ∩ Sn , one obtains a δn/2-partition {P(n,1), . . . , P(n,kn)} of Sn .
To see that this partition has the desired property, fix (t̂ k

i , τ̂ k
i ) ∈ P(n,k) and (t̂κi , τ̂ κ

i ) ∈
P(n,κ) for κ > k, and choose t̃ k

i ∈ P(n,k)
1 and t̃κi ∈ P(n,κ)

1 . Then the construction of
the partition entails that if t̃ k

i = t̃κi then τ̂ k
i �= τ̂ κ

i . ��
For each n and k ∈ {1, . . . , kn}, let

P̂(n,k) :=
{
(ti , τi ) ∈ P(n,k) : τi = g(ti )

}
and

P̂(n,k)
1 :=

{
ti ∈ Ti : ∃τi : (ti , τi ) ∈ P̂(n,k)

}
. (42)

Step 4.2 For each n and k ∈ {1, . . . , kn}, the set P̂(n,k) belongs to B(Ti × Ti ).

Proof of Step 4.2 Because the map g from Step 3 is (B(Ti ),B(Ti ))-measurable, the
graph of g,

Gr(g) := {(ti , g(ti )) : ti ∈ Ti } ⊆ Ti × Ti ,

belongs to B(Ti × Ti ) (see, e.g., Aliprantis and Border 2006, Theorem 12.28). Con-
sequently, since P(n,k) ∈ B(Ti × Ti ) and

P̂(n,k) = Gr(g) ∩ P(n,k),
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it follows that P̂(n,k) ∈ B(Ti × Ti ). ��
Step 4.3 For each n and k ∈ {1, . . . , kn}, the set P̂(n,k)

1 belongs to B(Ti ).

Proof of Step 4.3 The assertion follows from Theorem 18.10 in Kechris (1995),
together with the facts that P̂(n,k) ∈ B(Ti × Ti ) (Step 4.2) and that, for each ti ∈ Ti ,
the set {τi : (ti , τi ) ∈ P̂(n,k)} is finite (in fact, a singleton). ��

For each n and k ∈ {1, . . . , kn}, choose t (n,k)
i ∈ P̂(n,k)

1 such that

ζ n(t (n,k)
i , g(t (n,k)

i )) ≥ sup
ti ∈P̂(n,k)

1

ζ n(ti , g(ti )) − 1

n

and t∗i ∈ Ti , and define f n : Ti → Ti by

f n(ti ) :=
{

g(t (n,k)
i ) if there exists k such that ti ∈ P̂(n,k)

1 ,

t∗i otherwise.
(43)

Step 4.4 The map f n : Ti → Ti defined in (43) is (B(Ti ),B(Ti ))-measurable.

Proof of Step 4.4 The assertion follows from the following facts: f n has finite range
and (by Step 4.3) the inverse images of the members of the range belong toB(Ti ). ��
Step 4.5 For every ti ∈ P̂(n,k)

1 ,

ζ n(ti , f n(ti )) ≥ ζ n(ti , g(ti )) − 2

n
.

Proof of Step 4.5 First, recall that di (ti , t̂i ) < δn and di (τi , τ̂i ) < δn implies that

|ζ n(ti , τi ) − ζ n(t̂i , τ̂i )| <
1

n
.

Now, given ti ∈ P̂(n,k)
1 , one has

ζ n(ti , f n(ti )) = ζ n(ti , g(t (n,k)
i )) ≥ ζ n(t (n,k)

i , g(t (n,k)
i )) − 1

n

≥ sup
τi ∈P̂(n,k)

1

ζ n(τi , g(τi )) − 2

n
≥ ζ n(ti , g(ti )) − 2

n
. ��

Next, define λn ∈ �(Ti × Ti ) by

λn(A × B) :=
∫

A
δ f n(ti )(B)pi (dti ) (44)

for all A × B ⊆ Ti × Ti in B(Ti × Ti ), where δ f n(ti ) ∈ �(Ti ) denotes the Dirac
measure on Ti with support { f n(ti )}.

123



354 O. Carbonell-Nicolau

Now recall the definition of P̂(k,n) in (42) and define

P̃(n,k) := Gr( f n) ∩
(

P̂(n,k)
1 × Ti

)
and P̃(n,k)

1 :=
{

ti ∈ Ti : ∃τi : (ti , τi ) ∈ P̃(n,k)
}

,

where Gr( f n) denotes the graph of f n in Ti × Ti .

Step 4.6 For each n and k ∈ {1, . . . , kn}, the set P̃(n,k) belongs to B(Ti × Ti ).

Proof of Step 4.6 Analogous to the proof of Step 4.2. ��

Step 4.7 For each n and k ∈ {1, . . . , kn}, the set P̃(n,k)
1 belongs to B(Ti ).

Proof of Step 4.7 Analogous to the proof of Step 4.3. ��
Step 4.8 For each n and k �= κ , P̃(n,k) ∩ P̃(n,κ) = ∅.

Proof of Step 4.8 Choose (ti , τi ) ∈ P̃(n,k) and (t̂i , τ̂i ) ∈ P̃(n,κ). It suffices to show that
(ti , τi ) �= (t̂i , τ̂i ).

Because (ti , τi ) ∈ P̃(n,k), one has (ti , τi ) = (ti , f n(ti )) and ti ∈ P̂(n,k)
1 , implying

(by (43)) that (ti , τi ) = (ti , g(t (n,k)
i )). In addition, since ti ∈ P̂(n,k)

1 , one has ti ∈
P(n,k)
1 (recall the definition of P(n,k)

1 in (41)). Summarizing, one has ti ∈ P(n,k)
1 and

(ti , τi ) = (ti , g(t (n,k)
i )).

Similarly, one can show that (t̂i , τ̂i ) = (t̂i , g(t (n,κ)
i )) and t̂i ∈ P(n,κ)

1 .

Since (t (n,k)
i , g(t (n,k)

i )) ∈ P(n,k), (t (n,κ)
i , g(t (n,κ)

i )) ∈ P(n,κ), ti ∈ P(n,k)
1 , and t̂i ∈

P(n,κ)
1 , it follows fromStep 4.1 that (ti , τi ) = (ti , g(t (n,k)

i )) �= (t̂i , g(t (n,κ)
i )) = (t̂i , τ̂i ).

��
Step 4.9 For each n and k ∈ {1, . . . , kn}, P̂(n,k)

1 = P̃(n,k)
1 .

Proof of Step 4.9 Suppose that ti ∈ P̂(n,k)
1 . Then (ti , f n(ti )) ∈ P̃(n,k), and so ti ∈

P̃(n,k)
1 . Hence, P̂(n,k)

1 ⊆ P̃(n,k)
1 . Conversely, suppose that ti ∈ P̃(n,k)

1 . Then (ti , τi ) ∈
P̃(n,k) for some τi , implying that ti ∈ P̂(n,k)

1 , and so P̂(n,k)
1 ⊇ P̃(n,k)

1 . ��

Step 4.10 For each n and k �= κ , P̂(n,k)
1 ∩ P̂(n,κ)

1 = ∅.

Proof of Step 4.10 Suppose that ti ∈ P̂(n,k)
1 ∩ P̂(n,κ)

1 . Then (ti , τi ) ∈ P̂(n,k) ⊆ P(n,k)

and (ti , τ̂i ) ∈ P̂(n,κ) ⊆ P(n,κ) for some τi and τ̂i , and so τi = g(ti ) = τ̂i . Hence,
(ti , τi ) = (ti , τ̂i ) ∈ P(n,k) ∩ P(n,κ), a contradiction. ��
Step 4.11 For each n,

λn

( kn⋃
k=1

P̃(n,k)

)
= λ(Sn).
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Proof of Step 4.11 Fix n. Then,

λn

( kn⋃
k=1

P̃(n,k)

)
=

kn∑
k=1

λn(P̃(k,n)) =
kn∑

k=1

pi (P̃(k,n)
1 ) =

kn∑
k=1

pi (P̂(k,n)
1 )

=
kn∑

k=1

λ(P̂(k,n)) =
kn∑

k=1

λ(P(k,n)) = λ(Sn),

where the first equality follows from Step 4.8; the second equality uses Step 4.9 and
Step 4.10; and the third equality uses Step 4.9; ��
Step 4.12 We have

lim inf
n

∫
Ti

ζ(ti , f n(ti ))pi (dti ) ≥
∫

Ti

ζ(ti , g(ti ))pi (dti ). (45)

Proof of Step 4.12 We have

∫
Ti

ζ(ti , f n(ti ))pi (dti )

=
∫

Ti ×Ti

ζ(ti , τi )λ
n(d(ti , τi ))

=
kn∑

k=1

∫
P̃(k,n)

ζ n(ti , τi )λ
n(d(ti , τi )) +

∫
(Ti ×Ti )\⋃k P̃(k,n)

ζ(ti , τi )λ
n(d(ti , τi ))

=
kn∑

k=1

∫
P̃(k,n)
1

ζ n(ti , f n(ti ))pi (dti ) +
∫

(Ti ×Ti )\⋃k P̃(k,n)

ζ(ti , τi )λ
n(d(ti , τi ))

=
kn∑

k=1

∫
P̂(k,n)
1

ζ n(ti , f n(ti ))pi (dti ) +
∫

(Ti ×Ti )\⋃k P̃(k,n)

ζ(ti , τi )λ
n(d(ti , τi ))

≥
kn∑

k=1

∫
P̂(k,n)
1

[
ζ n(ti , g(ti )) − 2

n

]
pi (dti ) +

∫
(Ti ×Ti )\⋃k P̃(k,n)

ζ(ti , τi )λ
n(d(ti , τi ))

=
kn∑

k=1

∫
P̂(k,n)
1

ζ n(ti , g(ti ))pi (dti ) − 2

n

kn∑
k=1

pi (P̂(n,k)
1 )

+
∫

(Ti ×Ti )\⋃k P̃(k,n)

ζ(ti , τi )λ
n(d(ti , τi ))

=
kn∑

k=1

∫
P̂(k,n)

ζ(ti , τi )λ(d(ti , τi )) − 2

n

kn∑
k=1

λ(P̂(n,k))

+
∫

(Ti ×Ti )\⋃k P̃(k,n)

ζ(ti , τi )λ
n(d(ti , τi ))
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=
kn∑

k=1

∫
P(k,n)

ζ(ti , τi )λ(d(ti , τi )) − 2

n

kn∑
k=1

λ(P(n,k))

+
∫

(Ti ×Ti )\⋃k P̃(k,n)

ζ(ti , τi )λ
n(d(ti , τi ))

=
∫

Sn
ζ(ti , τi )λ(d(ti , τi )) − 2

n
λ(Sn)

+
∫

(Ti ×Ti )\⋃k P̃(k,n)

ζ(ti , τi )λ
n(d(ti , τi ))

=
∫

Sn
ζ(ti , τi )λ(d(ti , τi )) − 2

n
λ(Sn)

+
∫

(Ti ×Ti )\⋃k P̃(k,n)

ζ(ti , τi )λ
n(d(ti , τi ))

+
∫

(Ti ×Ti )\Sn
ζ(ti , τi )λ(d(ti , τi )) −

∫
(Ti ×Ti )\Sn

ζ(ti , τi )λ(d(ti , τi ))

=
∫

Ti ×Ti

ζ(ti , τi )λ(d(ti , τi )) − 2

n
λ(Sn) +

∫
(Ti ×Ti )\⋃k P̃(k,n)

ζ(ti , τi )λ
n(d(ti , τi ))

−
∫

(Ti ×Ti )\Sn
ζ(ti , τi )λ(d(ti , τi ))

=
∫

Ti

ζ(ti , g(ti ))pi (dti ) − 2

n
λ(Sn) +

∫
(Ti ×Ti )\⋃k P̃(k,n)

ζ(ti , τi )λ
n(d(ti , τi ))

−
∫

(Ti ×Ti )\Sn
ζ(ti , τi )λ(d(ti , τi ))

n→∞−−−→
∫

Ti

ζ(ti , g(ti ))pi (dti ),

implying (45). Here, the first equality uses the definition of λn in (44); the second
equality uses the definition of ζ n from the first paragraph of the proof of Step 4,
Step 4.6, and Step 4.8; the third equality uses Step 4.7, Step 4.9, and Step 4.10; the
fourth equality follows from Step 4.9; the inequality follows from Step 4.5; the sixth
and seventh equalities follow from Step 4.2 and the definition of λ in (40); and the
limit at the end follows from Step 4.11, together with the boundedness of ζ and the
fact that λ(Sn) → 1. ��
Step 4.13 There exists n∗ such that

∫
T

∫
X

ui (t, x)μ(dx |t)p(dt) <

∫
Ti

ζ(ti , f n∗
(ti ))pi (dti ). (46)

Proof of Step 4.13 The assertion follows immediately from Step 3 and Step 4.12. ��
Letting η∗

i ∈ Di be defined by

η∗
i (B|ti ) := δ f n∗

(ti )
(B),
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where δ f n∗
(ti )

represents the Dirac measure in �(Ti ) with support f n∗
(ti ), and where

n∗ is the natural number from Step 4.13, it follows from (46) that

∫
T

∫
X

ui (t, x)μ(dx |t)p(dt) <

∫
Ti

ζ(ti , f n∗
(ti ))pi (dti )

=
∫

Ti

∫
Ti

ζ(ti , τi )η
∗
i (dτi |ti )pi (dti ).

This finishes the proof of Step 4. ��
Combining Step 4 and the fact that

∫
Ti

∫
Ti

ζ(ti , τi )η
∗
i (dτi |ti )pi (dti )

=
∫

T

∫
Ti

∫
X

∫
Xi

ui (t, yi , x−i )α
∗
i (dyi |ti , xi )μ(dx |τi , t−i )η

∗
i (dτi |ti )p(dt)

yields (19). This finishes the proof of Lemma. ��

Proof of Lemma 5

Lemma 4 Suppose that � = (Ti , Xi , ui , p)N
i=1 is a Bayesian game. Suppose that (μn

i )

and (νn
i ) are sequences in Ti . Suppose that

��(Xi )(μ
n
i (ti ), ν

n
i (ti )) → 0, for every ti ∈ Ti . (20)

Suppose further that (μn
−i ) is a sequence in T−i . Then, for every subsequence (nk) of

(n),

��(X)

(
1

m

m∑
k=1

[
μ

nk
i (ti ) ⊗

[
⊗
j �=i

μ
nk
j (t j )

]]
,
1

m

m∑
k=1

[
ν

nk
i (ti ) ⊗

[
⊗
j �=i

μ
nk
j (t j )

]])

m→∞−−−−→ 0, for every t ∈ T . (21)

Proof Suppose that (21) does not hold for some subsequence (nk) of (n). Then, for
some t ∈ T , and extracting a subsequence if necessary,

��(X)

(
1

m

m∑
k=1

[
μ

nk
i (ti ) ⊗

[
⊗
j �=i

μ
nk
j (t j )

]]
,

1

m

m∑
k=1

[
ν

nk
i (ti ) ⊗

[
⊗
j �=i

μ
nk
j (t j )

]])
m→∞−−−−→ γ
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for some γ > 0. Therefore, there exist γ ′ > 0 and M such that for each m ≥ M ,

��(X)

(
1

m

m∑
k=1

[
μ

nk
i (ti ) ⊗

[
⊗
j �=i

μ
nk
j (t j )

]]
,
1

m

m∑
k=1

[
ν

nk
i (ti ) ⊗

[
⊗
j �=i

μ
nk
j (t j )

]])
≥ γ ′,

i.e. (recall (2)),

inf

{
ε : ∀closed B ⊆ X ,

1

m

m∑
k=1

[∫
X−i

μ
nk
i ((B)x−i |ti )

[
⊗
j �=i

μ
nk
j (t j )

]
(dx−i )

]

≤ ε + 1

m

m∑
k=1

[∫
X−i

ν
nk
i ((Nε(B))x−i |ti )

[
⊗
j �=i

μ
nk
j (t j )

]
(dx−i )

]}
≥ γ ′,

(47)

where (B)x−i (resp. (Nε(B))x−i ) denotes the section of B (resp. Nε(B)) in Xi at x−i .17

Now (20) implies the following:

��(Xi )(μ
nk
i (ti ), ν

nk
i (ti ))

k→∞−−−→ 0.

Therefore,

inf
{
ε : ∀closed B ⊆ Xi , μ

nk
i (B|ti ) ≤ ν

nk
i (Nε(B)|ti ) + ε

} k→∞−−−→ 0,

implying that there exist γ ′′ ∈ (0, γ ′) and K such that for each k ≥ K , and for each
B closed in Xi ,

μ
nk
i (B|ti ) ≤ γ ′′ + ν

nk
i (Nγ ′′(B)|ti ).

Consequently, for each k ≥ K , and for each B closed in X and x−i ∈ X−i ,18

μ
nk
i ((B)x−i |ti ) ≤ γ ′′ + ν

nk
i (Nγ ′′((B)x−i )|ti ) ≤ γ ′′ + ν

nk
i ((Nγ ′′(B))x−i |ti ), (48)

implying that for each k ≥ K and B closed in X ,

∫
X−i

μ
nk
i ((B)x−i |ti )

[
⊗
j �=i

μ
nk
j (t j )

]
(dx−i ) ≤ γ ′′

+
∫

X−i

ν
nk
i ((Nγ ′′(B))x−i |ti )

[
⊗
j �=i

μ
nk
j (t j )

]
(dx−i ).

17 The section of a closed (resp. open) subset of a product space is closed (resp. open) (see, e.g., Bourbaki
(1989, p. 46, Corollary)).
18 The last inequality in (48) follows from the fact that Nγ ′′ ((B)x−i ) ⊆ (Nγ ′′ (B))x−i . To see that this
containment holds, suppose that xi ∈ Nγ ′′ ((B)x−i ). Then xi ∈ Nγ ′′ (yi ) for some yi ∈ (B)x−i , implying
that (yi , x−i ) ∈ B. Since xi ∈ Nγ ′′ (yi ), it follows that (xi , x−i ) ∈ Nγ ′′ (B) and so xi ∈ (Nγ ′′ (B))x−i .
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Consequently, there is an M ′ such that for each m ≥ M ′ and each B closed in X ,

1

m

m∑
k=1

[∫
X−i

μ
nk
i ((B)x−i |ti )

[
⊗
j �=i

μ
nk
j (t j )

]
(dx−i )

]

≤ γ ′′′ + 1

m

m∑
k=1

[∫
X−i

ν
nk
i ((Nγ ′′(B))x−i |ti )

[
⊗
j �=i

μ
nk
j (t j )

]
(dx−i )

]
,

for some γ ′′′ ∈ (0, γ ′). But this implies that for m ≥ max{M, M ′}, the left-hand side
of (47) must be strictly less than γ ′, a contradiction. ��
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