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Abstract We provide approximation results for Nash equilibria in possibly discon-
tinuous games when payoffs and strategy sets are perturbed. We then prove existence
results for a new “finitistic” infinite-game generalization of Selten’s (Int J Game The-
ory 4: 25–55, 1975) notion of perfection and study some of its properties. The existence
results, which rely on the approximation theorems, relate existing notions of perfection
to the new specification.
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1 Introduction

In this paper, we provide approximation results for Nash equilibria in possibly dis-
continuous games when payoffs and strategy sets are perturbed. These conditions
are then used to derive existence results for a new “finitistic” infinite-game gen-
eralization of Selten’s (1975) notion of perfection. Some of the properties of the
new refinement specification are studied and related to existing formulations of
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2 O. Carbonell-Nicolau, R. P. McLean

perfection. To introduce the issues that we address, suppose that G = (Xi , ui )
N
i=1

is an N -player strategic-form game defined by action sets Xi and payoff functions
ui .

We begin by identifying general conditions under which an approximation result
of the following type will hold:

Statement C. If

(i) for each i, (Xα
i ) is a net of subsets of Xi and (uα

i ) is a net in the space of payoff
functions defined on X := ×N

i=1 Xi with limit ui ,
(ii) (xα) is a net in X with limit x ∈ X such that, for each α, xα is an εα-Nash

equilibrium of the game Gα = (Xα
i , uα

i )N
i=1, and

(iii) εα → 0,

then x is a Nash equilibrium of the game G = (Xi , ui )
N
i=1.

This approximation result and some variants of it will be useful when addressing
questions of equilibrium refinement. The archetype for all results of this kind is the
classic closed graph theorem for the Nash equilibrium correspondence of the mixed
extension of a game when the payoff functions are the parameters. This classic result
relies on continuity of the payoff functions. Several papers have addressed the more
general approximation question of Statement C above in the framework of continuous
and discontinuous games.1

We introduce the notion of limit better-reply security of a game G = (Xi , ui )
N
i=1

with respect to a net (Xα, uα), where (Xα) is a net of subsets of X and (uα) is
an approximating net for (u1, . . . , uN ). We show that this condition is, essentially,
a reformulation of Statement C. If Xα = X and uα = u, then we say that G =
(Xi , ui )

N
i=1 satisfies limit better-reply security. Limit better-reply security is weaker

than Barelli and Soza’s (2010) generalized better-reply security, which is, in turn,
weaker than the notion of better-reply security introduced in Reny’s (1999) work.2 The
reader is referred to Carbonell-Nicolau and McLean (2012) for a detailed comparison
between limit better-reply security and related notions introduced by several authors.3

In Sect. 4, we provide appropriate analogues for our definitions for the mixed exten-
sion of a game and extend the approximation results to the case of mixed strategies.

Section 5 applies the approximation results derived in Sects. 3 and 4 to the analy-
sis of perfect equilibrium in discontinuous games. We briefly survey the existing
infinite-game extensions of perfection, including Simon and Stinchcombe’s (1995)
limit-of-finite formulations. The limit-of-finite approach takes the view that infinite
models are merely convenient representations of “true” models, which are large but
finite. Simon and Stinchcombe (1995) define an ε-perfect equilibrium as a completely
mixed ε-equilibrium (where the players choose actions that are in some sense close

1 See Lucchetti and Patrone (1986), Gürkan and Pang (2009), and Bagh (2010). The reader is referred to
Carbonell-Nicolau and McLean (2012) for a detailed comparison between our work and these references.
2 For earlier work on discontinuous games, see Dasgupta and Maskin (1986), Simon (1987), and Lebrun
(1996).
3 See, for instance, Dasgupta and Maskin (1986), Simon (1987), Reny (1999, 2011), Bagh and Jofre (2006),
Carmona (2011a,b), de Castro (2011), Prokopovych (2011), Barelli and Soza (2010), and McLennan et al.
(2011).
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Approximation results for discontinuous games 3

to their set of best responses to the other players’ strategies), and a limit-of-finite (lof)
perfect equilibrium as the limit of ε-perfect equilibria for successively larger finite
approximations of an infinite game. It is shown in Simon and Stinchcombe (1995)
that the notion of lof perfection is ill-suited even in continuous games, for it fails
a weakening of admissibility, termed limit admissibility in Simon and Stinchcombe
(1995), which requires that no player chooses an action in the interior of the set of
weakly dominated actions.

We introduce a new limit-of-finite approach, in the spirit of Simon and Stinch-
combe’s (1995) formulation, that does not suffer from this drawback. This approach
relies on finite approximations to Selten perturbations of a game. A Selten pertur-
bation may be viewed as a model of slight mistakes in which any player may trem-
ble and play any one of her actions. Standard notions of perfection, when stated
in terms of Selten perturbations, define a perfect equilibrium as the limit of some
sequence of (exact) equilibria of neighboring Selten perturbations of a game. Thus,
an equilibrium μ is perfect if there exists a sequence of models of (low-probability)
mistakes that have at least one equilibrium close to μ, so that μ describes approx-
imate equilibrium behavior when the players interact in the perturbed game. Our
“finitistic” approach to perfection defines a limit-of-finite perfect equilibrium as the
limit of sequences of (exact) equilibria of neighboring finite Selten perturbations that
respect the strategic aspects of the original (infinite) game, in the sense that they
can be interpreted as “true” representations of certain infinite Selten perturbations.
The consistency between the finite and the infinite models is obtained by requir-
ing that an equilibrium be the limit of some set of sequences of equilibria of finite
Selten perturbations, where the set of sequences is sufficiently close to some “mir-
ror” sequence of infinite perturbations. An equilibrium with this property is called
a strong limit-of-finite (lof) perfect equilibrium. Strong lof perfect equilibria are lof
perfect in Simon and Stinchcombe’s (1995) sense (Proposition 1), but the converse is
not true.

Section 5.1 provides existence results for strong lof perfect equilibrium pro-
files. We first state and prove a result relating the convergence theorems furnished
in Sects. 3 and 4 to the existence of strong lof perfect and trembling-hand per-
fect equilibria in discontinuous games (Proposition 2). This result is then used
to prove existence results in terms of the primitives of a game, i.e., the game’s
payoff functions defined over pure strategies (Theorems 5, 6). Our main exis-
tence result, Theorem 6, states that compact games satisfying generic entire pay-
off security, generic local equi-upper semicontinuity, and upper semicontinuity of
the sum of payoffs possess strong lof perfect equilibria that are trembling-hand
perfect. Generic entire payoff security and generic local equi-upper semicontinuity
are easy to verify in a variety of economic games (cf. Carbonell-Nicolau 2011a,
2011c).

Section 5.2 studies the relationship between strong lof perfection and limit admis-
sibility. For continuous games, all strong lof perfect equilibria are trembling-hand
perfect (Theorem 7). This result can be combined with results from Simon and
Stinchcombe (1995) to conclude that strong lof perfection satisfies (unlike Simon
and Stinchcombe’s 1995 lof perfection) limit admissibility in continuous games
(Theorem 8).
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4 O. Carbonell-Nicolau, R. P. McLean

2 Preliminaries

A strategic-form game is a collection G = (Xi , ui )
N
i=1, where N is a finite number

of players, Xi is a nonempty set of actions for player i , and ui ∈ B(X), where B(X)

denotes the space of bounded, real-valued functions defined on X := ×N
i=1 Xi . We

view B(X) as a metric space with associated metric defined by

ρ( f, g) := sup
x∈X

| f (x) − g(x)|.

Let X−i := × j �=i X j for each i . We will often abuse notation and simply write G =
(Xi , ui ) for G = (Xi , ui )

N
i=1. Given i and (xi , x−i ) ∈ Xi × X−i , we employ the

standard convention and write (x1, . . . , xN ) in X as (xi , x−i ). If G = (Xi , ui ) is a
game and Yi ⊆ Xi for each i , we will write (Yi , ui |Yi )

N
i=1 simply as (Yi , ui )

N
i=1 or

(Yi , ui ).
Let U (X) denote Cartesian product of N copies of B(X). We also view U (X) as a

metric space and denote, by a slight abuse of notation, the associated metric again by
ρ, i.e.,

ρ(( f1, . . . , fN ), (g1, . . . , gN )) := max
i∈{1,...,N }

[
sup
x∈X

| fi (x) − gi (x)|
]

.

Consequently, a net (uα) in U (X) is convergent with limit u if and only if for each i ,
the net (uα

i ) is uniformly convergent with limit ui .
If G = (Xi , ui ) is a game, then a test net for G is a net (Gν) = (Xν

i , uν
i ), where,

for each i, (Xν
i ) is a net of nonempty subsets of Xi and (uν

i ) is a net of functions in
B(X). Note that we do not (yet) assume that (uν

i ) is an approximating net for ui .

Definition 1 If ε ≥ 0, then a strategy profile x = (xi , x−i ) in X is an ε-Nash
equilibrium of G = (Xi , ui ) if ui (yi , x−i ) ≤ ui (x) + ε for each yi ∈ Xi and every i .
A 0-Nash equilibrium will be called a Nash equilibrium.

Define a correspondence NX : U (X) ⇒ X that assigns to each profile
u = (u1, . . . , uN ) ∈ U (X) the set of Nash equilibria NX (u) of (Xi , ui ). Given
ε ≥ 0, define a correspondence N ε

X : U (X) ⇒ X that assigns to each profile
u = (u1, .., uN ) ∈ U (X) the set of ε-Nash equilibria N ε

X (u) of (Xi , ui ).
When each Xi is a (nonempty) topological space, G = (Xi , ui )

N
i=1 is called a

topological game. When each Xi is a nonempty metric space, we say that G is a
metric game. If in addition each Xi is a compact topological (metric) space, then G
is called a compact topological (metric) game.

If G is a topological game, we are not (yet) assuming that the strategy spaces Xi are
first countable (or Hausdorff for that matter). Consequently, our approximation results
in this section are formulated in terms of nets. However, virtually all of our results
will hold if we replace “net” and “subnet” with “sequence” and “subsequence.”4 If we

4 Some care is required here. For example, the closedness conclusion of Corollary 1 would not hold if we
presented our definitions in terms of sequences rather than nets.
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Approximation results for discontinuous games 5

were to work only in a metric space framework, then we could have used sequences
everywhere and in fact, we explicitly use sequences in Conditions 5–6, Theorem 4,
and Corollary 3 below. Throughout the paper, we will use (xα) = (xα)α∈D to denote
a net with indices belonging to a directed set (D,≺). As we stated in the introduction,
one of our main goals is to identify general conditions under which an approximation
result like that posed in Statement C will hold. As we show below, results of this type
will be useful in the study of refinements of equilibrium.

If (Sα) is a net of subsets of a topological space S, define the (Painleve-Kuratowski)
topological limit superior of (Sα), denoted Ls(Sα), to be the set of y ∈ S such that
there exist a subnet (Sβ) and a net (yβ) satisfying yβ ∈ Sβ for each β and yβ → y.
Define the topological limit inferior of (Sα), denoted Li(Sα), to be the set of y ∈ S
such that there exists a net (yα) satisfying yα ∈ Sα for each α and yα → y.

3 Approximation results for pure-strategy Nash equilibria of topological games

Condition 1 Let G = (Xi , ui ) be a topological game. Suppose that (Xν
i , uν

i ) is a
test net for G. The game (Xi , ui ) satisfies limit better-reply security with respect to
(Xν

i , uν
i ) if the following condition is satisfied: if (Xα

i , uα
i ) is a subnet of (Xν

i , uν
i ), if

(xα, uα(xα)) ∈ X × R
N is a convergent net with limit (x, γ ) ∈ X × R

N satisfying
xα ∈ Xα for each α, and if x is not a Nash equilibrium of (Xi , ui ), then there exist an
i , an η > γi , a subnet (xβ) of (xα), and a net (yβ

i ) such that, for each β, yβ
i ∈ Xβ

i and

uβ
i (yβ

i , xβ
−i ) ≥ η.

Condition 2 A topological game G = (Xi , ui ) satisfies limit better-reply security
if and only if G satisfies limit better-reply security with respect to (Xν

i , uν
i ), with

(Xν
i , uν

i ) = (Xi , ui ) for all ν. That is, G satisfies limit better-reply security if the
following holds: if (xα, u(xα)) ∈ X × R

N is a convergent net with limit (x, γ ) ∈
X × R

N and if x is not a Nash equilibrium of (Xi , ui ), then there exist an i , an
η > γi , a subnet (xβ) of (xα), and a net (yβ

i ) such that, for each β, yβ
i ∈ Xi and

ui (yβ
i , xβ

−i ) ≥ η.

Theorem 1 Suppose that G = (Xi , ui ) is a topological game and suppose that
(Xν

i , uν
i ) is a test net for G. The following are equivalent:

(1) G = (Xi , ui ) satisfies limit better-reply security with respect to (Xν
i , uν

i ) (Con-
dition 1).

(2) If (Xα
i , uα

i ) is a subnet of (Xν
i , uν

i ) and if (xα, uα(xα)) is a convergent net with
limit (x, γ ) ∈ X × R

N satisfying xα ∈ N εα

Xα (uα) for each α, where εα → 0, then
x ∈ NX (u).

Proof Suppose that (1) holds. Let (Xα
i , uα

i ) be a subnet of (Xν
i , uν

i ). Suppose that
(xα, uα(xα)) is a convergent net with limit (x, γ ) ∈ X ×R

N satisfying xα ∈ N εα

Xα (uα)

for each α, where εα → 0. If x is not a Nash equilibrium of (Xi , ui ), then there exist
an i , an η > γi , a subnet (xβ) of (xα), and a net (yβ

i ) such that, for each β, yβ
i ∈ Xβ

i

and uβ
i (yβ

i , xβ
−i ) ≥ η. Now choose ε and an index β ′ so that η > γi + ε, ε

2 > εβ ′
,

and uβ ′
i (xβ ′

i , xβ ′
−i ) < γi + ε

2 . Then
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6 O. Carbonell-Nicolau, R. P. McLean

uβ ′
i (yβ ′

i , xβ ′
−i ) ≥ η > γi + ε > uβ ′

i (xβ ′
i , xβ ′

−i ) + εβ ′
,

contradicting the assumption that xβ ′ ∈ N εβ′

Xβ′ (uβ ′
). This establishes (2).

Now suppose that (2) holds.5 Suppose (Xα
i , uα

i ) is a subnet of (Xν
i , uν

i ), (xα, uα(xα))

∈ X × R
N is a convergent net with limit (x, γ ) ∈ X × R

N satisfying xα ∈ Xα for
each α, and x is not a Nash equilibrium of (Xi , ui ).

For each α and i , define

vα
i (xα) := sup

ξi ∈Xα
i

uα
i (ξi , xα−i )

and let

εα := max
i∈{1,...,N }

[
vα

i (xα) − uα
i (xα)

]
.

Note that 0 ≤ vα
i (xα) − uα

i (xα) ≤ εα for each i implies that xα ∈ N εα

Xα (uα). Since
x is not a Nash equilibrium of (Xi , ui ), it follows from (2) that the net (εα) is not
convergent with limit 0. Consequently, there exists an ε > 0 and subnets (ελ) and (xλ)

satisfying the following conditions for each λ: ελ ≥ ε and uλ
j (xλ) > γ j − ε

4 for each

j , and there exists a player i for whom vλ
i (xλ) ≥ uλ

i (xλ) + ε. Since the player set is

finite, it follows that there exist an i , a subnet (xβ) of (xλ), and a net (yβ
i ) satisfying

yβ
i ∈ Xβ

i for each β and

uβ
i

(
yβ

i , xβ
−i

)
> uβ

i (xβ) + ε

2
> γi + ε

4
= η,

as desired. 
�
Theorem 1 characterizes a stability property for Nash equilibria in discontinuous

games in which (Xν
i , uν

i ) is an approximating net for the game G = (Xi , ui ) with
respect to which G satisfies limit better-reply security. If (xα) is a convergent sequence
of εα-equilibria for some subnet (Xα

i , uα
i ) and if (uα(xα)) is a convergent net, then

x ∈ NX (u). This formulation of the result is useful for establishing the nonemptiness
of NX (u) since one needs to find only one net of εα-equilibria for which (xα, uα(xα))

is convergent. In applications, however, it is especially useful to know when the limit
of any convergent sequence of approximate equilibria of approximating games is an
equilibrium of the limit game. That is, it is useful to identify conditions that would
ensure that εν → 0 implies that

Ls(N εν

Xν (uν)) ⊆ NX (u).

A result of this type that will be applied in our study of equilibrium refinements is the
following.

5 We thank an anonymous referee for suggesting this argument.
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Approximation results for discontinuous games 7

Theorem 2 Suppose that G = (Xi , ui ) is a topological game and suppose that
(Xν

i , uν
i ) is a test net for G and suppose that (uν) is a uniformly bounded net in

U (X). The following are equivalent:

(1) G satisfies limit better-reply security with respect to (Xν
i , uν

i ) (Condition 1).
(2) If εν → 0, then Ls(N εν

Xν (uν)) ⊆ NX (u).

Proof Suppose that (1) is satisfied. Suppose that εν → 0 and x ∈ Ls(N εν

Xν (uν)). Then
there exists a subnet (N εα

Xα (uα)) and a net (xα) satisfying xα ∈ N εα

Xα (uα) for each α

such that xα → x . Since (uν) is a uniformly bounded net, there exists a further subnet
(xβ) of (xα) such that (xβ, uβ(xβ)) is a convergent net with limit (x, γ ) ∈ X × R

N .
Since εν → 0 implies that εβ → 0 and since (Xβ

i , uβ
i ) is a subnet of (Xν

i , uν
i ) , we

can apply Theorem 1 and conclude that x ∈ NX (u). This proves that (1) implies (2).
The converse implication is a straightforward application of Theorem 1. 
�
Remark 1 If (uν) is a convergent net in U (X) with limit u, then (uν) is a uniformly
bounded net in U (X).

If G = (Xi , ui ) is a topological game, then, letting Xν = X and uν = u for all ν,

we obtain an immediate corollary of Theorem 2.

Corollary 1 A topological game G = (Xi , ui ) satisfies limit better-reply security if
and only if εν → 0 implies that Ls(N εν

X (u)) ⊆ NX (u). In particular, NX (u) is a
closed set if G = (Xi , ui ) satisfies limit better-reply security.

4 Approximation results for mixed-strategy Nash equilibria of Borel games

If S is a topological space, let B(S) denote the class of Borel subsets of S. The cone
of nonnegative, countably additive, regular measures on B(S) is denoted by M+(S).

The subset of M+(S) consisting of probability measures endowed with the topology
of weak convergence is denoted by �(S).

A topological game G = (Xi , ui ) with each ui , a bounded Borel measurable func-
tion, is a Borel game. A topological game G = (Xi , ui ) with each Xi a separable
(compact) metric space, and each ui a bounded Borel measurable function is a sepa-
rable (compact) metric Borel game.

The mixed extension of a Borel game G is the strategic-form game

G := (�(Xi ), ui )
N
i=1,

where ui : ×N
i=1�(Xi ) → R denotes the usual extension defined by

ui (μ) :=
∫
X

ui dμ1 . . . dμn .

We will abuse notation and define �(X) := ×N
i=1�(Xi ). Next, define a correspon-

dence N�(X) : U (X) ⇒ �(X) that assigns to each profile u = (u1, .., uN ) ∈ U (X)

the set of Nash equilibria N�(X)(u) of the mixed extension G = (�(Xi ), ui ).
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8 O. Carbonell-Nicolau, R. P. McLean

We now define analogues of Conditions 1 and 2 in terms of the mixed extension of
a strategic-form game.

Condition 3 Suppose that G = (Xi , ui ) is a Borel game with mixed extension G =
(�(Xi ), ui ). Suppose that for each i, (uν

i ) is a net of bounded, Borel measurable payoff
functions and (Sν

i ) is a net of nonempty subsets of �(Xi ). Then G satisfies limit better-
reply security with respect to (Sν

i , uν
i ) if the following condition is satisfied: If (Sα

i , uα
i )

is a subnet of (Sν
i , uν

i ), if (μα, uα(μα)) ∈ �(X) × R
N is a convergent net with limit

(μ, γ ) ∈ �(X)×R
N satisfying μα ∈ Sα for each α, and if μ is not a Nash equilibrium

of G = (�(Xi ), ui ), then there exist i, η > γi , a subnet (μβ) of (μα), and a net (pβ
i )

such that for each β, pβ
i ∈ Sβ and ui (pβ

i , μ
β
−i ) ≥ η.

Condition 4 (limit better-reply security) Suppose that G = (Xi , ui ) is a Borel game
with mixed extension G = (�(Xi ), ui ). Then G satisfies limit better-reply security if
the following condition is satisfied: If (μα, u(μα)) ∈ �(X) × R

N is a convergent net
with limit (μ, γ ) ∈ �(X)×R

N and if μ is not a Nash equilibrium of G = (�(Xi ), ui ),
then there exist an i , an η > γi , a subnet (μβ) of (μα), and a net (pβ

i ) such that for

each β, pβ
i ∈ �(Xi ) and ui (pβ

i , μ
β
−i ) ≥ η.

The next result is an adaptation of Theorem 2 to the mixed extension of a game,
and the proof is the essentially identical.

Theorem 3 Suppose that G = (Xi , ui ) is a Borel game. Suppose that for each i, (uν
i )

is a uniformly bounded net of Borel measurable payoff functions and (Sν
i ) is a net of

nonempty subsets of �(Xi ). Suppose that G = (�(Xi ), ui ) satisfies limit better-reply
security with respect to (Sν

i , uν
i ) (Condition 3). If (Sα

i , uα
i ) is a subnet of (Sν

i , uν
i ) and

(μα) is a convergent net in �(X) with limit μ ∈ �(X) such that μα ∈ NSα (uα) for
each α, then μ ∈ N�(X)(u).

Corollary 2 Suppose that (Xi , ui ) is a Borel game whose mixed extension satisfies
limit better-reply security (Condition 4). Suppose that (uα) is a uniformly bounded
net of Borel measurable payoff functions and (μα) is a convergent net in �(X) with
limit μ ∈ �(X) satisfying μα ∈ N�(X)(uα) for each α. Then μ ∈ N�(X)(u).

Proof Apply Theorem 3 with Sα
i = �(Xi ) for each α and i . 
�

We now state analogues of Conditions 3 and 4, Theorem 3, and Corollary 2 in terms
of metric games.

Condition 5 Suppose that G = (Xi , ui ) is a Borel, metric game with mixed exten-
sion G = (�(Xi ), ui ). Suppose that for each i, (un

i ) is a sequence of bounded,
Borel measurable payoff functions and (Sn

i ) is a sequence of nonempty subsets of
�(Xi ). Then G satisfies sequential better-reply security with respect to (Sn

i , un
i )

if the following condition is satisfied: If (Sm
i , um

i ) is a subsequence of (Sn
i , un

i ), if
(μm, um(μm)) ∈ �(X)×R

N is a convergent sequence with limit (μ, γ ) ∈ �(X)×R
N

satisfying μm ∈ Sm for each m, and if μ is not a Nash equilibrium of G = (�(Xi ), ui ),
then there exist i, η > γi , a subsequence (μk) of (μm), and a sequence (pk

i ) such that
for each k, pk

i ∈ Sk and ui (pk
i , μk

−i ) ≥ η.
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Approximation results for discontinuous games 9

Condition 6 (sequential better-reply security) Suppose that G = (Xi , ui ) is a Borel,
metric game with mixed extension G = (�(Xi ), ui ). Then G satisfies sequential
better-reply security if the following condition is satisfied: if (μn, u(μn)) ∈ �(X) ×
R

N is a convergent sequence with limit (μ, γ ) ∈ �(X) × R
N and if μ is not a Nash

equilibrium of G = (�(Xi ), ui ), then there exist an i , an η > γi , a subsequence (μnk )

of (μn) and a sequence (pk
i ) such that for each k, pk

i ∈ �(Xi ) and ui (pk
i , μ

nk−i ) ≥ η.

Theorem 4 Suppose that G = (Xi , ui ) is a Borel, metric game. Suppose that for each
i, (un

i ) is a uniformly bounded sequence of Borel measurable payoff functions and (Sn
i )

is a sequence of nonempty subsets of �(Xi ). Suppose that G satisfies sequential better-
reply security with respect to (Sn

i , un
i ) (Condition 5). If (Sm

i , um
i ) is a subsequence of

(Sn
i , un

i ) and (μm) is a convergent sequence in �(X) with limit μ ∈ �(X) such that
μm ∈ NSm (um) for each m, then μ ∈ N�(X)(u).

Corollary 3 Suppose that (Xi , ui ) is a Borel metric game whose mixed extension
satisfies sequential better-reply security (Condition 6). Suppose that (un) is a uniformly
bounded sequence of Borel measurable payoff functions and (μn) is a convergent
net in �(X) with limit μ ∈ �(X) satisfying μn ∈ N�(X)(un) for each n. Then
μ ∈ N�(X)(u).

Proof Apply Theorem 4 with Sn
i = �(Xi ) for each n and i . 
�

5 Application to perfect equilibrium

Several authors have studied perfect equilibria in games with infinitely many actions
(e.g., Simon and Stinchcombe 1995; Al-Najjar 1995; Carbonell-Nicolau 2011a,b,c).
The approximation results of Sects. 3 and 4 can be used to derive new results on the
existence of perfect equilibrium in discontinuous games.

Simon and Stinchcombe (1995) present several extensions of Selten’s (1975) notion
of perfection to games with infinitely many actions, including their concept of limit-
of-finite (lof) perfect equilibrium. An lof perfect equilibrium is defined as the limit of
ε-perfect equilibria for successively finer finite approximations to an infinite game. It
is shown in Simon and Stinchcombe (1995) that limit-of-finite perfection is ill-suited
as a general solution concept even in continuous games. Before illustrating this idea,
we introduce formal definitions of perfection, lof perfection, and admissibility.

Throughout the sequel, unless otherwise indicated, we assume that G = (Xi , ui ) is
a separable metric Borel game. In this case, the topology of weak convergence and the
Prokhorov metric topology coincide and, consequently, sequences will be sufficient
to define all weak limit concepts. In particular, �(Xi ) is sequentially compact if Xi is
a compact metric space. If Xi is only assumed to be metric, then �(Xi ) is metrizable
using the Prokhorov metric, but the Prokhorov metric topology will be stronger than
the topology of weak convergence and the latter may not be metrizable. Throughout
the paper, we will abuse notation and use π to denote the Prokhorov metric on both
�(Xi ) and the Cartesian product �(X).

A measure μi ∈ M+(Xi ) is strictly positive if μi (U ) > 0 for every nonempty open
set U in Xi . Let M++(Xi ) denote the set of all strictly positive measures in M+(Xi ),
let �̂(Xi ) denote the set of all strictly positive probability measures in �(Xi ), and let
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10 O. Carbonell-Nicolau, R. P. McLean

�̂(X) := ×N
i=1�̂(Xi ). If ηi ∈ M++(Xi ) and 0 < ηi (Xi ) < 1, we define the perturbed

mixed-strategy set of player i as

�(Xi , ηi ) := {νi ∈ �(Xi ) : νi ≥ ηi }.

Given a profile η = (η1, . . . , ηN ) ∈ ×N
i=1 M++(Xi ) of perturbations, let �(X, η) :=

×N
i=1�(Xi , ηi ). Define the associated Selten perturbation of G to be the game

Gη = (�(Xi , ηi ), ui )
N
i=1 .

Definition 2 Suppose that G = (Xi , ui ) is a separable metric Borel game. A strategy
profile μ ∈ �(X) is trembling-hand perfect (thp) in G if there exist a sequence of
perturbation profiles (ηn) and a sequence of mixed-strategy profiles (μn) such that
ηn → 0, μn → μ, and each μn is a Nash equilibrium of Gηn .

Thus, μ is a thp profile in G if it is the limit of some sequence of Nash equilibria
of neighboring Selten perturbations of G. It is important to note that a thp strategy
profile for G = (Xi , ui ) may not be a Nash equilibrium in the mixed extension
G = (�(Xi ), ui ).

The reader is referred to Carbonell-Nicolau (2011b) for alternative, equivalent def-
initions of trembling-hand perfection.

Simon and Stinchcombe’s (1995) limit-of-finite perfect equilibrium is defined as
follows. Let G = (Xi , ui ) be a separable metric Borel game. For Yi a nonempty Borel
subset of Xi and for μ ∈ �(X), let Bri (Yi , μ) denote player i’s (possibly empty) set
of best responses in �(Yi ) to the profile μ:

Bri (Yi , μ) :=
{

σi ∈ �(Yi ) : ui (σi , μ−i ) = sup
pi ∈�(Yi )

ui (pi , μ−i )

}
.

Definition 3 (Simon and Stinchcombe 1995) For each i and δ > 0, let X δ
i denote a

finite subset of Xi within Hausdorff distance δ of Xi . A profile μ(ε,δ) ∈ ×i �̂(X δ
i ) is

(ε, δ)-perfect with respect to ×i X δ
i if for all i ,

d
Xδ

i
i (μ

(ε,δ)
i , Bri (X δ

i , μ
(ε,δ))) < ε,

where

d
Xδ

i
i (μi , νi ) :=

∑
xi ∈Xδ

i

|μi ({xi }) − νi ({xi })| .

A strategy profile μ ∈ �(X) in G = (Xi , ui ) is limit-of-finite (lof) perfect in G if
it is the weak limit as (εn, δn) → 0 of (εn, δn) -perfect profiles with respect to some
sequence (X δn

).

123



Approximation results for discontinuous games 11

Thus, μ is lof perfect strategy profile if it is the limit of (ε, δ)-perfect profiles for
successively finer finite approximations of G.

Definition 4 A strategy xi ∈ Xi is weakly dominated for i if there exists a strategy
μi ∈ �(Xi ) such that ui (μi , x−i ) ≥ ui (xi , x−i ) for all x−i ∈ X−i , with strict
inequality for some x−i .

Definition 5 A strategy profile μ ∈ �(X) is limit admissible if μi (Wi ) = 0 for all i ,
where Wi denotes the interior of the set of strategies weakly dominated for i .

Simon and Stinchcombe (1995) provide an example of a continuous game in which
each player has a single pure strategy that weakly dominates all other strategies. In this
example, whether or not the dominant strategy is included in the finite approximations
can drastically change the character of the game. For finite approximations that exclude
this dominant strategy, an lof perfect profile may involve play of weakly dominated
strategies, thereby violating limit admissibility.6

Our limit-of-finite notion of perfection, which is a strengthening of Simon and
Stinchcombe’s (1995) lof perfection, does satisfy limit admissibility within the class
of continuous games (Sect. 5.2).

Definition 6 Let G = (Xi , ui ) be a separable metric Borel game, and let η be a
profile of perturbations. A finite ε-approximation of the Selten perturbation Gη of G
is a strategic-form game

G
η

(Y,ξ) = (�(Yi , ξi ), ui ) ,

where

• Yi is a finite subset of Xi within Hausdorff distance ε of Xi for each i ; and
• ξi is a measure with finite support Yi such that 0 < ξi (Yi ) < 1, |ξi (Yi )−ηi (Xi )| <

ε, and the Prokhorov distance between the probability measures ξi
ξi (Yi )

and ηi
ηi (Xi )

is less than ε.

Remark 2 When G = (Xi , ui ) is compact and metric, and given a Selten perturbation

Gη of G, finite ε -approximations of Gη exist. To see this, note that supp
(

ηi
ηi (Xi )

)
=

Xi since ηi ∈ M++(Xi ). For each i , choose a sequence (σ n
i ) of finitely supported

measures in �(Xi ) such that σ n
i → ηi

ηi (Xi )
. By Lemma 2 below, there is a subsequence

of (σ n
i ), which we denote again by (σ n

i ), such that (supp(σ n
i )) converges to Xi in the

Hausdorff metric topology. Given ε, for large enough n,

(
�(supp(σ n

i ), ηi (Xi )σ
n
i ), ui

)

is a finite ε-approximation of Gη.

6 This leads Simon and Stinchcombe to strengthen the notion of lof perfection to anchored perfection. How-
ever, Simon and Stinchcombe (1995) claim that even anchored perfect profiles may fail limit admissibility
in continuous games.
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12 O. Carbonell-Nicolau, R. P. McLean

Definition 7 Given sequences (εn) and (ηn), and a corresponding sequence (Gηn ) of

Selten perturbations of G, the sequence (G
ηn

(Y n ,ξn)) is a finite (εn)-approximation of

the sequence (Gηn ) if G
ηn

(Y n ,ξn) is an εn-approximation of Gηn for each n.

Observe that the Selten perturbation Gη, where 0 < ηi (Xi ) < 1 for each i , can
be interpreted as a game in which each player i is constrained to choose the mixed
strategy ηi

ηi (Xi )
with probability ηi (Xi ), while the player is free to choose any mixed

strategy in �(Xi ) with probability 1 − ηi (Xi ). A similar interpretation applies to an
approximation G

η

(Y,ξ): each player i can choose any mixed strategy in �(Yi ) with

probability 1 − ξi (Yi ) but is forced to play the mixed strategy ξi
ξ(Yi )

with probability
ξi (Yi ).

Thus, when ε is small, a finite ε-approximation G
η

(Y,ξ) of Gη is “close” to Gη, in

the sense that the mistakes the players make in Gη are “similar” to the mistakes they
make in G

η

(Y,ξ), since the set of choices available in G
η

(Y,ξ) is “close” to the set of

actions available in Gη.

Definition 8 A strategy profile μ in �(X) is strongly limit-of-finite (lof) perfect in
G = (Xi , ui ) if there is a sequence (ηn) with ηn → 0 such that for every sequence

(εn) with 0 < εn → 0, there exists a finite (εn)-approximation (G
ηn

(Y n ,ξn)) of (Gηn )

such that each G
ηn

(Y n ,ξn) possesses a Nash equilibrium μn and μn → μ.

Thus, a strong lof perfect strategy profile is the limit of sequences of (exact) equi-
libria of neighboring finite Selten perturbations that respect the strategic aspects of the
original (infinite) game, in the sense that they can be interpreted as “true” approxi-
mations of certain infinite Selten perturbations: If μ cannot be obtained as the limit
of a sequence of equilibria extracted from some finite (εn)-approximation sufficiently
close to some sequence (Gηn ) of (infinite) Selten perturbations of G, then the ability
to approximate μ by a sequence of equilibria in finite “models of slight mistakes”
critically relies on the sequence of finite perturbations being “far” from the infinite
variants in the sequence (Gηn ): Either the trembles in the finite approximation are “far”
from those in (Gηn ) or the approximation’s finite action spaces place indispensable
constraints on how the players can optimize their responses to the others’ strategies and
trembles (relative to their performance in (Gηn )). In either case, there is an essential
“gap” between the sequence (Gηn ) and the finite (εn)-approximation used to approach
μ. We view this as an undesirable property of the approximating sequence because it is
based on a fundamental inconsistency between the modeling of the original game and
that of its Selten perturbations: The refinement specification is subject to “manipula-
tion” via arbitrary omission (in the finite approximating sequence) of certain strategies
otherwise available within the original game.

The following proposition establishes the relationship between strong lof perfection
and Simon and Stinchcombe’s (1995) lof perfection.

Proposition 1 If G = (Xi , ui ) is a separable metric Borel game, then every strong
limit-of-finite perfect profile is a limit-of-finite perfect profile.

Proof Suppose that μ is a strong lof perfect profile in G = (Xi , ui ). Then there exists
a sequence (ηn) with ηn → 0 such that, for every sequence (εn) with 0 < εn → 0,
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Approximation results for discontinuous games 13

there exists a finite (εn)-approximation (G
ηn

(Y n ,ξn)) of (Gηn ) such that each G
ηn

(Y n ,ξn)

possesses a Nash equilibrium μn with μn → μ. We claim that μ is an lof perfect
strategy profile. Observe that each (Y n

i ) (Hausdorff) converges to Xi and that ηn
i → 0

for each i . To complete the proof, we must show that for each i the distance (as defined
in Definition 3) between

μn
i ∈ arg max

p∈�(Y n
i ,ξn

i )

ui (p, μn
−i )

and

Bri (Y
n
i , μn) = arg max

p∈�(Y n
i )

ui (p, μn
−i )

converges to 0. This will be true if each μn
i can be expressed as

μn
i := (1 − δn)ρn

i + δn pn
i ,

for some sequence (δn) with [0, 1] � δn → 0, some ρn
i ∈ Bri (Y n

i , μn), and some
pn

i ∈ �(Y n
i ), since, in that case,

d
Y n

i
i (μn

i , ρn
i ) =

∑
xi ∈Y n

i

∣∣μn
i ({xi }) − ρn

i ({xi })
∣∣

= δn
∑

xi ∈Y n
i

∣∣ρn
i ({xi }) − pn

i ({xi })
∣∣

≤ 2δn .

To see this, write μn
i = μ̂n

i + ξn
i , where μ̂n

i := μn
i − ξn

i . Since 1 > ξn
i (Y n

i ) >

0, μ̂n
i (Y n

i ) = μn
i (Y n

i ) − ξn
i (Y n

i ) = 1 − ξn
i (Y n

i ) > 0, and we have

μn
i = μ̂n

i (Y n
i )

μ̂n
i

μ̂n
i (Y n

i )
+ξn

i (Y n
i )

ξn
i

ξn
i (Y n

i )
=(1 − ξn

i (Y n
i ))

μ̂n
i

μ̂n
i (Y n

i )
+ξn

i (Y n
i )

ξn
i

ξn
i (Y n

i )
. (1)

Since μ̂n
i (Y n

i )+ξn
i (Y n

i ) = μn
i (Y n

i ) = 1 and ξn
i (Y n

i ) → 0, it only remains to show that
μ̂n

i
μ̂n

i (Y n
i )

∈ Bri (Y n
i , μn). If

μ̂n
i

μ̂n
i (Y n

i )
/∈ Bri (Y n

i , μn), then there exists a ρi ∈ Bri (Y n
i , μn)

such that

ui (ρi , μ
n
−i ) > ui

(
μ̂n

i

μ̂n
i (Y n

i )
, μn

−i

)
.

Using (1) together with linearity, we can rearrange this inequality to obtain

ui

(
μ̂n

i (Y n
i )ρi + ξn

i (Y n
i )

ξn
i

ξn
i (Y n

i )
, μn

−i

)
> ui (μ

n
i , μn

−i ),
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14 O. Carbonell-Nicolau, R. P. McLean

contradicting the assumption that

μn
i ∈ arg max

p∈�(Y n
i ,ξn

i )

ui (p, μn
−i ).

This completes the proof. 
�
Remark 3 Simon and Stinchcombe (1995) define lof perfection in terms of ε-perfect
equilibria, while strong lof perfection is defined in terms of finite approximations of
Selten perturbations. There is, however, an alternative formulation of lof perfection
in terms of finite Selten perturbations. In fact, it can be shown that Definition 3 is
equivalent to the following: A strategy profile μ ∈ �(X) is lof perfect in G = (Xi , ui )

if there are sequences (Xn) = (Xn
1 , . . . , Xn

N ), (ξn), and (μn) such that each ξn
i has

support Xn
i , ξn → 0, each Xn

i ⊆ Xi is finite, Xn
i → Xi for each n and i, μn → μ,

and each μn is a Nash equilibrium of G
ηn

(Y n ,ξn).
This alternative formulation of lof perfection is more easily compared with strong

lof perfection (Definition 8).

An lof perfect strategy profile in G = (Xi , ui ) need not be a mixed-strategy equi-
librium, even if an lof perfect strategy profile exists for G = (Xi , ui ). We first address
the question of existence of strong lof perfect equilibrium profiles. In Sect. 5.2 we
discuss some properties of strong lof perfection.

5.1 Existence of strong limit-of-finite perfect equilibrium

Proposition 2 below establishes the relationship between the approximation results of
Sect. 4 and the existence of strong lof perfect equilibria. Proposition 2 allows us to
prove Theorems 5 and 6, which are existence results formulated in terms of the data
of the original game, G = (Xi , ui ).

The proof of Proposition 2 relies on two auxiliary results. Before stating these
results, we introduce some terminology.

Given (δ, μ) ∈ [0, 1)N × �(X), let

G(δ,μ) := (Xi , u(δ,μ)
i )N

i=1

be the strategic-form game where the payoff function u(δ,μ)
i : X → R is defined by

u(δ,μ)
i (x) := ui ((1 − δ1)x1 + δ1μ1, . . . , (1 − δN )xN + δN μN ) .

Here, (1 − δi )xi + δiμi denotes the measure σi ∈ �(Xi ) defined by σi (B) := (1 −
δi )χxi (B) + δiμi (B) where χxi ∈ �(Xi ) is the Dirac measure with support {xi }.

Given (ν, μ) ∈ �(X) × �(X), the vector

((1 − δ1)ν1 + δ1μ1, . . . , (1 − δN )νN + δN μN )

is sometimes denoted as (1 − δ)ν + δμ.
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Approximation results for discontinuous games 15

Lemma 1 Suppose that (Xi , ui ) is a separable, metric, Borel game. Suppose that
Qi ⊆ Xi is countable for each i . If (δ, μ) ∈ [0, 1)N × �(X) and [0, 1)N � δn → δ,
then there exists a sequence (μn) with �(X) � μn → μ such that each μn

i has finite
support Xn

i , Xn
i ⊆ Xn+1

i for each n and i , and
⋃∞

n=1 Xn
i ⊇ Qi for each i .

Proof For each i , let (νn
i ) be sequence with �(Xi ) � νn

i → μi such that each νn
i has

finite support Y n
i . Let Qi = {qn

i }∞n=1. Next define

Xn
i = [∪n

k=1Y n
i

] ∪ {q1
i , .., qn

i }

and note that each Xn
i is finite, Xn

i ⊆ Xn+1
i , and

⋃∞
n=1 Xn

i ⊇ Qi . For each i and n,
define μn

i ∈ �(Xi ) as follows:

μn
i :=

(
n − 1

n

)
νn

i + 1

n2

n∑
k=1

(
νk

i + χ{qk
i }

2

)
.

Note that each μn
i has support Xn

i . To show that μn
i → μi , suppose that f : Xi → R

is continuous and bounded with bound M . Then
∣∣∣∣∣∣∣
∫
Xi

f dμn
i −

∫
Xi

f dμi

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫
Xi

f dνn
i −

∫
Xi

f dμi

∣∣∣∣∣∣∣
+ M

n
+ nM

n2 → 0 as n → ∞.

Since each Xi is a separable metric space, we can apply Theorem 3.2 in Billingsley
(1968) and conclude that

μn = μn
1 ⊗ · · · ⊗ μn

N → μ1 ⊗ · · · ⊗ μN = μ,

as desired. 
�
Lemma 2 Let X be a compact metric space and suppose that (μn) is a sequence in
�(X) weakly converging to μ ∈ �(X). Then there exists a subsequence which we also
denote by (μn) and a set S ⊆ X such that supp(μ) ⊆ S and (supp(μn)) is convergent
in the Hausdorff metric topology with limit S.

Proof Since X is a compact metric space, the hyperspace of nonempty compact subsets
of X is a compact metric space with respect to the Hausdorff metric. The set supp(μn)

is closed, hence compact in X . Consequently, there exists a subsequence which we
also denote by (μn) and a compact set S ⊆ X such that supp(μn) → S. To see that
supp(μ) ⊆ S, suppose that there exists x ∈ supp(μ) \ S. Then since S is closed, there
exist a neighborhood Vx of x and an open set U containing S such that Vx ∩ U = ∅.
Note that μ(Vx ) > 0 since x ∈ supp(μ). Since Vx ∩ U = ∅ and supp(μn) → S, it
follows that μn(Vx ) = 0 for any large enough n. On the other hand, since μn → μ

and μ(Vx ) > 0, we have 0 = lim μn(Vx ) ≥ μ(Vx ), an impossibility. 
�
Proposition 2 Suppose that G = (Xi , ui ) is a compact, metric, Borel game. Suppose
further that
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16 O. Carbonell-Nicolau, R. P. McLean

(i) G satisfies sequential better-reply security (Condition 6), and
(ii) there exist sequences (νn) and (δn) with νn ∈ �̂(X) and (0, 1)N � δn → 0

and, for each i , a countable subset Qi of Xi such that for each n, the following
condition holds: (�(Xi ), u(δn ,νn)

i ) satisfies sequential better-reply security with
respect to any sequence

(
�(Xn

i (m)), u(δn ,σ n(m))
i

)
m≥1

(Condition 5), where σ n(m) = (σ n
1 (m), . . . σ n

N (m)) ∈ �(X) and for each
i, (Xn

i (m))m≥1 is an increasing sequence of finite subsets of Xi , Xn
i (m) is the

finite support of σ n
i (m),

∞⋃
m=1

Xn
i (m) ⊇ Qi ,

Xn
i (m) −−−−→

m→∞ Xi , and σ n(m) −−−−→
m→∞ νn.

Then G possesses a strong limit-of-finite perfect equilibrium, which is also trembling-
hand perfect.

Proof Suppose that (Xi , ui ) is a compact, metric, Borel game. Assume (i) and (ii)
above.

For each n, we can apply Lemma 1 and deduce the existence of a sequence of games

(
�(Xn

i (m)), u(δn ,σ n(m))
i

)
m≥1

(2)

with the following properties:

• for each i, Xn
i (m) ⊆ Xi is the finite support of σ n

i (m);
• for each i, Xn

i (m) ⊆ Xn
i (m + 1) for each m;

• for each i,
⋃∞

m=1 Xn
i (m) ⊇ Qi ; and

• σ n(m) −−−−→
m→∞ νn .

Since νn ∈ �̂(X) implies that supp(νn
i ) = Xi for each i , we can apply Lemma 2

and assume (passing to a subsequence if necessary) that Xn
i (m) −−−−→

m→∞ Xi .

Applying (ii), it follows that the game G = (�(Xi ), u(δn ,νn)
i ) satisfies sequential

better-reply security (i.e., Condition 5) with respect to the sequence in (2).
For each m, the game (�(Xn

i (m)), u(δn ,σ n(m))
i ) has a Nash equilibrium μn(m),

and (because �(X) is sequentially compact) we have (passing to a subsequence if
necessary) μn(m) −−−−→

m→∞ μn for some μn ∈ �(X). Since (u(δn ,σ n(m)))∞m=1 is a

uniformly bounded sequence, Theorem 4 implies that μn ∈ N�(X)(u(δn ,νn)). Since
�(Xi ) is sequentially compact, we conclude (extracting a subsequence if necessary)
that there exists a μ ∈ �(X) such that μn → μ. To show that μ is a thp equilibrium,
first observe that the sequence (u(δn ,νn)) is uniformly bounded. Applying Corollary
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Approximation results for discontinuous games 17

3, it follows that μ ∈ N�(X)(u). Next, define qn
i := (1 − δn

i )μn
i + δn

i νn
i for each

i and note that qn = (qn
1 , .., qn

N ) is a Nash equilibrium in the Selten perturbation
(�(Xi , δ

n
i νn

i ), ui ). Since qn → μ, we conclude that μ is a thp profile and a Nash
equilibrium.

Since μ is a Nash equilibrium, the proof will be complete if we show that μ

is a strong lof strategy profile. To begin, note that (�(Xi , δ
n
i νn

i ), ui )
N
i=1 is a Selten

perturbation of G and that δn
i νn

i → 0 for each i . Let (εn) be a sequence of positive
numbers satisfying εn → 0. To show that μ is a strong lof strategy profile, we first
construct a finite (εn) -approximation of ((�(Xi , δ

n
i νn

i ), ui )
N
i=1).

Defining

pn
i (m) := (1 − δn

i )μn
i (m) + δn

i σ n
i (m),

it follows that pn(m) := (pn
1 (m), .., pn

N (m)) is a Nash equilibrium of the (finite)
Selten perturbation (�(Xn

i (m), δn
i σ n

i (m)), ui ). For each n, choose m∗
n so that for

each i, hausi (Xn
i (m∗

n), Xi ) < εn, π(σ n
i (m∗

n), ν
n
i ) < εn and π(μn

i (m∗
n), μ

n
i ) <

εn . Here, hausi (·, ·) denotes the Hausdorff distance induced by the metric on
Xi . Since hausi (Xn

i (m∗
n), Xi ) < εn and π(σ n

i (m∗
n), ν

n
i ) < εn, it follows that

the sequence (�(Xn
i (m∗

n), δn
i σ n

i (m∗
n)), ui )n≥1 is a finite (εn) -approximation of

((�(Xi , δ
n
i νn

i ), ui )
N
i=1). Furthermore, pn(m∗

n) ∈ �(Xn
i (m∗

n)) defined for each i as
pn

i (m∗
n) = (1 − δn

i )μn
i (m∗

n) + δn
i σ n(m∗

n) is an equilibrium of the (finite) Selten per-
turbed game

(�(Xn
i (m∗

n), δ
n
i σ n

i (m∗
n)), ui ).

Since π(μn
i (m∗

n), μ
n
i ) < εn, δn → 0 and μn → μ, we conclude that pn(m∗

n) → μ

implying that μ is a strong limit-of-finite strategy profile. 
�
We now seek conditions on the payoff functions of the original game (Xi , ui ),

rather than perturbations of the form G(δ,μ), that imply the hypothesis of Proposition
2.

The following condition is taken from Carbonell-Nicolau (2011c).

Condition (A). There exists (ν1, . . . , νN ) ∈ �̂(X) such that for each i and every ε > 0
there is a Borel measurable map f ε

i : Xi → Xi such that the following is satisfied:

(a) For each xi ∈ Xi and every y−i ∈ X−i , there is a neighborhood Oy−i of y−i such
that ui ( f ε

i (xi ), z−i ) > ui (xi , y−i ) − ε for every z−i ∈ Oy−i .
(b) For each y−i ∈ X−i , there is a subset Yi of Xi with νi (Yi ) = 1 such that for

every xi ∈ Yi , there is a neighborhood Vy−i of y−i such that ui ( f ε
i (xi ), z−i ) <

ui (xi , z−i ) + ε for all z−i ∈ Vy−i .

In this paper we need the following strengthening of Condition (A).

Condition (A*). There exists (ν1, . . . , νN ) ∈ �̂(X) such that for each i and every
ε > 0 there is a Borel measurable map f ε

i : Xi → Xi with countable range such that
the following is satisfied:

(a) For each xi ∈ Xi and every y−i ∈ X−i , there is a neighborhood Oy−i of y−i

such that ui ( f ε
i (xi ), z−i ) > ui (xi , y−i ) − ε for every z−i ∈ Oy−i .
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18 O. Carbonell-Nicolau, R. P. McLean

(b) For each y−i ∈ X−i , there is a subset Yi of Xi with νi (Yi ) = 1 such that for
every xi ∈ Yi , there is a neighborhood Vy−i of y−i such that ui ( f ε

i (xi ), z−i ) <

ui (xi , z−i ) + ε for all z−i ∈ Vy−i .

Condition (A*) is Condition (A) with the added constraint that the range of the
map f ε

i be countable. Condition (A*) is used to prove Theorem 5, and the proof
of this result makes it clear where the countability requirement is used. Theorem 5
states that compact games satisfying Condition (A*) and upper semicontinuity of the
sum of payoffs possess strong lof perfect equilibria. Theorem 6 (below) is formu-
lated in terms of two easily verified conditions, generic entire payoff security and
generic local equi-upper semicontinuity, introduced in Carbonell-Nicolau (2011c).
These conditions prove useful in many applications (see Remark 5 below).

Lemma 3 Suppose that G = (Xi , ui ) is a compact, metric, Borel game satisfy-
ing Condition (A*). Then, there exist ν ∈ �̂(X), and, for each i , a countable set
Qi ⊆ Xi such that the following is satisfied: Given δ ∈ [0, 1), n ∈ N, i , and
σ = (σ1, . . . , σN ) ∈ �(X, δν), there exists �in ∈ �(Xi ) with �in(Qi ) = 1 and
a neighborhood Oσ−i of σ−i such that

ui ((1 − δ)�in + δνi , p−i ) > ui (σ ) − 1

n
, for all p−i ∈ Oσ−i . (3)

Proof Suppose that G = (Xi , ui ) is a compact, metric, Borel game satisfying Con-
dition (A*). By Condition (A*), there exists ν ∈ �̂(X) such that for each i and every
n ∈ N there is a Borel measurable map fin : Xi → Xi with countable range such that
the following is satisfied:

(a) For each xi ∈ Xi and every y−i ∈ X−i , there is a neighborhood Oy−i of y−i such
that ui ( fin(xi ), z−i ) > ui (xi , y−i ) − 1

n for every z−i ∈ Oy−i .
(b) For each y−i ∈ X−i , there is a subset Yi of Xi with νi (Yi ) = 1 such that for

every xi ∈ Yi , there is a neighborhood Vy−i of y−i such that ui ( fin(xi ), z−i ) <

ui (xi , z−i ) + 1
n for all z−i ∈ Vy−i .

For each i , define

Qi :=
∞⋃

n=1

fin(Xi ).

Since each fin has a countable range, Qi is countable. Consequently, the proof will
be complete if we show that given δ ∈ [0, 1), n ∈ N, i , and σ = (σ1, . . . , σN ) ∈
�(X, δν), there exists �in ∈ �(Xi ) with �in(Qi ) = 1 and a neighborhood Oσ−i of
σ−i such that (3) holds. Fix δ ∈ [0, 1), n ∈ N, i , and σ = (σ1, . . . , σN ) ∈ �(X, δν).
From the proof of Lemma 2 in Carbonell-Nicolau (2011a), it follows that there exist
�in ∈ �(Xi ) with �in( fin(Xi )) = 1 and a neighborhood Oσ−i of σ−i such that

ui ((1 − δ)�in + δνi , p−i ) > ui (σ ) − 1

n
, for all p−i ∈ Oσ−i .

Since 1 = �in( fin(Xi )) ≤ �in(Qi ) ≤ 1, the proof is complete. 
�
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Approximation results for discontinuous games 19

Theorem 5 Suppose that G = (Xi , ui ) is a compact, metric, Borel game satisfying
Condition (A*). Suppose further that

∑
i ui is upper semicontinuous. Then G possesses

a strong limit-of-finite perfect equilibrium, which is also trembling-hand perfect.

Proof Suppose that G = (Xi , ui ) is a compact, metric, Borel game satisfying Con-
dition (A*). Suppose further that

∑
i ui is upper semicontinuous. It suffices to show

that the hypotheses of Proposition 2 are satisfied.
That G satisfies Condition 6 (in fact better-reply security) follows from Condition

(A*) and upper semicontinuity of
∑

i ui . Indeed, Condition (A*) is stronger than payoff
security, while upper semicontinuity of

∑
i ui implies reciprocal upper semicontinuity

of G. Since payoff security and reciprocal upper semicontinuity imply better-reply
security of G (Corollary 5.2 in Reny 1999), we conclude that Condition 6 is satisfied.

Next, choose a sequence (δn) with δn ∈ (0, 1) and δn → 0. Since G satisfies
Condition (A*), we can choose ν ∈ �̂(X) and, for each i , a countable set Qi ⊆ Xi

satisfying the conclusion in Lemma 3. We will show that part (ii) of Proposition 2
is satisfied for the sequence (δn), the countable sets Q1, . . . , QN , and the constant
sequence (νn) with νn = ν for all n. In the remainder of the proof, we will use δn to
represent the number δn ∈ (0, 1) and the vector (δn

1 , . . . , δn
N ) with δn

i = δn for each i .
To begin, fix n and let

(
�(Xi (m)), u(δn ,σ (m))

i

)
m≥1

(4)

be a sequence where for each i, (Xi (m))m≥1 is an increasing sequence of finite subsets
of Xi , Xn

i (m) is the finite support of σ n
i (m),

∞⋃
m=1

Xn
i (m) ⊇ Qi ,

Xn
i (m) −−−−→

m→∞ Xi , and σ n(m) −−−−→
m→∞ ν. It suffices to show that (�(Xi ), u(δn ,ν)

i )

satisfies Condition 5 with respect to the sequence in (4).
To that end, suppose that (�(Xi (k)), u(δn ,σ (k))

i )k≥1 is a subsequence of (�(Xi (m)),

u(δn ,σ (m))
i )m≥1 and that (μk, u(δn ,σ (k))(μk)) ∈ �(X) × R

N is a convergent sequence
with limit (μ, γ ) ∈ �(X) × R

N satisfying μk
i ∈ �(Xi (k)) for each k and each i .

Suppose that μ is not a Nash equilibrium of (�(Xi ), u(δn ,ν)
i ). We need to show that

there exist i, η > γi , a subsequence (μl) of (μk), and a sequence (pl
i ) such that, for

each l, pl
i ∈ �(Xi (l)) and u(δn ,ν)

i (pl
i , μ

l
−i ) ≥ η and we consider two cases.

Case 1: Suppose that u(δn ,ν)
j (μ) = γ j for each player j . Since μ is not a Nash equi-

librium of (�(Xi ), u(δn ,ν)
i ), there exist i and pi ∈ �(Xi ) such that u(δn ,ν)

i (pi , μ−i ) >

u(δn ,ν)
i (μ). Choose a positive integer M and a real number η so that

u(δn ,ν)
i (pi , μ−i ) − 2

M
≥ η > u(δn ,ν)

i (μ) = γi (5)
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20 O. Carbonell-Nicolau, R. P. McLean

Define

σ = (σ1, . . . , σN ) := ((1 − δn)pi + δnνi , (1 − δn)μ−i + δnν−i )

and note that σi ∈ �(Xi , δ
nνi ) for each i and that

u(δn ,ν)
i (pi , μ−i ) = ui ((1 − δn)pi + δnνi , (1 − δn)μ−i + δnν−i ) = ui (σ ).

Applying Lemma 3, there exist a neighborhood Oσ−i of σ−i = (1−δn)μ−i +δnν−i

and �i ∈ �(Xi ) with �i (Qi ) = 1 such that

ui ((1 − δn)�i + δnνi , p−i ) > u(δn ,ν)
i (pi , μ−i ) − 1

M
, for all p−i ∈ Oσ−i .

Therefore, there exists a neighborhood Oμ−i of μ−i such that

u(δn ,ν)
i (�i , q−i ) = ui ((1 − δn)�i + δnνi , (1 − δn)q−i + δnν−i )

> u(δn ,ν)
i (pi , μ−i ) − 1

M
, for all q−i ∈ Oμ−i . (6)

Now let �(Qi ) and � f (Qi ) denote, respectively, the set of θi ∈ �(Xi ) with
θi (Qi ) = 1 and the set of θi ∈ �(Qi ) with finite support. Since u(δn ,ν)

i is bounded,
there exists for every ε > 0 a measure λi ∈ � f (Qi ) such that

|u(δn ,ν)
i (λi , q−i ) − u(δn ,ν)

i (�i , q−i )| < ε, for all q−i ∈ Oμ−i . (7)

To see this, let K be a bound for u(δn ,ν)
i . Because Qi is countable, there exist sequences

(Ak
i ) and (λk

i ) such that each Ak
i is a finite subset of Qi , each λk

i is an element of
� f (Qi ), �i (Qi \ Ak

i )K → 0, and λk
i (Bi ) = �i (Bi ) for every Bi ⊆ Ak

i . Given k and
q−i ∈ Oμ−i , we have

|u(δn ,ν)
i (λk

i , q−i ) − u(δn ,ν)
i (�i , q−i )|

= |ui ((1 − δn)λk
i + δnνi , (1 − δn)q−i + δnν−i )

− ui ((1 − δn)�i + δnνi , (1 − δn)q−i + δnν−i )|
=

∣∣∣∣
∑

ai ∈Ak
i

λk
i (ai )ui ((1 − δn)ai + δnνi , (1 − δn)q−i + δnν−i )

+
∑

ai ∈Qi \Ak
i

λk
i (ai )ui ((1 − δn)ai + δnνi , (1 − δn)q−i + δnν−i )

−
∑

ai ∈Ak
i

�i (ai )ui ((1 − δn)ai + δnνi , (1 − δn)q−i + δnν−i )

−
∑

ai ∈Qi \Ak
i

�i (ai )ui ((1 − δn)ai + δnνi , (1 − δn)q−i + δnν−i )

∣∣∣∣.
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Approximation results for discontinuous games 21

Because �i (Qi \ Ak
i )K → 0 and λk

i (Bi ) = �i (Bi ) for every Bi ⊆ Ak
i , there is

a sufficiently large k such that for every q−i ∈ Oμ−i we have |u(δn ,ν)
i (λk

i , q−i ) −
u(δn ,ν)

i (�i , q−i )| < ε.
From (5), (6), (7) we see that there exists a λi ∈ � f (Qi ) and neighborhood Oμ−i

of μ−i such that

u(δn ,ν)
i (λi , q−i ) > u(δn ,ν)

i (pi , μ−i ) − 2

M
≥ η > γi , for all q−i ∈ Oμ−i .

Recall that (Xi (k)) is an increasing sequence of finite subsets of Xi with⋃
k Xi (k) ⊇ Qi . Since λi ∈ � f (Qi ) and μk → μ, it follows that there exists a

positive integer L such that λi ∈ �(Xi (k)) and μk
−i ∈ Oμ−i for all k ≥ L . Sum-

marizing, we conclude that λi ∈ �(Xi (k)) and u(δn ,ν)
i (λi , μ

k
−i ) ≥ η > γi for each

k ≥ L .

Case 2: Suppose that u(δn ,ν)
j (μ) �= γ j for some j . Since μk → μ and σ(k) → ν, it

follows that

(1 − δn)μk + δnσ(k) → (1 − δn)μ + δnν

Since u(δn ,σ (k))(μk) → γ and u(δn ,σ (k))(μk) = u((1 − δn)μk + δnσ(k)), it follows
that

u((1 − δn)μk + δnσ(k)) → γ.

Combining these two observations, we conclude that ((1 − δn)μ + δnν, γ ) belongs
to the closure of the graph of u. Since u(δn ,ν)

j (μ) �= γ j , it follows that u j ((1 −
δn)μ + δnν) �= γ j for some j so applying Proposition 5.1 in Reny (1999) we see that

u(δn ,ν)
i (μ) = ui ((1 − δn)μ + δnν) > γi for some i .

Now choose a positive integer M and a real number η so that

u(δn ,ν)
i (μi , μ−i ) − 2

M
≥ η > γi

and duplicate the argument of part 1 with μi replacing pi . 
�
It would be useful to identify conditions that are satisfied in a reasonably wide class

of games arising in economic applications. It can be shown that the combination of two
independent conditions, generic entire payoff security and generic local equi-upper
semicontinuity, introduced in Carbonell-Nicolau (2011c), imply a weaker version of
Condition (A*) which is still strong enough to guarantee the existence of strong limit-
of-finite perfect equilibria. This observation, together with Theorem 5, yields the
following result. For details, the reader is referred to Carbonell-Nicolau and McLean
(2012).

Theorem 6 Suppose that G = (Xi , ui ) is a compact, metric, Borel game satisfying
generic entire payoff security and generic local equi-upper semicontinuity. Suppose
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22 O. Carbonell-Nicolau, R. P. McLean

further that
∑

i ui is upper semicontinuous. Then G possesses a strong limit-of-finite
perfect equilibrium, which is also trembling-hand perfect.

Remark 4 Theorem 6 generalizes Corollary 1 in Carbonell-Nicolau (2011a).

Remark 5 Generic entire payoff security and generic local equi-upper semicontinuity
are met in various economic games, as illustrated in Carbonell-Nicolau (2011a, Section
3, 2011c, Section 4).

The following corollary follows immediately from Theorem 6.

Corollary 4 Suppose that G = (Xi , ui ) is a compact, metric, Borel game. Suppose
further that each ui is continuous. Then G possesses a strong limit-of-finite perfect
equilibrium, which is also trembling-hand perfect.

5.2 On strong limit-of-finite perfect equilibrium and limit admissibility

We now turn to the relationship between strong lof perfection and limit admissibility.
Unlike Simon and Stinchcombe’s (1995) lof perfection, strong lof perfection satisfies
limit admissibility in continuous games. In fact, for continuous games, the statement
of Theorems 5 and 6 can be strengthened as follows:

Theorem 7 Suppose that G = (Xi , ui ) is a compact, metric, Borel game. Suppose
further that each ui is continuous. Then G possesses a strong limit-of-finite perfect
equilibrium, and all strong limit-of-finite perfect equilibria are trembling-hand perfect.

Proof That G possesses a strong lof perfect equilibrium follows immediately from
Theorem 5. To see that all strong lof perfect equilibria are thp, let μ be a strong lof
perfect equilibrium. Then there is a sequence (ηn) with ηn → 0 such that for every

sequence (εn) with 0 < εn → 0, there exists a finite (εn) -approximation (G
ηn

(Y n ,ξn))

of (Gηn ) such that each G
ηn

(Y n ,ξn) possesses a Nash equilibrium μn and μn → μ.
For each i , let K (�(Xi )) be the set of nonempty, compact, convex subsets of �(Xi ),

endowed with the Hausdorff metric induced by the Prokhorov metric on �(Xi ). Set
K (�(X)) := ×N

i=1 K (�(Xi )). Let Ci be the set of continuous maps fi : �(X) → R

such that the map σi �→ fi (σi , σ−i ) defined on �(Xi ) is quasiconcave for every
σ−i ∈ × j �=i�(X j ). Let C := ×N

i=1Ci . Endow the set C with the following metric
d : C × C → R:

d(( f1, . . . ., fN ), (g1, . . . , gN )) :=
N∑

i=1

sup
σ∈�(X)

| fi (σ ) − gi (σ )|.

The correspondence

E : K (�(X)) × C ⇒ �(X)

assigns to each tuple

(�, f ) = ((�1, . . . , �N ), ( f1, . . . , fN ))
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in K (�(X)) × C the set E(�, f ) of Nash equilibria of the game (�i , fi )
N
i=1. The

correspondence E is nonempty-valued and (by Theorem 3.4 of Yu 1999) upper hemi-
continuous. Consequently, for each n,

E(�(X, ηn), u) �= ∅,

where

(�(X, ηn), u) := ((�(X1, η
n
1), . . . ,�(X N , ηn

N )), (u1, . . . , uN )),

and E is upper hemicontinuous at (�(X, ηn), u). Because E is upper hemicontinuous
at (�(X, ηn), u) for each n, there exists, for each n, a neighborhood V(�(X,ηn),u) of
(�(X, ηn), u) such that

(�, f ) ∈ V(�(X,ηn),u) ⇒ E(�, f ) ⊆ N 1
n
(E(�(X, ηn), u)). (8)


�
For each n, we now prove the following:

Claim If (G
ηn

(Y m ,ξm )) is a sequence such that each G
ηn

(Y m ,ξm ) is a finite 1
m -approximation

of Gηn , then

�(Y m, ξm) → �(X, ηn), (9)

i.e., the sequence of sets (�(Y m, ξm)) is Hausdorff convergent with limit �(X, ηn).

Proof of Claim Fix n and let (G
ηn

(Y m ,ξm )) be a sequence such that each G
ηn

(Y m ,ξm ) is

a finite 1
m -approximation of Gηn . Combining Theorems 5.1.11 and 5.2.10 in Beer

(1993), it suffices to show that

Ls(�(Y m, ξm)) ⊆ �(X, ηn) ⊆ Li(�(Y m, ξm)). (10)

Suppose that ρ ∈ Ls(�(Y m, ξm)). Then there exist a subsequence (mk) of (m) and
a sequence (ρmk ) such that ρmk ∈ �(Y mk , ξmk ) for each k and ρmk → ρ. Write
ρ

mk
i = θ

mk
i + ξ

mk
i , where θ

mk
i := ρ

mk
i − ξ

mk
i . Since 1 > ξ

mk
i (Y mk

i ) > 0, θ
mk
i (Y mk

i ) =
ρ

mk
i (Y mk

i ) − ξ
mk
i (Y mk

i ) = 1 − ξ
mk
i (Y mk

i ) > 0, and we have

ρ
mk
i = (1 − ξ

mk
i (Y mk

i ))
θ

mk
i

θ
mk
i (Y mk

i )
+ ξ

mk
i (Y mk

i )
ξ

mk
i

ξ
mk
i (Y mk

i )
.

Hence, because there exists θi ∈ �(Xi ) such that
θ

mk
i

θ
mk
i (Y

mk
i )

→ θi (passing to a subse-

quence if necessary) and because ξ
mk
i (Y mk

i ) → ηn
i (Xi ) and

ξ
mk
i

ξ
mk
i (Y

mk
i )

→ ηn
i

ηn
i (Xi )

, we

see that
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ρ
mk
i → (1 − ηn

i (Xi ))θi + ηn
i (Xi )

ηn
i

ηn
i (Xi )

.

Consequently, ρi = (1 − ηn
i (Xi ))θi + ηn

i (Xi )
ηn

i
ηn

i (Xi )
for each i , and so ρ ∈ �(X, ηn).

This establishes the inclusion Ls(�(Y m, ξm)) ⊆ �(X, ηn).
Now suppose that ρ ∈ �(X, ηn) and for each i , define λi := ρi − ηn

i . Since
λi (Xi ) = 1 − ηn

i (Xi ) > 0, we have

ρi = (1 − ηn
i (Xi ))

λi

λi (Xi )
+ ηn

i (Xi )
ηn

i

ηn
i (Xi )

. (11)

Because the set of finitely supported measures in �(Xi ) is dense in �(Xi ), there exists
a sequence (λk

i ) of finitely supported measures in �(Xi ) such that λk
i → λi

λi (Xi )
. Since

Y m
i → Xi and since each λk

i has finite support, for each k and for every sufficiently
large m, there exists λ̂i ∈ �(Xi ) with support in Y m

i such that π(λk
i , λ̂i ) < 1

k .7

Since λk
i → λi

λi (Xi )
, this implies that there exists a sequence (̂λm

i ) such that λ̂m
i ∈

�(Xi ) has support in Y m
i for each k and λ̂m

i → λi
λi (Xi )

.
In light of (11), therefore, we have

(1 − ξm
i (Y m

i ))̂λm
i + ξm

i (Y m
i )

ξm
i

ξm
i (Y m

i )
→ ρi

(recall that ξm
i (Y m

i ) → ηn
i (Xi ) and

ξm
i

ξm
i (Y m

i )
→ ηn

i
ηn

i (Xi )
). For each n, the measure

(1 − ξm
i (Y m

i ))̂λm
i + ξm

i (Y m
i )

ξm
i

ξm
i (Y m

i )

is clearly a member of �(Y m
i , ξm

i ). We conclude that for each i there exists a sequence
(υm

i ) such thatυm
i ∈ �(Y m

i , ξm
i ) for each m andυm

i → ρi . Henceρ ∈ Li(�(Y m, ξm)).
This establishes (10) and the proof of the Claim is complete. 
�

Applying the claim, we conclude that, for each n, there exists a δ∗
n > 0 such that

(�(Y, ξ), u) ∈ Nεn (�(X, ηn), u) whenever G
ηn

(Y,ξ) is a finite δ-approximation of Gηn

satisfying 0 < δ < δ∗
n . Choose a sequence αn → 0 satisfying 0 < αn < δ∗

n for each
n. Since μ is a strong lof perfect equilibrium, there is a finite (αn) -approximation

7 Given k, let {a1, . . . , a�} be the finite support of λk
i . Since Y m

i → Xi , for each l ∈ {1, . . . , �} one can
choose a sequence (αm

l ) such that αm
l ∈ Y m

i for each m and αm
l −−−−→

m→∞ al . For each m, define ν̂m
i in

�(Xi ) by

ν̂m
i ({αm

l }) := λk
i ({al }), for each l ∈ {1, . . . , �}

and note that supp(̂νm
i ) = {αm

1 , .., αm
�

} ⊆ Y m
i for each m. Let ν̃m

i ∈ �(Xi )be defined by ν̃m
i ({ym

i }) := 1
#Y m

i
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(G
ηn

(Y,ξ)) of (Gηn ) such that each G
ηn

(Y,ξ) possesses a Nash equilibrium μn and μn → μ.
From the definition of the sequence (αn), it follows that

(�(Y n, ξn), u) ∈ Nεn (�(X, ηn), u) ⊆ V(�(X,ηn),u), (12)

where

(�(Y n, ξn), u) := ((�(Y n
1 , ξn

1 ), . . . ,�(Y n
N , ξn

N )), (u1, . . . , uN )).

Consequently, μn ∈ E(�(Y n, ξn), u) for each n, and in light of (12) and (8), we obtain

μn ∈ N 1
n
(E(�(X, ηn), u)).

This, together with the fact that μn → μ, implies that there exists a sequence (σ n)

such that σ n ∈ E(�(X, ηn), u) for each n and σ n → μ. In other words, μ is a thp
profile. This completes the proof. 
�
Remark 6 Example 2 in Bajoori et al. (2011) shows that there are continuous games
that possess thp equilibria that fail to be lof perfect. Since strong lof perfection strength-
ens lof perfection (Proposition 1), there are thp equilibria that are not strong lof perfect.

Footnote 7 continued
for each ym

i ∈ Y m
i , where #Y m

i denotes the cardinality of the finite set Y m
i . Define, for each m,

νm
i :=

(
1 − 1

m

)
ν̂m

i + 1

m
ν̃m

i

and note that supp(νm
i ) = Y m

i for each m. To see that νm
i → λk

i , let Oi be an open set in Xi and define
I := {l : al ∈ Oi }. Then there exists an m̂ such that, αm

l ∈ Oi for each m > m̂ and each l ∈ I. Therefore,
m > m̂ implies that

λk
i (Oi ∩ {a1, . . . , a�}) =

∑
l∈I

λk
i ({al }) =

∑
l∈I

ν̂m
i ({αm

l }) ≤ ν̂m
i (Oi ∩ {αm

1 , . . . , αm
� }),

so for m > m̂, we have

νm
i (Oi ) =

(
1 − 1

m

)
ν̂m

i (Oi ) + 1

m
ν̃m

i (Oi )

= ν̂m
i (Oi ) + 1

m

(̃
νm

i (Oi ) − ν̂m
i (Oi )

)

≥ ν̂m
i (Oi ) − 1

m

= ν̂m
i (Oi ∩ {αm

1 , . . . , αm
� }) − 1

m

≥ λk
i (Oi ∩ {a1, . . . , a�}) − 1

m

= λk
i (Oi ) − 1

m
,

from which it follows that lim νm
i (Oi ) ≥ λk

i (Oi ).
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It is shown in Simon and Stinchcombe (1995) that any trembling-hand perfect
equilibrium of a compact, metric, Borel game G = (Xi , ui ) with each ui continuous is
limit admissible. From this observation and Theorem 7, we obtain the following result.

Theorem 8 Suppose that G = (Xi , ui ) is a compact, metric, Borel game. Suppose
further that each ui is continuous. Then any strong limit-of-finite perfect equilibrium
of G is limit admissible.
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