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a b s t r a c t

A Nash equilibrium of a normal-form game G is essential if it is robust to perturbations of G. A game is
essential if all of its Nash equilibria are essential. This paper provides conditions on the primitives of a
(possibly) discontinuous game that guarantee the generic existence of essential games. Unlike the extant
literature, the present analysis allows for perturbations of the players’ action spaces, in addition to the
standard payoff perturbations.
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1. Introduction

A Nash equilibrium of a normal-form game G is essential if it is
robust to perturbations of G. For generic games in the collection of
all finite-action games with fixed action spaces, all Nash equilibria
are essential (cf. Wu and Jiang, 1962). This result has been ex-
tended to infinite-action games (e.g., Yu, 1999, Carbonell-Nicolau,
2010, 2015, and Scalzo, 2013). Yu (1999) allows for perturbed
action spaces and payoff functions, but requires continuity of pay-
off functions. Carbonell-Nicolau (2010, 2015) and Scalzo (2013)
allow for discontinuous payoffs but require fixed action spaces. In
this paper we extend the results in Carbonell-Nicolau (2010) by
allowing for perturbed payoffs and actions.

The notion of perturbed game used in this note differs from
the definition adopted in Yu (1999). We argue in Section 2 that,
in the presence of payoff discontinuities, perturbing actions and
payoffs as in Yu (1999) poses problems. In fact, under Yu’s approach
it is easy to construct games whose perturbations do not include
strategies that are of particular strategic significance to the players.
Our discussion in Section 2 is framed in terms of a very simple
example, which showcases the difficulties of the Yu approach and
illustrates the intuitive appeal of the definition of a perturbed game
proposed here.

✩ In memory of Nathan Wohl. Thanks to the anonymous referees and Rich
McLean for valuable comments.

* Corresponding author.
E-mail address: carbonell-nicolau@rutgers.edu (O. Carbonell-Nicolau).

2. Preliminaries

Anormal-formgame (or simply a game)G = (Xi, ui)Ni=1 consists
of a finite numberN of players, a nonempty set of actionsXi for each
player i, and a payoff function ui : X → R for each player i defined
on the set of action profiles X := ×

N
j=1Xj.

For each player i, let Xi be a nonempty, compact, convex subset
of a metric vector space. Let X := ×

N
i=1Xi be endowed with

the associated product topology. The sets X1, . . . , XN will be fixed
throughout the analysis. Let B(X) denote the set of bounded maps
f : X → R. LetK (Xi) denote the hyperspace of nonempty, compact,
and convex subsets of Xi. Define

GX :=
(
×

N
i=1K (Xi)

)
× B(X)N .

A typical member of GX is denoted (Y , u) = (Y1, . . . , YN , u1,
. . . , uN ) and can be viewed as a normal-form game (Yi, ui|×N

j=1Yj
)Ni=1.

In Yu (1999), the space B(X)N is endowed with the metric γX :

B(X)N × B(X)N → R defined by

γX ((u1, . . . , uN ), (v1, . . . , vN )) :=

∑
i∈N

sup
x∈X

|ui(x) − vi(x)|, (1)

and, for each i, the space K (Xi) is endowed with the Hausdorff
metric topology. The associated productmetric spaceGX , endowed
with the corresponding product topology, constitutes the space of
games considered in Yu (1999). This topology defines the notion
of perturbed game used in Yu (1999), and we wish to argue here
that this notion is not appropriate in the presence of payoff dis-
continuities. To illustrate, consider the one-person game ([0, 1], u),
where u(x) := 0 if x ∈ [0, 1) and u(1) := 1, and the sequence
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[0, 1 −

1
n ], u

)
, which converges to ([0, 1], u). Arguably, the strat-

egy x = 1, which dominates every other strategy, is particularly
important in this game, and it seems hard to justify an approx-
imation that does not include this strategy or another strategy
that plays a similar role. In particular, the games ([0, 1], u) and(
[0, 1 −

1
n ], u

)
appear markedly dissimilar, even for large n, and

the sequence
(
[0, 1 −

1
n ], u

)
does not seem to well-approximate

([0, 1], u).1 By contrast, the sequence
(
[0, 1 −

1
n ], v

n
)
, where

vn(x) := 0 if x ∈ [0, 1 −
1
n ) and vn(x) := 1 −

1
n if x ∈ [1 −

1
n , 1]

seems to better approximate ([0, 1], u) (for large n). Note that for
the above topology, while the sequence

(
[0, 1 −

1
n ], u

)
converges

to ([0, 1], u), the sequence
(
[0, 1 −

1
n ], v

n
)
does not converge to

([0, 1], u). In the next paragraph, we define a topology that is
consistent with the idea that games of the form

(
[0, 1 −

1
n ], v

n
)

are close to ([0, 1], u) (for large n) while games of the form(
[0, 1 −

1
n ], u

)
are not.2

Given i and {Yi, Zi} ⊆ K (Xi), let H(Yi, Zi) be the set of all
homeomorphisms hi from Yi to Zi such that hi(A) ⊆ Zi is convex if
and only if A ⊆ Yi is convex. Let dX be a compatiblemetric for X . Let
GX represent the set of normal-form games (Yi, ui|×N

j=1Yj
)Ni=1 such

that (Y , u) ∈ GX . Note that a member of GX uniquely determines
a corresponding element of GX , while there is a one-to-many
mapping between GX and GX . For the members of GX , we write
(Yi, ui|×N

j=1Yj
)Ni=1 and (Y , u) indistinctly, which entails a slight abuse

of notation. Define the map αX : GX × GX → R ∪ {∞} by

αX ((Y ,u), (Z, v))

:= inf

{
ϵ > 0 : ∃h ∈ ×

N
i=1H(Yi, Zi) :

N∑
i=1

sup
x∈Y

|ui(x) − vi(h(x))| ≤ ϵ and sup
x∈Y

dX (h(x), x) ≤ ϵ

}
,

if ×N
i=1H(Yi, Zi) ̸= ∅, and αX ((Y , u), (Z, v)) := ∞ if ×N

i=1H(Yi, Zi) =

∅. Nowdefine themetricρX : GX×GX → R byρX ((Y , u), (Z, v)) :=

min {αX ((Y , u), (Z, v)), 1}.3 Throughout the sequel, we endow GX
with the metric ρX .

Remark 1. As illustrated by the previous example, the metric ρX
differs from the Yu metric. This discrepancy can even be found
within the subdomain of continuous games. Indeed, for X := [0, 1]
and arbitrary u, the sequence of games ([0, 1

n ], u) in GX converges
to ({0}, u) in the sense of Yu, and yet this sequence does not
converge with respect to ρX in GX because none of its members
is homeomorphic to the game ({0}, u). Thus, convergence in the
sense of Yu need not imply convergence with respect to ρX . The
converse assertion is also true, as illustrated by the discontinuous
game from the previous example.

Definition 1. A correspondence Φ : A ⇒ B between topological
spaces is upper hemicontinuous at x ∈ A if the following condition
is satisfied: for every neighborhood VΦ(x) of Φ(x) there is a neigh-
borhood Vx of x such that y ∈ Vx implies Φ(y) ⊆ VΦ(x). Φ is upper
hemicontinuous if it is upper hemicontinuous at every point in A.

1 The idea that ‘‘good’’ approximations to an infinite discontinuous game should
include strategies that are of particular strategic significance to the players is
already discussed in Simon (1987) and Reny (2011) in the context of finite strategic
approximations to infinite games.
2 This is in fact an example in which a game with a dominant strategy can only

be approximated, in the new topology, by games with a dominant strategy. This is
obviously false about the Yu topology. We conjecture that this property holds in
general, and we thank an anonymous referee for bringing up this point.
3 It is easily seen that ρX ((Y , u), (Z, v)) = 0 ⇔ (Y , u) = (Z, v) for all (Y , u) and

(Z, v) in GX . Also, it is clearly the case that ρX ((Y , u), (Z, v)) = ρX ((Z, v), (Y , u))
for all (Y , u) and (Z, v) in GX . To verify that the triangle inequality holds for ρX ,
fix (Y , u), (Y ′, u′), and (Y ′′, u′′) in GX and note that given h1

∈ ×
N
i=1H(Yi, Y ′

i ) and

Definition 2. A correspondence Φ : A ⇒ B between topological
spaces is lower hemicontinuous at x ∈ A if the following condition
is satisfied: for every open set V ⊆ B with V ∩ Φ(x) ̸= ∅ there is a
neighborhood Vx of x such that y ∈ Vx implies Φ(y) ∩ V ̸= ∅. Φ is
lower hemicontinuous if it is lower hemicontinuous at every point
in A.

Definition 3. A strategy profile x = (xi, x−i) in X is a Nash
equilibrium of G = (Xi, ui)Ni=1 if ui(yi, x−i) ≤ ui(x) for every yi ∈ Xi
and i.

One can define the Nash equilibrium correspondence as a set-
valued map

EX : GX ⇒ X

that assigns to each game (Y , u) in GX the set of Nash equilibria of
(Y , u), EX (Y , u). Given a family of gamesG ⊆ GX , the restriction of
EX to G is denoted by EX |G.

Definition 4. Given a class of games G ⊆ GX , a Nash equilibrium
x of (Y , u) ∈ G is an essential equilibrium of (Y , u) relative to G
if for every neighborhood Vx of x there is a neighborhood V(Y ,u) of
(Y , u) such that for every (Z, f ) ∈ V(Y ,u) ∩ G, Vx ∩ EX (Z, f ) ̸= ∅.

Definition 5. Suppose thatG ⊆ GX . A game (Y , u) inG is essential
relative to G if every pure-strategy Nash equilibrium of (Y , u) is
essential relative toG. When the domain of reference is clear from
the context, we shall simply say that (Y , u) is an essential game.

Remark 2. Suppose that G ⊆ GX . A game (Y , u) in G is essential
relative to G if and only if EX |G is lower hemicontinuous at (Y , u).

3. The results

The following definition was introduced in Barelli and Soza
(2009).

h2
∈ ×

N
i=1H(Y ′

i , Y
′′

i ),

N∑
i=1

sup
x∈Y

|ui(x) − u′′

i (h
2(h1(x)))| =

N∑
i=1

sup
x∈Y

|ui(x) − v′′

i (x)|

≤

N∑
i=1

sup
x∈Y

|ui(x) − v′

i (x)|

+

N∑
i=1

sup
x∈Y

|v′

i (x) − v′′

i (x)|

=

N∑
i=1

sup
x∈Y

|ui(x) − u′

i(h
1(x))|

+

N∑
i=1

sup
x∈Y

|u′

i(h
1(x)) − u′′

i (h
2(h1(x)))|

=

N∑
i=1

sup
x∈Y

|ui(x) − u′

i(h
1(x))|

+

N∑
i=1

sup
x∈Y ′

|u′

i(x) − u′′

i (h
2(x))|,

where v′

i : Y → Y ′ and v′′

i : Y → Y ′′ are defined by

v′

i (x) := u′

i(h
1(x)) and v′′

i (x) := u′′

i (h
2(h1(x))),

and

sup
x∈Y

dX (h2(h1(x)), x) ≤ sup
x∈Y

dX (h1(x), x) + sup
x∈Y

dX (h2(h1(x)), h1(x))

= sup
x∈Y

dX (h1(x), x) + sup
x∈Y ′

dX (h2(x), x).

Consequently, αX ((Y , u), (Y ′′, u′′)) ≤ αX ((Y , u), (Y ′, u′)) + αX ((Y ′, u′), (Y ′′, u′′)) and
so ρX ((Y , u), (Y ′′, u′′)) ≤ ρX ((Y , u), (Y ′, u′)) + ρX ((Y ′, u′), (Y ′′, u′′)). Thus, ρX is
indeed a metric on GX .
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Definition 6. A game (Y , u) ∈ GX is generalized payoff secure
if for each ϵ > 0, x ∈ Y , and i, there exist a neighborhood Vx of
x in Y and a nonempty-valued, convex-valued, compact-valued,
upper hemicontinuous correspondence Φi : Vx ⇒ Yi such that
ui(zi, y−i) > ui(x) − ϵ for each zi ∈ Φi(y) and y ∈ Vx.

We define G∗

X as the collection of games (Y , u) in GX satisfying
the following:

1. (Y , u) is quasiconcave, i.e., for each i and x−i ∈ Y−i, the map
xi ↦→ ui(xi, x−i) defined on Yi is quasiconcave;

2. (Y , u) is generalized payoff secure; and
3.
∑N

i=1ui is upper semicontinuous on Y .

Theorem 1. Every member of a residual subset of G∗

X is essential.

Remark 3. Remark 4 shows that GX fails to be a complete space.
Consequently, the residual subset ofG∗

X given by Theorem1 cannot
be shown to be dense inG∗

X as an application of the Baire Category
Theorem. Given any complete subset G′

X of GX , however, the col-
lectionG′

X ∩ G∗

X has the property that every member of a residual,
dense subset of G′

X ∩ G∗

X is essential (Theorem 2).

To prove Theorem 1, we need three lemmas.

Lemma 1. Each (Y , u) ∈ G∗

X has a Nash equilibrium.

Proof. Given (Y , u) ∈ G∗

X , the existence of a Nash equilibrium in
(Y , u) follows fromProposition 4.18 and Corollary 4.5 in Barelli and
Soza (2009). ■

Lemma 2. The correspondence EX |G∗
X
is compact-valued and upper

hemicontinuous.

Proof. Since X is compact andmetric, it suffices to show that EX |G∗
X

has a closed graph (see, e.g., Aliprantis and Border, 2006, Theorem
17.11). Take a sequence (Y n, un) in G∗

X , and take a sequence (xn)
such that xn is a Nash equilibrium of (Y n, un) for each n. Suppose
that(
xn, (Y n, un)

)
→ (x, (Y , u)) ,

for some (x, (Y , u)) ∈ X × G∗

X . We must show that x is a Nash
equilibrium of (Y , u).

First note that because (Y n, un) → (Y , u), xn → x, and xn ∈ Y n

for each n, we have x ∈ Y . To see this, observe first that because
(Y n, un) ρX -converges to (Y , u), there exist n∗ and a sequence
(gn)n≥n∗ , where gn

∈ ×
N
i=1H(Yi, Y n

i ) for each n ≥ n∗, such that
supy∈YdX (gn(y), y) → 0. Consequently, for y ∈ X \ Y , it follows
that Y n

∩ Nβ (y) = ∅ for infinitely many n and for some β > 0, and
since xn ∈ Y n for each n and xn → x, we see that x ∈ Y .

In addition, since (Y n, un) → (Y , u), the following holds: for
each n, there exists hn

∈ ×
N
i=1H(Y n

i , Yi) such that

N∑
i=1

sup
x∈Yn

|ui
(
hn(x)

)
− un

i (x)| ≤ ρX
(
(Y n, un), (Y , u)

)
+

1
n

and

sup
x∈Yn

dX
(
hn(x), x

)
≤ ρX

(
(Y n, un), (Y , u)

)
+

1
n
.

Moreover, we may write (passing to a subsequence if necessary)
(xn, un(xn)) → (x, α) for some α ∈ RN . Now suppose that x is not
a Nash equilibrium of (Y , u). Then, since x ∈ Y , there exist i and
yi ∈ Yi such that ui(yi, x−i) > ui(x). Suppose first that ui(x) ≥ αi.
Then, since (Y , u) is generalized payoff secure, there exist a neigh-
borhood V(yi,x−i) of (yi, x−i) in Y and a nonempty-valued, convex-
valued, compact-valued, upper hemicontinuous correspondence

Φi : V(yi,x−i) ⇒ Yi such that ui(z ′

i , z−i) ≥ β > αi for each z ′

i ∈ Φi(z)
and z ∈ V(yi,x−i) and for some β ∈ R. Consequently, since hn(xn) →

x, for any large enough n we have ui(yni , h
n
−i(x

n
−i)) ≥ β > αi for

each yni ∈ Φi(yi, hn
−i(x

n
−i)), whence for large enough n, there exists

zni ∈ Y n
i such that

un
i

(
hn−1 (yni , hn

−i(x
n
−i)
))

= un
i (z

n
i , x

n
−i) ≥ γ > αi,

for some γ ∈ R. Hence, because un(xn) → α, we obtain, for
large n, un

i (z
n
i , x

n
−i) > un

i (x
n), thereby contradicting that xn is a

Nash equilibrium of (Y n, un). Next, suppose that ui(x) < αi. Then,
because u(hn(xn)) → α, and since

∑N
j=1uj is upper semicontinuous

on Y , there must exist some j such that uj(x) > αj, and one may
proceed as before to derive a contradiction. ■

The next lemma is the classic result of Fort (1951) on generic
lower hemicontinuity of nonempty-valued, compact-valued, up-
per hemicontinuous correspondences.

Lemma 3 (Fort, 1951, Theorem 2). Suppose that X is a metric space
and that Y is a topological space. Suppose that F : Y ⇒ X is
a nonempty-valued, compact-valued, upper hemicontinuous corre-
spondence. Then there exists a residual subset Q of Y such that F is
lower hemicontinuous at every point in Q .

We are now ready to prove Theorem 1.

Proof of Theorem 1. The correspondence EX |G∗
X
is nonempty-

valued (Lemma 1), compact-valued and upper hemicontinuous
(Lemma 2). Consequently, Lemma 3 gives a residual subset Q of
G∗

X such that EX |G∗
X
is lower hemicontinuous at every point in Q,

and it follows that for each (Y , u) ∈ Q, any Nash equilibrium of
(Y , u) is essential relative to G∗

X (recall Remark 2). ■

Remark 4. IfGX were a complete space andG∗

X were closed inGX ,
thenG∗

X would be a complete,metric space, hence a Baire space (by
the Baire Category Theorem).4 In this case, the setQ in the proof of
Theorem1, being a residual subset of a Baire space,would be dense,
and so the residual subset given by Theorem 1 would be dense in
G∗

X . Unfortunately, while the set G∗

X is closed in GX , GX fails to
be complete. Indeed, let X := [0, 1] and consider the sequence
of games ([0, 1

n ], u) in GX . It is easy to see that this sequence is
Cauchy.5 In addition, this sequencehas no limit point because none
of its members is homeomorphic to the game ({0}, u).

Theorem 2. Given any complete subspace G′

X of GX , every member
of a residual, dense subset of G′

X ∩ G∗

X is essential.

To prove Theorem 2, we need five lemmas.
The proof of the following lemma is analogous to that of

Lemma 2.

Lemma 4. Suppose that G′

X is a complete subspace of GX . Then the
correspondence EX |G∗

X∩G′
X
is compact-valued and upper hemicontinu-

ous.

Lemma 5. Suppose that (Y n, un) is a sequence in GX such that
(Y n, un) is quasiconcave for each n. If (Y n, un) → (Y , u) ∈ GX , then
(Y , u) is quasiconcave.

4 Ametric space Z is complete if every Cauchy sequence in Z converges to a point
in Z . By the Cantor Intersection Theorem, a metric space Z is complete if and only if
whenever (En) is a decreasing (in the sense of set inclusion) sequence of nonempty
closed subsets of Z whose diameter converges to zero, there is a point z ∈ Z for
which

⋂
nE

n
= {z}.

5 A homeomorphism between [0, 1
n ] and [0, 1

n+k ] can be constructed as x ∈

[0, 1
n ] ↦→

n
n+k x ∈ [0, 1

n+k ].
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Proof. Since (Y n, un) → (Y , u), the following holds: for each n,
there exists hn

∈ ×
N
i=1H(Y n

i , Yi) such that
N∑
i=1

sup
x∈Yn

|ui
(
hn(x)

)
− un

i (x)| ≤ ρX
(
(Y n, un), (Y , u)

)
+

1
n
.

Fix α ∈ R. For each i and y−i ∈ Y−i we have

{xi ∈ Yi : ui(xi, y−i) ≥ α} =

∞⋂
n=1

hn
i

({
xi ∈ Y n

i : un
i

(
xi, hn

−i
−1(y−i)

)
≥ α − ρX

(
(Y n, un), (Y , u)

)
−

1
n

})
.

To see this, suppose that xi ∈ Yi and ui(xi, y−i) ≥ α. Then, for each
n,

un
i

(
hn−1(xi, y−i)

)
≥ α − ρX

(
(Y n, un), (Y , u)

)
−

1
n
.

This implies the containment ‘⊆’. Conversely, suppose that yi ̸∈

{xi ∈ Yi : ui(xi, y−i) ≥ α}. If yi ̸∈ Yi, then hn
i
−1(yi) ̸∈ Y n

i for any n. If
yi ∈ Yi and ui(yi, y−i) < α, then for large enough n,

un
i

(
hn−1(yi, y−i)

)
< α − ρX

(
(Y n, un), (Y , u)

)
−

1
n
.

This implies the containment ‘⊇’.
Now since (Y n, un) is quasiconcave for each n, the set{

xi ∈ Y n
i : un

i

(
xi, hn

−i
−1(y−i)

)
≥ α − ρX

(
(Y n, un), (Y , u)

)
−

1
n

}
is convex for each n, and so (because hn

i ∈ H(Y n
i , Yi)) the set

hn
i

({
xi ∈ Y n

i : un
i

(
xi, hn

−i
−1(y−i)

)
≥ α − ρX

(
(Y n, un), (Y , u)

)
−

1
n

})
is convex for each n. Thus, {xi ∈ Yi : ui(xi, y−i) ≥ α} is an intersec-
tion of convex subsets of Yi, and hence a convex subset of Yi itself.
Since i was arbitrary, we conclude that (Y , u) is quasiconcave. ■

Lemma 6. Suppose that (Y n, un) is a sequence in GX such that∑N
i=1u

n
i is upper semicontinuous on Y n for each n. If (Y n, un) →

(Y , u) ∈ GX , then
∑N

i=1ui is upper semicontinuous on Y .

Proof. For each n, there exists hn
∈ ×

N
i=1H(Y n

i , Yi) such that
N∑
i=1

sup
x∈Yn

|ui
(
hn(x)

)
− un

i (x)| ≤ ρX
(
(Y n, un), (Y , u)

)
+

1
n
.

Fix α ∈ R. We have{
x ∈ Y :

N∑
i=1

ui(x) ≥ α

}
=

∞⋂
n=1

hn

({
x ∈ Y n

:

N∑
i=1

un
i (x) ≥ α

−N
(

ρX
(
(Y n, un), (Y , u)

)
+

1
n

)})
.

Because
∑N

i=1u
n
i is upper semicontinuous on Y n for each n, the set{

x ∈ Y n
:

N∑
i=1

un
i (x) ≥ α − N

(
ρX
(
(Y n, un), (Y , u)

)
+

1
n

)}
is closed in Y n for each n, and since each hn is a homeomorphism,
for each n the set

hn

({
x ∈ Y n

:

N∑
i=1

un
i (x) ≥ α − N

(
ρX
(
(Y n, un), (Y , u)

)
+

1
n

)})

is closed in Y . Thus,
{
x ∈ Y :

∑N
i=1ui(x) ≥ α

}
is an intersection of

closed sets, and hence a closed set itself, and so
∑N

i=1ui is upper
semicontinuous on Y . ■

Lemma 7. Suppose that (Y n, un) is a sequence in GX such that
(Y n, un) is generalized payoff secure for each n. If (Y n, un) → (Y , u) ∈

GX , then (Y , u) is generalized payoff secure.

Proof. Since (Y n, un) → (Y , u), for each n there exists hn
∈

×
N
i=1H(Y n

i , Yi) such that

N∑
i=1

sup
x∈Yn

|ui
(
hn(x)

)
− un

i (x)| ≤ ρX
(
(Y n, un), (Y , u)

)
+

1
n
.

Fix ϵ > 0, x ∈ Y , and i. We must show that there exist a neighbor-
hood Vx of x in Y and a nonempty-valued, convex-valued, compact-
valued, upper hemicontinuous correspondence Φi : Vx ⇒ Yi such
that ui(zi, y−i) > ui(x) − ϵ for each zi ∈ Φi(y) and y ∈ Vx. Because
(Y n, un) is generalized payoff secure for each n, for each n there is a
neighborhood V n of hn−1(x) in Y n and a nonempty-valued, convex-
valued, compact-valued, upper hemicontinuous correspondence
Φn

i : V n ⇒ Y n
i such that un

i (zi, y−i) > un
i (h

n−1(x)) −
1
n for each

zi ∈ Φn
i (y) and y ∈ V n. Hence, for large n, hn(V n) is a neighborhood

of x in Y , the correspondence Ψ n
i : hn(V n) ⇒ Yi defined by

Ψ n
i (y) := hn(Φn

i (h
n−1(y))) is nonempty-valued, convex-valued,

compact-valued, and upper hemicontinuous, and we have

ui(zi, y−i) > un
i (h

n−1(zi, y−i)) −
ϵ

3
> un

i (h
n−1(x)) −

1
n

−
ϵ

3

> ui(x) −
1
n

−
2ϵ
3

> ui(x) − ϵ

for each zi ∈ Ψ n
i (y) and y ∈ hn(V n). ■

Lemma8. Suppose that G′

X is a subspace of GX . Then the set G∗

X ∩G′

X
is closed in G′

X .

Proof. The assertion is an immediate consequence of Lemmas 5, 6,
and 7. ■

We are now ready to prove Theorem 2.

Proof of Theorem 2. Suppose that G′

X is a complete subspace of
GX . The correspondence EX |G∗

X∩G′
X
is nonempty-valued (Lemma 1),

and compact-valued and upper hemicontinuous (Lemma 4). Con-
sequently, Lemma 3 gives a residual subset Q of G∗

X such that
EX |G∗

X∩G′
X

is lower hemicontinuous at every point in Q, and it
follows that for each (Y , u) ∈ Q, any Nash equilibrium of (Y , u)
is essential relative to G∗

X ∩ G′

X (Remark 2). To see that Q is dense
in G∗

X ∩ G′

X , note that because G∗

X ∩ G′

X is a closed subset of G′

X
(Lemma 8), and since G′

X is a complete, metric space, G∗

X ∩ G′

X is
itself a complete, metric space. Therefore,G∗

X ∩G′

X is a Baire space
by the Baire Category Theorem. Consequently, Q, being a residual
subset of a Baire space, is dense. ■

In the remainder of the paper, we characterize a family of
complete subspaces of GX for which Theorem 2 applies.

Let G′′

X be a subcollection of GX satisfying the following con-
dition: Suppose that (Y n, un) is a Cauchy sequence in G′′

X , i.e., for
each ϵ > 0, there exists M such that for every m, n ≥ M ,
ρX ((Ym, um), (Y n, un)) < ϵ, i.e., for every m, n ≥ M there exists
h(m,n)

∈ ×
N
i=1H(Ym

i , Y n
i ) such that

N∑
i=1

sup
x∈Ym

|um
i (x) − un

i (h
(m,n)(x))| < ϵ and

sup
x∈Ym

dX (h(m,n)(x), x) < ϵ.
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Then there exists at least one such sequence (h(m,n)) with the
following additional property: Suppose that (Y nk ) is a subsequence
of (Y n) such that for each i and xi ∈ Y n1

i the sequence

xi, h
(n1,n2)
i (xi), h

(n2,n3)
i (h(n1,n2)

i (xi)), . . .

converges to a point yi(xi) in Xi. Then yi(xi) ̸= yi(x′

i) for all xi ̸= x′

i .
Let GX be the set of all such subcollections G′′

X of GX .

Example. It is easily seen that the collection([
0, 1 +

1
n

]
, un

)∞

n=1

of one-player games in G[0,2], where for each n, un
: [0, 2] → R is

defined by

un(x) :=

{
1 if x = 1 +

1
n
,

0 otherwise,

belongs to G[0,2].
On the other hand, the collection([
0, 1 +

1
n

]
, v

)∞

n=1
(2)

of one-player games in G[0,2], where v : [0, 2] → R is defined by

v(x) :=

{
1 if x ∈ [1, 2],
0 otherwise,

does not belong to G[0,2]. To see this, note first that the sequence
in (2) is Cauchy. This can be seen as follows. For m and n, define
h(m,n)

: [0, 1 +
1
m ] → [0, 1 +

1
n ] by

h(m,n)(x) :=

{
x if x ∈ [0, 1],

1 +
m
n
(x − 1) if x > 1.

Given ϵ > 0, and for m, n ≥ M , where M satisfies 1
M < ϵ, one has

|v(x) − v(h(m,n)(x))| =

⎧⎪⎨⎪⎩
|v(x) − v(x)| = 0 if x ∈ [0, 1],

|v(x) − v(1 +
m
n
(x − 1))|

= |1 − 1| = 0 if x > 1,

and

|x − h(m,n)(x)| =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|x − x| = 0 if x ∈ [0, 1],⏐⏐⏐x − 1 −
m
n
(x − 1)

⏐⏐⏐ =

⏐⏐⏐⏐⏐(x − 1)

×

(
n − m

n

) ⏐⏐⏐⏐⏐ ≤

⏐⏐⏐⏐n − m
mn

⏐⏐⏐⏐ ≤
1
M

< ϵ if x ∈

(
1, 1 +

1
m

]
.

Hence, since h(m,n)
∈ H([0, 1 +

1
m ], [0, 1 +

1
n ]), it follows that the

sequence in (2) is Cauchy.
Next, suppose that (g (m,n)) is a sequence satisfying the follow-

ing: for each m and n, g (m,n)
∈ H([0, 1 +

1
m ], [0, 1 +

1
n ]), and for

each ϵ > 0, there existsM such that for every m, n ≥ M ,

sup
x∈[0,1+ 1

m ]

|v(x) − v(g (m,n)(x))| < ϵ and

sup
x∈[0,1+ 1

m ]

|g (m,n)(x) − x| < ϵ.

Then, for each m and n, and for every x ≥ 1, one must have
g (m,n)(x) ≥ 1, and so one may pick two distinct x and y, both in
[1, 2], such that the sequences

x, g (1,2)(x), g (2,3)(g (1,2)(x)), . . . and
y, g (1,2)(y), g (2,3)(g (1,2)(y)), . . .

converge to 1, implying that the collection in (2) is not a member
of G[0,2].

Lemma 9. Suppose that G′′

X ∈ GX . Let G′

X be the closure of G′′

X inGX .
Then G′

X is a complete subspace of GX .

Proof. Suppose that G′′

X ∈ GX . Let G′

X be the closure of G′′

X in
GX . Pick a Cauchy sequence (Zn, vn) in G′

X . Then there exists a
Cauchy sequence (Y n, un) in G′′

X such that if (Y n, un) converges to
(Y , u) then (Zn, vn) converges to (Y , u). Indeed, it suffices to pick
a sequence (Y n, un) from G′′

X such that ρX ((Y n, un), (Zn, vn)) < 1
n

for each n. Thus, it suffices to show that (Y n, un) converges to a
point in G′

X . But since G′

X is closed in GX , it suffices to show that
the sequence (Y n, un) is convergent.

Because (Y n, un) is a Cauchy sequence, given ϵ > 0, there exists
M such that for everym, n ≥ M , ρX ((Ym, um), (Y n, un)) < ϵ, i.e., for
every m, n ≥ M there exists h(m,n)

∈ ×
N
i=1H(Ym

i , Y n
i ) such that

N∑
i=1

sup
x∈Ym

|um
i (x) − un

i (h
(m,n)(x))| < ϵ and

sup
x∈Ym

dX (h(m,n)(x), x) < ϵ.

Because (Y n, un) is a Cauchy sequence in G′′

X , there is no loss of
generality in assuming that the sequence (h(m,n)) has the following
additional property: Suppose that (Y nk ) is a subsequence of (Y n)
such that for each i and xi ∈ Y n1

i the sequence

xi, h
(n1,n2)
i (xi), h

(n2,n3)
i (h(n1,n2)

i (xi)), . . .

converges to a point yi(xi) in Xi. Then yi(xi) ̸= yi(x′

i) for all xi ̸= x′

i .
Below we show that there exists a subsequence (Y nk , unk ) of

(Y n, un) satisfying the following: there exists a sequence (gk) with
gk

∈ ×
N
i=1H(Y nk

i , Y nk+1
i ) for each k such that the sequences

η1(x) := x, η2(x) := g1(x), η3(x) := g2(g1(x)), . . . (3)

and

un1
i (η1(x)), un2

i (η2(x)), un3
i (η3(x)), . . . , i ∈ {1, . . . ,N}, (4)

for x ∈ Y n1 , satisfy the following: given ϵ > 0, there exists K such
that for every k, l ≥ K ,
N∑
i=1

sup
x∈Yn1

|unk
i (ηk(x)) − unl

i (η
l(x))| < ϵ and

sup
x∈Yn1

dX (ηk(x), ηl(x)) < ϵ. (5)

Consequently, for each x ∈ Y n1 , the sequences in (3) and (4)
are Cauchy in X and R respectively, and since these spaces are
complete, it follows that the sequence in (3) converges to a point
y(x) = (y1(x1), . . . , yN (xN )) in X and the sequence in (4) converges
to a point αi(x) in R. Note that one has yi(xi) ̸= yi(x′

i) whenever
xi ̸= x′

i . Therefore, defining Yi :=
⋃

xi∈Y
n1
i

{yi(xi)}, and given zi ∈ Yi,
there exists a unique xi ∈ Y n1

i such that yi(xi) = zi. Thus, there is
a map fi : Yi → Y n1

i satisfying yi(fi(zi)) = zi for each zi ∈ Yi. Let
Y := ×

N
i=1Yi and define, for each i, ui : X → R as follows:

ui(x) :=

{
αi(f1(x1), . . . , fN (xN )) if x ∈ Y ,
0 otherwise.

The proof will be complete if we show that (Y n, un) → (Y , u) and
(Y , u) ∈ GX . First, note that each ui is bounded. To see this, observe
that for each i and x ∈ Y n1 , the sequence in (4) converges to ui(y(x)),
and choose K ∗ such that for every k, l ≥ K ∗,

N∑
i=1

sup
x∈Yn1

|unk
i (ηk(x)) − unl

i (η
l(x))| < 1.
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For each i and x ∈ Y n1 ,

|ui(y(x))| ≤ |unK∗

i (ηK∗

(x)) − ui(y(x))| + |unK∗

i (ηK∗

(x))|

≤ 1 + |unK∗

i (ηK∗

(x))|,

implying (since unK∗

i is bounded) that ui is bounded.
It remains to show that (Y n, un) → (Y , u) inGX . To this end, first

it will be shown that (Y nk , unk ) → (Y , u). For each i and k, define
the map f ki : Yi → Y nk

i by

f ki (zi) := ηk(fi(zi)),

where fi : Yi → Y n1
i is as defined above. The map fi is a member

of H(Yi, Y
n1
i ). This flows from the following observations. First,

it is easily seen that fi is one-to-one and onto. To see that fi is
continuous, let (z li ) be a sequence in Yi with limit point zi ∈ Yi.
Then the sequence (fi(z li )) is convergent in Y n1

i with limit point fi(zi).
Otherwise, one has (extracting a subsequence if necessary) fi(z li ) →

xi for some xi ∈ Y n1
i with xi ̸= fi(zi), and this implies yi(xi) ̸=

yi(fi(zi)) = zi, and so there exists ϵ > 0 such that Nϵ(yi(xi)) ∩

Nϵ(zi) = ∅. We now establish the following impossibility: there
exist k and l such that ηk

i (fi(z
l
i )) ∈ Nϵ(zi) ∩ Nϵ(yi(xi)). Given α > 0,

there exists Kα such that for all k, k′
≥ Kα ,

sup
x∈Yn1

dX (ηk(x), ηk′ (x)) < α,

and so in particular,

sup
xi∈{fi(z1i ),fi(z

2
i ),...}

dXi (η
k
i (xi), η

k′
i (xi)) < α,

implying that for each fi(z li ) and k ≥ Kα ,

dXi (η
k
i (fi(z

l
i )), z

l
i ) = lim

k′→∞

dXi (η
k
i (fi(z

l
i )), η

k′
i (fi(z

l
i ))) ≤ α.

Consequently, because z li → zi, there exist K ′ and L′ such that for
all k ≥ K ′ and l ≥ L′, ηk

i (fi(z
l
i )) ∈ Nϵ(zi). Now since the sequence

η1
i (xi) = xi, η2

i (xi), η
3
i (xi), . . . converges to yi(xi), there exists K ′′

such that for all k ≥ K ′′, ηk
i (xi) ∈ Nϵ(yi(xi)). In addition, because

ηk is continuous for each k and since fi(z li ) → xi, for each k one has
ηk
i (fi(z

l
i )) → ηk

i (xi) (as l → ∞). Consequently, for k ≥ max{K ′, K ′′
},

and for l large enough, one obtains ηk
i (fi(z

l
i )) ∈ Nϵ(zi) ∩ Nϵ(yi(xi)),

the sought contradiction. We conclude that fi is continuous.
To see that f −1

i is continuous, let (xli) be a convergent sequence
in Y n1

i with limit point xi ∈ Y n1 . Then

dXi (f
−1
i (xli), f

−1
i (xi)) = dXi (yi(x

l
i), yi(xi))

≤ dXi (yi(x
l
i), η

k
i (x

l
i)) + dXi (η

k
i (x

l
i), η

k
i (xi))

+ dXi (η
k
i (xi), yi(xi)). (6)

It suffices to show that for each ε > 0 there exists L∗ such that for
all l ≥ L∗, dXi (yi(x

l
i), yi(xi)) < ε. Fix ε > 0. Then there exists Kε such

that for all k, k′
≥ Kε ,

sup
x′∈Yn1

dX (ηk(x′), ηk′ (x′)) <
ε

3
,

and so in particular, for each k ≥ Kε ,

dXi (η
k
i (xi), yi(xi)) = lim

k′→∞

dXi (η
k
i (xi), η

k′
i (xi)) ≤

ε

3

and

dXi (η
k
i (x

l
i), yi(x

l
i)) = lim

k′→∞

dXi (η
k
i (x

l
i), η

k′
i (x

l
i)) ≤

ε

3
, l ∈ {1, 2, . . .}.

Now fix k ≥ Kε . Since ηk
i is continuous and xli → xi, it follows

that there exists L∗ such that for all l ≥ L∗, dXi (η
k
i (x

l
i), η

k
i (xi)) < ε

3 .

Consequently, in light of (6), one obtains, for l ≥ L∗,

dXi (yi(x
l
i), yi(xi)) ≤ dXi (yi(x

l
i), η

k
i (x

l
i)) + dXi (η

k
i (x

l
i), η

k
i (xi))

+ dXi (η
k
i (xi), yi(xi)) < ε,

as desired. We conclude that f −1
i is continuous.

Next, it will be shown that fi(A) ⊆ Y n1
i is convex if and only if

A ⊆ Yi is convex. Fix A ⊆ Yi. Suppose that fi(A) is a convex set. Then
A is convex. To see this, fix zi and z ′

i in A and λ in [0, 1]. We need to
show that λzi + (1 − λ)z ′

i ∈ A. Below we show that for each k,

ηk ({θ fi(zi) + (1 − θ )fi(z ′

i ) : θ ∈ [0, 1]
})

=
{
θηk

i (fi(zi)) + (1 − θ )ηk
i (fi(z

′

i )) : θ ∈ [0, 1]
}
, (7)

and that for each θ ∈ (0, 1), there exists a sequence (θm) in [0, 1]
such that θm

→ θ and

fi
(
θmzi + (1 − θm)z ′

i

)
∈
{
θ ′fi(zi) + (1 − θ ′)fi(z ′

i ) : θ ′
∈ [0, 1]

}
,

for each m. (8)

We now assume that λzi+(1−λ)z ′

i ̸∈ A and derive a contradiction.
Note that because{
θ fi(zi) + (1 − θ )fi(z ′

i ) : θ ∈ [0, 1]
}

⊆ fi(A)

(since {fi(zi), fi(z ′

i )} ⊆ fi(A) and fi(A) is, by assumption, a convex set),
λzi + (1−λ)z ′

i ̸∈ A implies that fi(λzi + (1−λ)z ′

i ) ̸∈ fi(A) and hence

fi(λzi + (1 − λ)z ′

i ) ̸∈
{
θ fi(zi) + (1 − θ )fi(z ′

i ) : θ ∈ [0, 1]
}
. (9)

In addition, there exists a sequence (λm) in [0, 1] such that λm
→ λ

and

fi
(
λmzi + (1 − λm)z ′

i

)
∈
{
θ fi(zi) + (1 − θ )fi(z ′

i ) : θ ∈ [0, 1]
}
,

for eachm. (10)

Since λmzi + (1 − λm)z ′

i → λzi + (1 − λ)z ′

i and fi is continuous, it
follows that

fi(λmzi + (1 − λm)z ′

i ) → fi(λzi + (1 − λ)z ′

i ),

and so (10) implies that fi(λzi+(1−λ)z ′

i ) = λ∗fi(zi)+(1−λ∗)fi(z ′

i ) for
some λ∗

∈ [0, 1], contradicting (9). We conclude that A is convex.
Next, we show that (7) holds for each k. Fix k. Since {θ fi(zi) +

(1 − θ )fi(z ′

i ) : θ ∈ [0, 1]} is convex and ηk is a convex preserving
map, it follows that ηk

i ({θ fi(zi) + (1 − θ )fi(z ′

i ) : θ ∈ [0, 1]}) is
convex, and since ηk

i (fi(zi)) and ηk
i (fi(z

′

i )) aremembers of the convex
set ηk

i ({θ fi(zi) + (1 − θ )fi(z ′

i ) : θ ∈ [0, 1]}), it follows that

ηk
i

({
θ fi(zi) + (1 − θ )fi(z ′

i ) : θ ∈ [0, 1]
})

⊇
{
θηk

i (fi(zi)) + (1 − θ )ηk
i (fi(z

′

i )) : θ ∈ [0, 1]
}
.

To establish the reverse containment, note that since ηk
i ∈

H(Y n1
i , Y nk

i ), and since{
θηk

i (fi(zi)) + (1 − θ )ηk
i (fi(z

′

i )) : θ ∈ [0, 1]
}

is convex in Y nk
i , the set

ηk
i
−1 ({

θηk
i (fi(zi)) + (1 − θ )ηk

i (fi(z
′

i )) : θ ∈ [0, 1]
})

is convex in Y n1
i , and because

{fi(zi), fi(z ′

i )} ⊆ ηk
i
−1 ({

θηk
i (fi(zi)) + (1 − θ )ηk

i (fi(z
′

i )) : θ ∈ [0, 1]
})

,

it follows that{
θ fi(zi) + (1 − θ )fi(z ′

i ) : θ ∈ [0, 1]
}

⊆ ηk
i
−1 ({

θηk
i (fi(zi)) + (1 − θ )ηk

i (fi(z
′

i )) : θ ∈ [0, 1]
})

,
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implying that

ηk
i

({
θ fi(zi) + (1 − θ )fi(z ′

i ) : θ ∈ [0, 1]
})

⊆
{
θηk

i (fi(zi)) + (1 − θ )ηk
i (fi(z

′

i )) : θ ∈ [0, 1]
}
.

Next, we show that for each θ ∈ (0, 1), there exists a sequence
(θm) in [0, 1] such that θm

→ θ and (8) holds. Fix θ ∈ (0, 1). Note
that it suffices to show that there exists a subsequence (ηkℓ

i ) of (ηk
i )

such that for each ϵ > 0, there exist yi ∈ {θ ′fi(zi) + (1 − θ ′)fi(z ′

i ) :

θ ′
∈ [0, 1]} and L such that ηkℓ

i (yi) ∈ Nϵ(θzi+(1−θ )z ′

i ) for all ℓ ≥ L.
To prove this, note first that sinceηk

i (fi(zi)) → zi andηk
i (fi(z

′

i )) → z ′

i ,
by the continuity of vector addition and scalar multiplication it
follows that

θηk
i (fi(zi)) + (1 − θ )ηk

i (fi(z
′

i )) → θzi + (1 − θ )z ′

i . (11)

In addition, recall that given ϵ > 0, there exists K such that for
every k, l ≥ K , (5) holds. Consequently, there is a subsequence (ηkℓ

i )
of (ηk

i ) such that

sup
xi∈Y

n1
i

dXi
(
η
kℓ
i (xi), η

kℓ+1
i (xi)

)
<

1
2ℓ+1 , for each ℓ.

Now fix ϵ > 0. Given that (7) holds for each k, and given the
convergence in (11), there exist yi ∈ {θ ′fi(zi) + (1 − θ ′)fi(z ′

i ) : θ ′
∈

[0, 1]} and L such that η
kL
i (yi) ∈ N ϵ

2
(θzi + (1 − θ )z ′

i ) and

∞∑
κ=0

dXi
(
η
kL+κ

i (yi), η
kL+κ+1
i (yi)

)
<

1
2L+1 +

1
2L+2 + · · · =

1
2L <

ϵ

2
.

In addition, for each ℓ ≥ L one has

dXi
(
η
kL
i (yi), η

kℓ
i (yi)

)
≤

∞∑
κ=0

dXi
(
η
kL+κ

i (yi), η
kL+κ+1
i (yi)

)
<

1
2L+1 +

1
2L+2 + · · · =

1
2L <

ϵ

2
.

Consequently, since η
kL
i (yi) ∈ N ϵ

2
(θzi + (1 − θ )z ′

i ), we see that
η
kℓ
i (yi) ∈ Nϵ(θzi + (1 − θ )z ′

i ) for all ℓ ≥ L.
It remains to show that fi(A) is convex if A is convex. Suppose

that A is convex and pick xi and x′

i in fi(A) and λ ∈ [0, 1]. Then
xi = fi(zi) and x′

i = fi(z ′

i ) for some zi and z ′

i in A. To see that
λfi(zi) + (1 − λ)fi(z ′

i ) ∈ fi(A), it suffices to show that

ηk
i

(
λfi(zi) + (1 − λ)fi(z ′

i )
)

→ λ∗zi + (1 − λ∗)z ′

i ,

for some λ∗
∈ [0, 1] (12)

(since this implies that fi(λ∗zi + (1−λ∗)z ′

i ) = λfi(zi)+ (1−λ)fi(z ′

i ),
which, togetherwith the fact thatλ∗zi+(1−λ∗)z ′

i ∈ A (by convexity
of A), yields λfi(zi)+ (1− λ)fi(z ′

i ) ∈ fi(A), as we sought). To see that
(12) holds, note that by (7),

ηk
i

(
λfi(zi) + (1 − λ)fi(z ′

i )
)

∈
{
θηk

i (fi(zi)) + (1 − θ )ηk
i (fi(z

′

i )) : θ ∈ [0, 1]
}
, for each k,

implying that there exists a sequence (θ k) in [0, 1] such that

ηk
i

(
λfi(zi) + (1 − λ)fi(z ′

i )
)

= θ kηk
i (fi(zi)) + (1 − θ k)ηk

i (fi(z
′

i )).

Consequently, since the sequence (ηk
i (λfi(zi) + (1 − λ)fi(z ′

i ))) con-
verges, and since ηk

i (fi(zi)) → zi and ηk
i (fi(z

′

i )) → z ′

i , we see

that

θ kηk
i (fi(zi)) + (1 − θ k)ηk

i (fi(z
′

i )) → λ∗zi + (1 − λ∗)z ′

i ,

for some λ∗
∈ [0, 1],

as desired.
We conclude that fi ∈ H(Yi, Y

n1
i ), and consequently f ki ∈

H(Yi, Y
nk
i ) for each k. To prove that (Y nk , unk ) → (Y , u), it suffices

to show that given ϵ > 0 there exists K such that for all k ≥ K ,
N∑
i=1

sup
z∈Y

|unk
i (f k(z)) − ui(z)| < ϵ and sup

z∈Y
dX (z, f k(z)) ≤ ϵ. (13)

Fix ϵ > 0. Recall that there exists K such that for every k, l ≥ K ,
N∑
i=1

sup
x∈Yn1

|unk
i (ηk(x)) − unl

i (η
l(x))| <

ϵ

N
and

sup
x∈Yn1

dX (ηk(x), ηl(x)) < ϵ.

Given i, and for k ≥ K and z ∈ Y ,

|unk
i (f k(z)) − ui(z)| = |unk

i (ηk(f (z))) − ui(z)|

= lim
l→∞

|unk
i (ηk(f (z))) − unl

i (η
l(f (z)))| ≤

ϵ

N
and

dX (z, f k(z)) = dX (z, ηk(f (z))) = lim
l→∞

dX (ηl(f (z)), ηk(f (z))) ≤ ϵ,

implying (13). We conclude that (Y nk , unk ) → (Y , u).
Next, we show that (Y n, un) → (Y , u). Fix ϵ > 0 and recall

that there exists M ′ such that for every m, n ≥ M ′, there exists
h(m,n)

∈ ×
N
i=1H(Ym

i , Y n
i ) such that

N∑
i=1

sup
x∈Ym

|um
i (x) − un

i (h
(m,n)(x))| <

ϵ

2N
and

sup
x∈Ym

dX (h(m,n)(x), x) <
ϵ

2
.

In addition, there exists K ∗ such that for all k ≥ K ∗,
N∑
i=1

sup
z∈Y

|unk
i (f k(z)) − ui(z)| <

ϵ

2N
and sup

z∈Y
dX (z, f k(z)) ≤

ϵ

2
.

For n ≥ M ′, and given i and z ∈ Y , and k ≥ K ∗ with nk ≥ M ′,

|un
i (h

(nk,n)(f k(z))) − ui(z)| ≤ |unk
i (f k(z)) − ui(z)|

+ |un
i (h

(nk,n)(f k(z)))

− unk
i (f k(z))| ≤

ϵ

N
and

dX (z, h(nk,n)(f k(z))) = dX (z, f k(z)) + dX (h(nk,n)(f k(z)), f k(z)) ≤ ϵ.

Consequently, for n ≥ M ′ one has ρX ((Y n, un), (Y , u)) ≤ ϵ, and we
conclude that (Y n, un) → (Y , u).

It remains to show that there exists a subsequence (Y nk , unk ) of
(Y n, un) satisfying the following: there exists a sequence (gk) with
gk

∈ ×
N
i=1H(Y nk

i , Y nk+1
i ) for each k such that the sequences (3) and

(4) (for x ∈ Y n1 ) satisfy the following: given ϵ > 0, there exists K
such that for every k, l ≥ K ,
N∑
i=1

sup
x∈Yn1

|unk
i (ηk(x)) − unl

i (η
l(x))| < ϵ and

sup
x∈Yn1

dX (ηk(x), ηl(x)) < ϵ. (14)
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Recall that given ϵ > 0, there existsM such that for everym, n ≥ M
there exists h(m,n)

∈ ×
N
i=1H(Ym

i , Y n
i ) such that

N∑
i=1

sup
x∈Ym

|um
i (x) − un

i (h
(m,n)(x))| < ϵ and

sup
x∈Ym

dX (h(m,n)(x), x) < ϵ.

Therefore, one can select a subsequence (nk) of (n) satisfying the
following: for each k,
N∑
i=1

sup
x∈Ynk

|unk
i (x) − unk+1

i (h(nk,nk+1)(x))| <
1

2k+1N
and

sup
x∈Ynk

dX (h(nk,nk+1)(x), x) <
1

2k+1 .

For each k, set gk
:= h(nk,nk+1) ∈ ×

N
i=1H(Y nk

i , Y nk+1
i ). Now fix ϵ > 0

and choose K with 1
2K−1 < ϵ. For k, l ≥ K and for x ∈ Y n1 we

have

|unk
i (ηk(x)) − unl

i (η
l(x))| ≤ |unK

i (ηK (x)) − unK+1
i (ηK+1(x))|

+ |unK+1
i (ηK+1(x)) − unK+2

i (ηK+2(x))| + · · ·

<

∞∑
k′=K

1
2k′N

=
1
N

·
1

2K−1

(
1
2

+
1
22 + · · ·

)
<

ϵ

N
and

dX (ηk(x), ηl(x)) ≤ dX (ηK (x), ηK+1(x)) + dX (ηK+1(x), ηK+2(x)) + · · ·

<
1
2K +

1
2K+1 + · · · =

1
2K−1 < ϵ.

Consequently, for every k, l ≥ K , (14) holds, as we sought. ■

Theorem 2, together with Lemma 9, immediately gives the
following corollary, which generalizes Theorem 2 in Carbonell-
Nicolau (2010).6

Corollary (to Theorem 2). Suppose that G′′

X ∈ GX . Let G′

X be the
closure of G′′

X inGX . Then every member of a residual, dense subset of
G′

X ∩ G∗

X is essential.

Weconcludewith a comment. Anatural question iswhether the
techniques for fixed action spaces developed in Carbonell-Nicolau
(2015) to extend the results in Carbonell-Nicolau (2010) can be
adapted to the more general notion of perturbed game considered
in this paper. This suggests a natural avenue towards a general-
ization of Theorem 2 and the Corollary. A detailed discussion of
this topic lies outside the scope of this paper and is left for future
research.
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