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Abstract A Nash equilibrium x of a normal-form game G is essential if any pertur-
bation of G has an equilibrium close to x . Using payoff perturbations, we identify
a new collection of games containing a dense, residual subset of games whose Nash
equilibria are all essential. This collection covers economic examples that cannot be
handled by extant results and subsumes the sets of games considered in the literature.
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1 Introduction

Given a collection G of normal-form games and given a game G in G, a Nash equi-
librium x of G is essential relative to G if neighboring games within G have Nash
equilibria close to x . For generic games in the collection of all finite-action games with
fixed action spaces, allNash equilibria are essential (cf.Wu and Jiang 1962). This result
has been extended to infinite-action games (e.g., Yu 1999; Carbonell-Nicolau 2010;
Scalzo 2013). Using the existence results in Barelli and Meneghel (2013), we identify
a new collection of gameswhose genericmembers have only essential Nash equilibria.
This collection covers economic examples that cannot be handled by extant results
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278 O. Carbonell-Nicolau

and subsumes the sets of games considered in Yu (1999), Carbonell-Nicolau (2010),
Scalzo (2013).

The standard approach to proving generic essentiality of Nash equilibrium points
consists in identifying a collection G of compact, metric games with the following
properties: (i)G is a complete space; (ii) themembers ofG possess aNash equilibrium;
and (iii) the Nash equilibrium correspondence, defined on G, is compact-valued and
upper hemicontinuous. Items (i)–(iii), together with the main theorem in Fort (1951),
yield the essentiality of Nash equilibrium points in generic games. Fort’s (1951) the-
orem states that a correspondence F from a topological space to a metric space is
lower hemicontinuous at a residual subset of its domain if F is nonempty-valued,
compact-valued, and upper hemicontinuous.

Call a game an essential game if its Nash equilibria are all essential. Using the stan-
dard approach, we first identify a new collection of gamesG whose generic members
are essential. We then take advantage of the topological structure of G to establish
the existence of generic essential games within an extended domain, the topological
closure of G. Methodologically, the proof of this extension is nonstandard in that it
does not rely on Fort’s (1951) theorem. The extended domain has interesting proper-
ties. First, it contains economically meaningful discontinuous games that cannot be
handled by extant results. Second, it subsumes the set of continuous games.

Whilewe cannot guarantee that the topological closure ofG contains the collections
of games considered in Carbonell-Nicolau (2010) and Scalzo (2013), we do prove the
existence of generic essential games within a strict superset of the sets of games
considered in the literature, namely the union of (the closure of)G and the collections
of games considered in Carbonell-Nicolau (2010) and Scalzo (2013).

2 Preliminaries

A normal-form game (or simply a game) is a collection G = (Xi , ui )Ni=1, where
N is a finite number of players, Xi is a nonempty set of actions for player i , and
ui : X → R represents player i’s payoff function, defined on the set of action profiles
X := ×N

i=1Xi . By a slight abuse of notation, N will represent both the number of
players and the set of players.

If ui is bounded and Xi is a nonempty subset of a metric space for each i, G is
said to be a metric game. If in addition Xi is compact for each i , then G is called a
compact, metric game. If Xi is a nonempty, convex subset of a locally convex vector
space for each i , then G is called a convex game. If G is a metric, convex game and
in addition the map xi �→ ui (xi , x−i ) defined on Xi is quasiconcave for each i and
every x−i ∈ X−i , then G is said to be a metric, quasiconcave game.

For each i , let X−i := × j �=i X j . Given i and a strategy profile x = (x1, . . . , xN ) in
X , the subprofile

(x1, . . . , xi−1, xi+1, . . . , xN )

in X−i is denoted by x−i , and we sometimes write, with a slight abuse of notation,
(xi , x−i ) for x .
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Essential Nash equilibria in normal-form games 279

Definition 1 A strategy profile x = (xi , x−i ) in X is a Nash equilibrium of G =
(Xi , ui )i∈N if ui (yi , x−i ) ≤ ui (x) for every yi ∈ Xi and each i .

A Nash equilibrium of G = (Xi , ui )i∈N is sometimes referred to as a pure-strategy
Nash equilibrium of G.

Definition 2 A subset of a topological space is nowhere dense if its closure has an
empty interior. A subset of a topological space is meager if it is a countable union of
nowhere dense sets. A subset of a topological space is residual if it is the complement
of a meager set. A topological space A is said to be a Baire space if every residual set
in A is dense in A.

Definition 3 A correspondence � : A ⇒ B between topological spaces is closed if
its graph, {(x, y) ∈ A × B : y ∈ �(x)}, is closed in A × B.

For each player i , let Xi be a nonempty, compact metric space, and let X :=
×i∈N Xi . Let B(X)denote the set of boundedmaps f : X → R.Weview (B(X)N , ρX )

as a metric space, where ρX : B(X)N × B(X)N → R is defined by

ρX (( f1, . . . , fN ), (g1, . . . , gN )) :=
∑

i∈N
sup
x∈X

| fi (x) − gi (x)|.

It is clear that a game of the form (Xi , ui )i∈N can be viewed as member u of
(B(X)N , ρX ), and we can define the Nash equilibrium correspondence as a set-valued
map

EX : B(X)N ⇒ X

that assigns to each game u in B(X)N the set of Nash equilibria of u, EX (u). Given a
family of games G ⊆ B(X)N , the restriction of EX to G is denoted by EX |G.

By a slight abuse of notation, we often represent a game of the form (Xi , ui )i∈N
simply as u.

Definition 4 Given a class of games G ⊆ B(X)N , a Nash equilibrium x of u ∈ G is
an essential equilibrium of u relative toG if for every neighborhood Vx of x , there is
a neighborhood Vu of u such that for every f ∈ Vu ∩ G, Vx ∩ EX ( f ) �= ∅.
Definition 5 Suppose that G ⊆ B(X)N . A game u in G is essential relative to G if
every pure-strategy Nash equilibrium of u is essential relative toG. When the domain
of reference is clear from the context, we shall simply say that u is an essential game.

3 The main results

Given a game (Xi , ui )i∈N and given Y ⊆ X , a correspondence � : Y ⇒ X is a
product correspondence if there exist correspondences

�1 : Y ⇒ X1, . . . , �N : Y ⇒ XN

such that
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�(x) = ×i∈N�i (x), for every x ∈ Y.

The following definition is taken from Barelli and Meneghel (2013).1,2

Definition 6 A metric, convex game G = (Xi , ui )i∈N is continuously secure if for
every x ∈ X that is not a Nash equilibrium of G, there exist α ∈ R

N , a neighborhood
Vx of x , and a nonempty-valued, convex-valued, closed product correspondence � :
Vx ⇒ X such that the following two conditions are satisfied:

(i) For each i and every y ∈ Vx , ui (zi , y−i ) ≥ αi for all zi ∈ �i (y).
(ii) For each y ∈ Vx , there exists i such that yi does not belong to the convex hull of

{zi ∈ Xi : ui (zi , y−i ) ≥ αi }.
We introduce the following strengthening of Definition 6.

Definition 7 Given ε > 0, a metric, convex game G = (Xi , ui )i∈N is ε-continuously
secure if for every x ∈ X that is not a Nash equilibrium of G, there exist α ∈
R

N , a neighborhood Vx of x , and a nonempty-valued, convex-valued, closed product
correspondence � : Vx ⇒ X such that the following two conditions are satisfied:

(i) For each i and every y ∈ Vx , ui (zi , y−i ) ≥ αi + ε for all zi ∈ �i (y).
(ii) For each y ∈ Vx , there exists i such that yi does not belong to the convex hull of

{zi ∈ Xi : ui (zi , y−i ) ≥ αi }.
For each i ∈ N , let Xi be an action space, and let X := ×i∈N Xi . Consider the col-

lection G
(c,ε)
X of convex, compact, metric games (Xi , ui )i∈N satisfying ε-continuous

security. Henceforth, for G ⊆ B(X)N , cl(G) will denote the closure of G within
B(X)N .

Define

G∞
X :=

∞⋃

n=1

G
(c, 1n )

X and G∗
X := cl(G∞

X ).

Theorem 1 Every member of a dense, residual subset of G∗
X is essential.3

3.1 Relating Theorem 1 to extant results

Webegin this subsection by introducing a series of definitions. The following definition
is taken from Barelli and Soza (2009).

1 Barelli and Meneghel (2013) use the notion of continuous security to establish the existence of a pure-
strategy Nash equilibrium in discontinuous games. For related existence results, see, inter alia, McLennan
et al. (2011), Reny (1999, 2009), Bagh and Jofre (2006), Carmona (2009, 2011), Bich (2009), Castro (2011),
and Prokopovych (2011), Prokopovych (2013).
2 The careful reader will observe that Definition 6 does not exactly coincide with Definition 2.1 in Barelli
and Meneghel (2013). The definition presented here is needed for Theorem 2.2 in Barelli and Meneghel
(2013) to hold (see footnote 4 in Carmona and Podczeck 2014).
3 Theorem 1 holds intact if G∗

X is replaced by G∞
X . See Remark 7 in Subsection 5.3.
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Essential Nash equilibria in normal-form games 281

Definition 8 A metric game G = (Xi , ui )i∈N is generalized payoff secure if for
each ε > 0, x ∈ X , and i , there is a neighborhood Vx of x and a correspondence
�i : Vx ⇒ Xi such that

ui (zi , y−i ) > ui (x) − ε, for each zi ∈ �i (y) and every y ∈ Vx ,

and �i is nonempty-valued, convex-valued, and closed.

The following weakening of generalized payoff security can be found in Dasgupta
and Maskin (1986) and in Carmona (2009).

Definition 9 A metric game G = (Xi , ui )i∈N is weakly payoff secure if for each
ε > 0, x ∈ X , and i , there exists a neighborhood Vx−i of x−i such that y−i ∈ Vx−i

implies ui (yi , y−i ) > ui (x) − ε for some yi ∈ Xi .

The following two definitions are taken from Scalzo (2013).

Definition 10 Ametric gameG = (Xi , ui )i∈N is generalized positively quasitransfer
continuous if for every α > 0,

∑

i∈N

[
ui (xi , y−i ) − ui (y)

]
> α, for some (x, y) ∈ X × X

implies that there exists a neighborhood Vy of y and a correspondence � : Vy ⇒ X
such that

∑

i∈N

[
ui (ai , z−i ) − ui (z)

]
> α, for each a ∈ �(z) and z ∈ Vy,

and � is nonempty, convex-valued, compact-valued, and upper hemicontinuous.4

Definition 11 Ametric, convex gameG = (Xi , ui )i∈N is 0-diagonally quasiconcave
if for each finite subset {x1, . . . , xk} of X and each member x of the convex hull of
{x1, . . . , xk}, we have

min
l∈{1,...,k}

{
∑

i∈N

[
ui (x

l
i , x−i ) − ui (x)

]}
≤ 0.

For each i ∈ N , let Xi be an action space, and let X := ×i∈N Xi . Consider the
following collections of games:

• The setGX of compact, metric games (Xi , ui )i∈N for which a pure-strategy Nash
equilibrium exists.

• The set Gp
X of compact, metric, quasiconcave games (Xi , ui )i∈N satisfying gen-

eralized payoff security, with
∑

i∈N ui upper semicontinuous.

4 The formal definition of upper hemicontinuity of a correspondence is given in Definition 15, Subsection
5.1, below.
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• The set Gw
X of compact, metric, quasiconcave games (Xi , ui )i∈N satisfying weak

payoff security, with ui upper semicontinuous for each i .
• The setGg

X of compact, metric games (Xi , ui )i∈N that possess a Nash equilibrium
and satisfy generalized positive quasitransfer continuity.

• The set Gq
X of compact, metric games (Xi , ui )i∈N satisfying generalized positive

quasitransfer continuity and 0-diagonal quasiconcavity.

Remark 1 We have Gw
X ⊆ GX [Carmona (2009, Corollary 2 and Proposition 3)],

G
q
X ⊆ GX [Scalzo (2013, Proposition 2)], and G

q
X ⊆ G

g
X ⊇ G

p
X (Scalzo 2013).

Next, we recapture two results from Carbonell-Nicolau (2010) and Scalzo (2013).

Theorem 2 (Carbonell-Nicolau 2010) Every member of a dense, residual subset of
G

p
X (resp. Gw

X ) is essential.

Theorem 3 (Scalzo 2013) Every member of a dense, residual subset of Gg
X (resp.

G
q
X ) is essential.

Recall that

G∞
X :=

∞⋃

n=1

G
(c, 1n )

X and G∗
X := cl(G∞

X ).

The following example illustrates that G∗
X \ [Gg

X ∪Gw
X ] �= ∅, implying that Theorem

1 covers games that cannot be handled by Theorem 2 and Theorem 3.

Example 1 Consider the game ([0, 1], u), where

u(x) :=

⎧
⎪⎨

⎪⎩

0 if x = 0,

1 − x if x ∈ (0, 1),

1 if x = 1.

Since u is not upper semicontinuous, we have u /∈ Gw[0,1]. Next, we show that u

violates generalized positive quasitransfer continuity so that u /∈ G
g
[0,1]. To this end,

we show that there exist α > 0 and (x, y) ∈ [0, 1]2 such that u(x) − u(y) > α

and for each neighborhood Vy of y, there exists z ∈ Vy such that u(a) − u(z) ≤
α for all a ∈ [0, 1]. It suffices to take α = 1

2 and (x, y) = (1, 0), for we have
u(x) − u(y) = u(1) − u(0) = 1 > α = 1

2 and each neighborhood of 0 contains a
number z sufficiently close to 0 (so that u(z) is sufficiently close to 1) for which, given
any a ∈ [0, 1], u(a) − u(z) ≤ u(1) − u(z) = 1 − u(z) < α = 1

2 .
To see that u ∈ G∗[0,1], define a sequence (un) in B([0, 1]) as follows: for each n,

un(x) :=
{
u(x) + 1

n if x = 1,

u(x) otherwise.
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Essential Nash equilibria in normal-form games 283

We have un → u, and it is easy to verify that for each n, un ∈ G
(c,ε)
[0,1] for some ε.

Indeed, fix n and set ε := 1
2n . Suppose that x is not a Nash equilibrium of un . Then

x �= 1. Let α := 1, and choose a neighborhood Vx of x with Vx ∩ {1} = ∅. Define
� : Vx ⇒ [0, 1] by �(y) := {1}. Then the following holds:

(i) For each y ∈ Vx , un (1) = 1 + 1
n ≥ α + ε.

(ii) For each y ∈ Vx , y does not belong to the convex hull of {z ∈ [0, 1] : un(z) ≥
α} = {1}.
On the other hand, G∗

X subsumes the collection of continuous games. More pre-
cisely, we have the following result.5

Proposition 1 The set of compact, metric, quasiconcave, continuous games
(Xi , ui )i∈N is contained in G∗

X .

Proof Suppose that (Xi , ui )i∈N is compact, metric, quasiconcave, and continuous.
We first establish the following preliminary result: given i and x ∈ X , if ui (yi , x−i ) >

ui (x) for some yi ∈ Xi , then there exists a neighborhood Vx of x such that (zi , z−i ) /∈
Vx for each zi ∈ argmaxa∈Xi

ui (a, y−i ) and every z ∈ Vx . This follows from the fact
that player i’s best-reply correspondence ϒi : X−i ⇒ Xi , defined by ϒi (x−i ) :=
argmaxa∈Xi

ui (a, x−i ), has a closed graph (as a consequence of Berge’s maximum
theorem (see, e.g., Aliprantis and Border 2006, Theorem 17.31) and Theorem 17.11
of Aliprantis and Border 2006) (hence, the complement of the graph of Bi is open in
X−i × Xi ).6

For each n and each i , define uni : X → R by

uni (x) :=
⎧
⎨

⎩
ui (x) + 1

n if xi ∈ argmax
a∈Xi

ui (a, x−i ),

ui (x) otherwise.

Clearly, un → u, so the proof will be complete if we show that un ∈ G
(c, 1

4n )

X for each n.
Fix n. The game un is clearly convex, compact, andmetric, so it suffices to show that un

is 1
4n -continuously secure. We first note that the game un is quasiconcave.7 Therefore,

to show that un is 1
4n -continuously secure, it suffices to prove the following: if x ∈ X

that is not a Nash equilibrium of un , there exist α ∈ R
N , a neighborhood Vx of x ,

and a nonempty-valued, convex-valued, closed product correspondence � : Vx ⇒ X
such that the following two conditions are satisfied:

(i) For each i and every y ∈ Vx , uni (zi , y−i ) ≥ αi + 1
4n for all zi ∈ �i (y).

(ii) For each y ∈ Vx , there exists i such that uni (y) < αi .

5 I would like to thank an anonymous referee for encouraging me to obtain Proposition 1.
6 Thanks to an anonymous referee for suggesting this argument.
7 Given i, x−i ∈ X−i , {xi , yi } ⊆ Xi , and λ ∈ [0, 1], and putting xi := λxi + (1 − λ)yi , it is routine to
verify that uni (xi , x−i ) ≥ min{uni (xi , x−i ), u

n
i (yi , x−i )}.
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284 O. Carbonell-Nicolau

Suppose that x is not a Nash equilibrium of un . It is easily seen that this implies
that x is not a Nash equilibrium of u. Consequently, there exist j and z j ∈ ϒ j (x− j )

such that u j (z j , x− j ) > u j (x). Set

α := (
u1(x), . . . , u j−1(x), u j (x) + 1

2n , u j+1(x), . . . , uN (x)
)
.

Because u is continuous, there is a neighborhood Ux of x such that for each i and
every y ∈ Ux ,

ui (y) ∈ (
ui (x) − 1

4n , ui (x) + 1
4n

)
.

In addition, since u j (z j , x− j ) > u j (x), it follows from the result proven in the first
paragraph that there exists a neighborhood Nx of x such that (z j , y− j ) /∈ Nx for each
z j ∈ ϒ j (x− j ) and every y ∈ Nx .

Set Vx := Ux ∩ Nx , and for each i , define �i : Vx ⇒ Xi by �i (x) := ϒi (x−i ).
By Berge’s maximum theorem, �i is nonempty-valued, compact-valued and upper
hemicontinuous (hence closed), and �i is in addition convex-valued thanks to the
quasiconcavity of (Xi , ui )i∈N . Furthermore, the following holds:

• For every y ∈ Vx ,

unj (z j , y− j ) = u j (z j , y− j ) + 1
n ≥ u j (y) + 1

n ≥ u j (x) + 3
4n = α j + 1

4n ,

for all z j ∈ � j (y).
• For each i �= j and every y ∈ Vx ,

uni (zi , y−i ) = ui (zi , y−i ) + 1
n ≥ ui (y) + 1

n ≥ u j (x) + 3
4n = αi + 3

4n ,

for all zi ∈ �i (y).
• For each y ∈ Vx , we have

unj (y) = u j (y) ≤ u j (x) + 1
4n < α j .

This completes the proof. ��
While we cannot guarantee that the members ofGw

X (resp.Gg
X ) belong toG

∗
X , we can

establish the essentiality of generic games for the union G∗
X ∪ Gw

X ∪ G
g
X .

Theorem 4 Every member of a dense, residual subset ofG∗
X ∪G

g
X ∪Gw

X is essential.

More generally, essential games can be shown to be generic within any union of the
form G∗

X ∪ cl(G), where G has certain properties (recall that cl(G) represents the
closure of G within B(X)N ). More precisely, consider the following definitions and
the ensuing theorem.

Definition 12 A metric game G = (Xi , ui )i∈N satisfies sequential* better-reply
security if the following condition is satisfied: if (un) is a sequence in B(X)N with
un → u, if (xn) is a sequence in X with xn → x ∈ X , and if x is not a Nash
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Essential Nash equilibria in normal-form games 285

equilibrium of G, then there exist an i , subsequences (uk) of (un) and (xk) of (xn),
and a sequence (yki ) such that for each k, yki ∈ Xi and uki (y

k
i , x

k
−i ) > uki (x

k).8

Definition 13 Given G ⊆ B(X)N , a metric game G = (Xi , ui )i∈N satisfies sequen-
tial* better-reply security with respect to G if the following condition is satisfied: if
(un) is a sequence in G with un → u, if (xn) is a sequence in X with xn → x ∈ X ,
and if x is not a Nash equilibrium of G, then there exist an i , subsequences (uk)
of (un) and (xk) of (xn), and a sequence (yki ) such that for each k, yki ∈ Xi and
uki (y

k
i , x

k
−i ) > uki (x

k).

For each i ∈ N , let Xi be an action space, and let X := ×i∈N Xi . ForG ⊆ B(X)N ,
let Gs

X (G) be the set of compact, metric games (Xi , ui )i∈N satisfying sequential*
better-reply security with respect to G. Recall that GX denotes the set of compact,
metric games (Xi , ui )i∈N for which a pure-strategy Nash equilibrium exists.

Theorem 5 Suppose that G ⊆ B(X)N satisfies cl(G) ⊆ GX ∩ Gs
X (cl(G)). Then

every member of a dense, residual subset of G∗
X ∪ cl(G) is essential.

We conclude this section with two remarks. The first remark illustrates that the mem-
bers of G∗

X \ G∞
X may or may not possess Nash equilibria. The second remark dis-

cusses the relationship between themembers ofG∗
X andgeneralized better-reply secure

games.

Remark 2 Because each member ofG(c,ε)
X is a convex, compact, metric game satisfy-

ing continuous security, it follows from Theorem 2.2 of Barelli and Meneghel (2013)
that the elements of G(c,ε)

X have a Nash equilibrium. Consequently, each member of
G∞

X has a Nash equilibrium. The games in G∗
X \ G∞

X may or may not possess Nash
equilibria. To illustrate, the one-player game ([0, 1], u) with u(1) := 0 and u(x) := x
for all x ∈ [0, 1) has no Nash equilibrium, but can be approximated by a sequence of
games in G∞[0,1]. Indeed, let un : [0, 1] → R be defined by

un(x) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ∈ [0, 1
n ),

1
n if x ∈ [ 1n , 2

n ),

...
...

1 if x ∈ [ n−1
n , 1

2

( n−1
n + 1

)]
,

n−1
n if x ∈ ( 1

2

( n−1
n + 1

)
, 1

)
,

0 if x = 1.

Clearly, un → u. To see that un ∈ G∞[0,1] for each n, fix n and suppose that x is

not a Nash equilibrium of un . Then either x > 1
2 (

n−1
n + 1) or x < n−1

n . Suppose
that x > 1

2 (
n−1
n + 1). Let αn ∈ ( n−1

n , 1) and choose a neighborhood V of 1 with
inf V > 1

2 (
n−1
n + 1). Then the following holds:

8 Sequential* better-reply security is a variant of Carbonell-Nicolau and McLean’s (2013) sequential
better-reply security.
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(i) un( n−1
n ) = 1 ≥ αn + 1 − αn .

(ii) For every y ∈ V, y does not belong to the convex hull of

{z ∈ [0, 1] : un(z) ≥ αn} = [ n−1
n , 1

2

( n−1
n + 1

)]
.

Thus, un is αn-continuously secure. The case when x < n−1
n can be handled similarly.

On the other hand, the one-player game ([0, 1], u) with u(x) := x for all x ∈ [0, 1]
has a Nash equilibrium and belongs to G∗

X \ G∞
X .

Remark 3 Given a metric game G = (Xi , ui )i∈N , let �G be the graph of the game’s
vector payoff function, i.e.,

�G :=
{
(x, α) ∈ X × R

N : α = u(x)
}

.

The closure of�G is denoted by cl(�G). The following definition is taken fromBarelli
and Meneghel (2013).

Definition 14 A metric game G = (Xi , ui )i∈N is generalized better-reply secure if
for every (x, α) ∈ cl(�G) such that x is not aNash equilibriumofG, there exist a player
i, β ∈ R, a neighborhood Vx of x , and a nonempty-valued, closed correspondence
�i : Vx ⇒ Xi such that

ui (zi , y−i ) ≥ β > αi

for all (y, zi ) in the graph of �i .

Let Gb
X be the collection of compact, metric, quasiconcave games (Xi , ui )i∈N

satisfying generalized better-reply security. We have G∗
X \ Gb

X �= ∅. Indeed, the first
game in Remark 2 is a member ofG∗

X , and since it has no Nash equilibria, it does not
belong to Gb

X .
9

On the other hand, Gb
X \ G∞

X �= ∅.10 For instance, the second example in Remark
2 is a member of Gb

X \ G∞
X .

4 Applications

The collectionG∞
X (henceG∗

X ) contains economicallymeaningful games. To illustrate
this, we first remark that continuously secure games with finite payoffs belong toG∞

X .
We record this result without proof.

Proposition 2 Suppose that G = (Xi , ui )i∈N is continuously secure. Suppose further
that ui has finite range for each i . Then G is ε-continuously secure for some ε.
Consequently, if G is continuously secure and ui has finite range for each i , then
G ∈ G∞

X .

9 The members ofGb
X possess Nash equilibria (cf. Barelli and Meneghel 2013, Proposition 2.4).

10 We have not been able to find an example demonstrating that Gb
X \ G∗

X �= ∅.
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Bagh and Jofre (2006, Example 1) consider a timing game with finite payoffs, and
Barelli and Meneghel (2013, Example 3.1) present a continuously secure game of
product quality competition between firms in which the ranges of the firms’ payoff
functions are finite. Barelli and Soza (2012) present a continuously secure location
model in which the players’ decision problem involves two simultaneous choices—
location and price, quantity, or effort. The specialization of this game to a location
model with a single variable—the location variable—is another instance of a game
whose payoffs have finite range. Finally, Barelli and Soza (2009) consider an example
of a multi-principal multi-agent game with finite payoffs. All these games lie in G∞

X
(for an appropriate choice of the set X ).

To conclude this section, we present an economic game in the collection G∗
X and

illustrate how simple the task of verifying membership in G∗
X can be.

Example 2 Consider a two-player game ([0, 1], [0, 1], u1, u2), where for each i ,

ui (ti , t−i ) :=

⎧
⎪⎨

⎪⎩

a(ti ) if ti < t−i ,

b(ti ) if ti = t−i ,

c(t−i ) if ti > t−i ,

where a, b, and c are bounded real-valued maps on [0, 1]. We make the follow-
ing assumptions: a is lower semicontinuous on [0, 1], b is upper semicontinuous on
[0, 1], c is continuous and nonincreasing on [0, 1], and for every t ∈ [0, 1], a(t) >

b(t) > c(t).11

We show that u ∈ G∗
[0,1]2 . For each n, consider the game ([0, 1], [0, 1], un1, un2),

where for each i and every n,

uni (ti , t−i ) :=

⎧
⎪⎨

⎪⎩

a(ti ) + 1
n if ti < t−i ,

b(ti ) if ti = t−i ,

c(t−i ) − 1
n if ti > t−i .

Because un → u, to see that u ∈ G∗
[0,1]2 , it suffices to show that for each n, un satisfies

εn-continuous security, where (εn) is a sequence in R++.
Fix n and t = (t1, t2) ∈ [0, 1]2, and suppose that t is not a Nash equilibrium of un .

Then t �= (0, 0). Without loss of generality, suppose that t1 ≤ t2.
If 0 �= t1 = t2, there exists t∗ ∈ [0, t1) such that uni (t∗, t−i ) > b(t1) for each i . Let

Vt1 be a neighborhood of t1 such that t∗ /∈ Vt1 and

b(τ ) < b(t1) + 1
2n , for every τ ∈ Vt1 .

Then, for each i ,

uni (t
∗, τ−i ) = a(t∗) + 1

n ≥ b(ti ) + 1
n , for all τ−i ∈ Vt1 .

11 Similar games have been used to study behavior in duels, R&D, and patent races (e.g. Karlin 1959;
Pitchik 1982; Reinganum 1981a,b; Fudenberg and Tirole 1985).
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In addition, for every (τ1, τ2) ∈ Vt1 × Vt1 , and letting τ2 = max{τ1, τ2}, we have, for
every x2 ≥ τ2,

un2(τ1, x2) ≤ b(τ1) < b(t2) + 1
2n ,

so τ2 does not belong to the convex hull of {z2 ∈ [0, 1] : un2(τ1, z2) ≥ b(t2) + 1
2n }.

If t1 < t2, for each i , let Vti be a neighborhood of ti such that Vt1 ∩ Vt2 = ∅ and

c(t1) − 1
2n < c(τ1) < c(t1) + 1

2n , for all τ1 ∈ cl(Vt1).

Then, for every (τ1, τ2) ∈ Vt1 × Vt2 ,

un1(t1, τ2) = a(t1) + 1
n

and un2(τ1, inf Vt1) ≥ a(inf Vt1) + 1
n ≥ c(inf Vt1) + 1

n ≥ c(t1) + 1
2n ,

and for every x2 ≥ τ2 we have

un2(τ1, x2) = c(τ1) − 1
n < c(t1) − 1

2n ,

so τ2 does not belong to the convex hull of {z2 ∈ [0, 1] : un2(τ1, z2) ≥ c(t1) − 1
2n }.

Consequently, un satisfies 1
2n -continuous security.

We conclude that u is a member ofG∗
[0,1]2 . In addition, in general u does not belong

toGw
[0,1]2 or toG

g
[0,1]2 . Indeed, one can find maps a, b, and c such that the above game

fails quasiconcavity and/or generalized positive quasitransfer continuity.

5 Proofs of the main results

This section contains the proofs of Theorem 1, Theorem 4, and Theorem 5.

5.1 Preliminaries

Definition 15 A correspondence � : A ⇒ B between topological spaces is upper
hemicontinuous at x ∈ A if the following condition is satisfied: for every neighborhood
V�(x) of�(x) there is a neighborhood Vx of x such that y ∈ Vx implies�(y) ⊆ V�(x).
� is upper hemicontinuous if it is upper hemicontinuous at every point in A.

Definition 16 A correspondence � : A ⇒ B between topological spaces is lower
hemicontinuous at x ∈ A if the following condition is satisfied: for every open set
V ⊆ B with V ∩ �(x) �= ∅ there is a neighborhood Vx of x such that y ∈ Vx implies
�(y)∩V �= ∅.� is lower hemicontinuous if it is lower hemicontinuous at every point
in A.

Remark 4 Suppose that G ⊆ B(X)N . A game u in G is essential relative to G if and
only if EX |G is lower hemicontinuous at u.
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Recall that, for G ⊆ B(X)N , cl(G) represents the closure of G within B(X)N .
For each i ∈ N , let Xi be an action space, and let X := ×i∈N Xi . We recall the

definitions of GX and Gs(G) and introduce new terminology:

• The setGX of compact, metric games (Xi , ui )i∈N for which a pure-strategy Nash
equilibrium exists.

• The set Gs
X of compact, metric games (Xi , ui )i∈N satisfying sequential* better-

reply security.
• ForG ⊆ B(X)N , the setGs

X (G) of compact, metric games (Xi , ui )i∈N satisfying
sequential* better-reply security with respect to G.

• The set Gc
X of convex, compact, metric games (Xi , ui )i∈N satisfying continuous

security.
• The set G

(c,ε)
X of convex, compact, metric games (Xi , ui )i∈N satisfying ε-

continuous security.

• Gε
X := cl

(
G

(c,ε)
X

)
.

• G
∞
X := ⋃∞

n=1G
1
n
X .

• GX := cl
(
G

∞
X

)
.

Remark 5 Clearly, Gs
X ⊆ Gs

X (G) for all G ⊆ B(X)N .

Remark 6 We have Gc
X ⊆ GX (Barelli and Meneghel 2013, Theorem 2.2).

5.2 Preliminary results

Lemma 1 (Fort 1951, Theorem 2) Suppose that X is a metric space and that Y is a
topological space. Suppose that F : Y ⇒ X is a nonempty-valued, compact-valued,
upper hemicontinuous correspondence. Then there exists a residual subset Q of Y
such that F is lower hemicontinuous at every point in Q.

Lemma 2 Suppose that X is compact andmetric. ForG ⊆ B(X)N , EX |G is compact-
valued and upper hemicontinuous if, and only if, G ⊆ Gs

X (G).12

Proof Since X is compact and metric, it suffices to show that EX |G has a closed graph
if, and only if, G ⊆ Gs

X (G) (e.g., Aliprantis and Border 2006, Theorem 17.11).
Suppose that G ⊆ Gs

X (G). Take a sequence (un) in G, and take a sequence (xn)
such that xn is a Nash equilibrium of un for each n. Suppose that

(xn, un) → (x, u),

for some (x, u) ∈ X × G. We must show that x is a Nash equilibrium of u.
Suppose that x is not a Nash equilibrium of u. Then, since the game u, being a

member of G, satisfies sequential* better-reply security with respect to G, there exist

12 For one-player games, a characterization of a nonempty, compact-valued, and upper hemicontinuous
Nash equilibrium correspondence can be furnished in terms of Tian and Zhou’s (1995) transfer upper
continuity and quasitransfer upper continuity (cf. Tian and Zhou 1995, Theorem 3). Sequential* better-
reply security can be viewed as an extension of these conditions to n-person games.
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an i , subsequences (uk) of (un) and (xk) of (xn), and a sequence (yki ) such that for each
k, yki ∈ Xi and uki (y

k
i , x

k
−i ) > uki (x

k), contradicting that xn is a Nash equilibrium of
un for each n.

Conversely, suppose that EX |G has a closed graph. Let (un) be a sequence in G
with un → u, and let (xn) be a sequence in X with xn → x ∈ X . Suppose that x is
not a Nash equilibrium of u. Then, since EX |G has a closed graph, for infinitely many
n, xn is not a Nash equilibrium of un . Therefore, since the player set is finite, there
exists i such that for infinitely many n, uni (y

n
i , xn−i ) > uni (x

n) for some yni ∈ Xi . ��
Proposition 3 Suppose that G ⊆ B(X)N satisfies cl(G) ⊆ GX ∩ Gs

X (cl(G)). Then
every member of a dense, residual subset of cl(G) is essential.

Proof Suppose that G ⊆ B(X)N satisfies cl(G) ⊆ GX ∩Gs
X (cl(G)). The correspon-

dence EX |cl(G) is clearly nonempty-valued, and EX |cl(G) is compact-valued and upper
hemicontinuous (Lemma 2). Consequently, Lemma 1 gives a residual subset Q of
cl(G) such that EX |cl(G) is lower hemicontinuous at every point in Q, and it follows
that for each u ∈ Q, any pure-strategy Nash equilibrium of u is essential relative to
cl(G) (cf. Remark 4). To see that Q is dense in cl(G), note that because cl(G) is a
closed subset of B(X)N , and since B(X)N is a complete, metric space, cl(G) is a com-
plete, metric space. Therefore, cl(G) is a Baire space by the Baire category theorem.
Consequently, Q, being a residual subset of a Baire space, is dense. ��
The proof of the following lemma is relegated to Section 6.

Lemma 3 For each ε, cl(G(c,ε)
X ) ⊆ G

(c,ε−η)
X ∩ Gs

X for every η > 0 with ε − η > 0.

Proposition 4 For each ε, everymember of a dense, residual subset ofGε
X is essential.

Proof Fix ε > 0. By Lemma 3,

cl(G(c,ε)
X ) ⊆ Gc

X ∩ Gs
X .

Therefore, in view of Remark 5 and Remark 6,

cl(Gε
X ) = cl(G(c,ε)

X ) ⊆ GX ∩ Gs
X ⊆ GX ∩ Gs

X (cl(Gε
X )).

Applying Proposition 3, we see that for every u in a dense, residual subset ofGε
X , any

pure-strategy Nash equilibrium of u is essential relative to Gε
X . ��

The proof of the following lemma is given in Section 6.

Lemma 4 For each ε, and for every η > 0 with ε − η > 0, there is an open subset V
of B(X)N with cl(G(c,ε)

X ) ⊆ V ⊆ G
(c,ε−η)
X .

Lemma 5 For each ε, there is an open subset V of B(X)N with Gε
X ⊆ V ⊆ G

ηε

X for
some ηε < ε.

Proof The statement follows immediately from Lemma 4. ��
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Lemma 6 G
∞
X = ⋃∞

n=1G
(c, 1n )

X , and therefore G∞
X = G

∞
X and G∗

X = GX .

Proof Pick u ∈ G
∞
X . Then u ∈ cl(G

(c, 1


)

X ) for some 
, and Lemma 4 implies that u ∈
G

(c, 1
m )

X for somem.Hence,G
∞
X ⊆ ⋃∞

n=1G
(c, 1n )

X . The containmentG
∞
X ⊇ ⋃∞

n=1G
(c, 1n )

X
is obvious. ��

In the remainder of this subsection, we record, without proof, a number of well-
known results on meager sets and Baire spaces that will be useful in the proofs of the
main results. Their proofs can be found in standard topology manuals (e.g., Bourbaki
1989).

Lemma 7 A subset of a topological space is residual if and only if it contains a
countable intersection of open dense sets.

Lemma 8 Any subset of a nowhere dense (resp. meager) set is nowhere dense (resp.
meager). Any superset of a residual set is residual. The union of countably many
meager sets is meager. The intersection of countably many residual sets is residual.

Lemma 9 If A is a meager subset of B and B ⊆ C, then A is a meager subset of C.

Lemma 10 Every nonempty open subspace of a Baire space is a Baire space.

5.3 Proof of Theorem 1

We begin by stating and proving the following result, which is used in the proof of
Theorem 1.

Proposition 5 Assume the following: (i) A is a complete metric space; (ii) (An) is an
increasing sequence of closed subsets of A; (iii) (Bn) is a sequence with Bn a dense,
residual subset of An for each n; and (iv) (V n) is a sequence of open subsets of A with
An ⊆ V n ⊆ An+1 for each n. Then

⋃∞
n=1(B

n+1 ∩ V n) is a dense, residual subset of
cl
(⋃∞

n=1 A
n
)
.

Proof Define

Rn := Bn+1 ∩ V n and R∞ :=
∞⋃

n=1

Rn .

Let

A∞ :=
∞⋃

n=1

An and A := cl
(
A∞)

.

Clearly, A∞ is dense in A. Furthermore, since (V n) is a sequence of open subsets of
A with An ⊆ V n ⊆ An+1 for each n, A∞ is open in A. Thus, A∞ is open and dense
in A.
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We begin by showing that the set A∞ \ R∞ is a meager subset of A∞. This flows
from the following observations.

First, because Bn+1 is a residual subset of An+1, Bn+1 contains a countable inter-
section of open, dense sets (Lemma 7), i.e., there is a countable set {U 1,U 2, . . .} of
open, dense subsets of An+1 such that Bn+1 ⊇ ⋂∞

m=1U
m . This implies thatUm ∩V n

is an open, dense subset of V n for each m and

∞⋂

m=1

[Um ∩ V n] ⊆ Bn+1 ∩ V n, (1)

so that Rn = Bn+1 ∩ V n is a residual subset of V n . The containment in (1) is easy to
verify. To see thatUm∩V n is open in V n for eachm, fixm and take u ∈ Um∩V n . Then,
since Um is open in An+1, there exists a neighborhood V of u such that V ∩ An+1 ⊆
Um . Therefore, because V n ⊆ An+1, V ∩ V n ⊆ Um , so V ∩ V n ⊆ Um ∩ V n . To see
that Um ∩ V n is a dense subset of V n for each m, fix m and pick u ∈ V n . Because
u ∈ V n ⊆ An+1, and since Um is dense in An+1 and V n is open in A and contains u,
there exists f ∈ Um ∩ V n arbitrarily close to u.

Because Rn is a residual subset of V n, V n \ Rn is a meager subset of V n . Con-
sequently, since V n ⊆ An+1 ⊆ A∞, V n \ Rn is a meager subset of A∞ (Lemma
9), and since An \ Rn ⊆ V n \ Rn (recall that An ⊆ V n) it follows that An \ Rn is
a meager subset of A∞ (Lemma 8). Therefore,

⋃∞
n=1(A

n \ Rn), being a countable
union of meager subsets of A∞, is a meager subset of A∞ (Lemma 8).

Second,

A∞ \ R∞ ⊆
∞⋃

n=1

(An \ Rn),

so A∞ \ R∞, being a subset of a meager subset of A∞, is a meager subset of A∞
(Lemma 8).

Next, we show that the set A \ R∞ is a meager subset of A. The set A \ R∞ can be
expressed as

[(A \ A∞) \ R∞] ∪ [
A∞ \ R∞]

(2)

The right-hand side of this union can be written as a countable union of nowhere dense
sets. In addition, since A∞ is open and dense in A, A \ A∞ is nowhere dense, and so
the left-hand side of the union in (2) is nowhere dense (Lemma 8). Consequently, the
union in (2) can be expressed as a countable union of nowhere dense sets. Thus, the
set A \ R∞ is a meager subset of A, implying that R∞ is a residual subset of A.

It only remains to show that R∞ is dense in A. First, observe that An+1, being a
closed subspace of the complete, metric space A, is itself a complete, metric space,
and hence (by the Baire category theorem) a Baire space. Consequently, since V n is
a nonempty, open subset of An+1, V n is a Baire space (Lemma 10). To see that R∞
is dense in A, fix u ∈ A, and let U be a neighborhood of u. Since A∞ is dense in A,
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there exists n such that An ∩ U �= ∅. Therefore, since Rn (being a residual subset of
the Baire space V n) is dense in V n and An ⊆ V n , we have Rn ∩U �= ∅. ��
We are now ready to prove Theorem 1.

Theorem 1 Every member of a dense, residual subset of G∗
X is essential.

Proof By Lemma 6, it suffices to show that every member of a dense, residual subset
of GX is essential.

For each ε, and for every u in a dense, residual subset Dε
X of Gε

X , any pure-
strategy Nash equilibrium of u is essential relative to Gε

X (Proposition 4). For each
ε, Lemma 5 gives ηε < ε and an open subset N ε of B(X)N such that Gε

X ⊆ N ε ⊆
G

ηε

X .

Let A := B(X)N , An := G
1
n
X , Bn := D

1
n
X , and V n := N

1
n , and apply Proposition

5 to conclude that the set

R∞
X :=

∞⋃

n=1

(
D

1
n
X ∩ N

1
n

)

is a dense, residual subset of GX .
It only remains to show that if u ∈ R∞

X , then any pure-strategy Nash
equilibrium of u is essential relative to GX . Fix u ∈ R∞

X , and let x be a
pure-strategy Nash equilibrium of u. Because u ∈ R∞

X , u ∈ D
ηε

X ∩ V ε for
some ε. Since u ∈ D

ηε

X , every pure-strategy Nash equilibrium of u is essen-
tial relative to G

ηε

X . It follows that given a neighborhood Vx of x , there is a
neighborhood Vu of u in B(X)N such that for every f ∈ Vu ∩ G

ηε

X , Vx ∩
EX ( f ) �= ∅. Consequently, since N ε is an open set containing u and N ε ⊆
G

ηε

X , the neighborhood Vu ∩ N ε of u satisfies the following: f ∈ Vu ∩ N ε ∩
GX implies Vx ∩ EX ( f ) �= ∅. It follows that x is essential relative to GX .

��
Remark 7 Theorem 1 implies that every member of a dense, residual subset of

G∞
X =

∞⋃

n=1

G
(c, 1n )

X

is essential. Indeed, letR∞
X be a dense, residual subset ofG∗

X , as given by Theorem 1.

The proof of Theorem 1 makes it clear thatR∞
X may be chosen so thatR∞

X ⊆ G
∞
X =

G∞
X (where the equality follows from Lemma 6). Given this containment, it is easily

seen that R∞
X is a dense, residual subset of G∞

X . Moreover, because every member
of R∞

X is essential relative to G∗
X , every member of R∞

X is essential relative to G∞
X .

These observations are formally stated as a corollary to Theorem 1.

Corollary 1 (to Theorem 1) Every member of a dense, residual subset of G∞
X is

essential.
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5.4 Proof of Theorem 5

Prior to proving Theorem 5, we state and prove a refinement of Proposition 5 that will
be used in the proof of Theorem 5.

Proposition 6 Assume the following: (i) A is a complete metric space and A′ is a
closed subset of A; (ii) (An) is an increasing sequence of closed subsets of A; (iii)
B is a dense, residual subset of A′ and (Bn) is a sequence with Bn a dense, residual
subset of An for each n; and (iv) (V n) is a sequence of open subsets of A with
An ⊆ V n ⊆ An+1 for each n. Then the set

[
B
∖
cl

( ∞⋃

n=1

An

)]
∪
[ ∞⋃

n=1

(Bn+1 ∩ V n)

]

is a dense, residual subset of A′ ∪ [
cl
(⋃∞

n=1 A
n
)]
.

Proof Define

Rn := Bn+1 ∩ V n and R∞ :=
∞⋃

n=1

Rn .

Let

A∞ :=
∞⋃

n=1

An and A := cl
(
A∞)

.

Thanks to Proposition 5, R∞ is a dense, residual subset of A.
Define B ′ := B \ A. We need to show that R∞ ∪ B ′ is a dense, residual subset of

A ∪ A′.
To see that the set R∞ ∪ B ′ is dense in A ∪ A′, take u ∈ A ∪ A′. If u ∈ A, it is

clear that there exists a member of R∞ arbitrarily close to u. If, on the other hand,
u ∈ A′ \ A, then, since A is closed in A, there exists a neighborhood Vu of u with
Vu ∩ A = ∅. Because B is dense in A′, there are members of B arbitrarily close to u.
Hence, there exists f ∈ B ∩ Vu arbitrarily close to u, and since Vu ∩ A = ∅, we have
f ∈ B ′ = B \ A.
Next, we show that B ′ = B \ A is a residual subset of A′ \ A. Since B is a residual

subset of A′, B contains a countable intersection of open dense sets (Lemma 7), so
there exists a countable set {U 1,U 2, . . .} of open and dense subsets of A′ such that
B ⊇ ⋂∞

n=1U
n . This implies that Un \ A is open and dense in A′ \ A for each n and

∞⋂

n=1

[Un \ A] ⊆ B \ A, (3)

from which it follows that B ′ = B \ A is a residual subset of A′ \ A. The containment
in (3) is easy to verify. To see that Un \ A is open in A′ \ A for each n, fix n and take
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u ∈ Un \ A. Since u ∈ Un and Un is open in A′, there is a neighborhood V of u such
that V ∩ A′ ⊆ Un . It follows that V ∩ [A′ \ A] ⊆ Un \ A, and hence, Un \ A is open
in A′ \ A. To see that Un \ A is dense in A′ \ A for each n, fix n and take u ∈ A′ \ A.
Because A is closed in A, there exists a neighborhood U of u such that U ∩ A = ∅,
and since Un is dense in A′, there exists f ∈ Un ∩ U arbitrarily close to u. Because
f ∈ Un ∩U and U ∩ A = ∅, we have f ∈ Un \ A.
We are now ready to show that R∞∪B ′ is a residual subset of A∪A′. Since R∞ (resp.

B ′) is a residual subset of A (resp. A′ \ A), [R∞ ∪ B ′]∩ A (resp. [R∞ ∪ B ′]∩ [A′ \ A])
is a residual subset of A (resp. A′ \ A). It follows that A \ [[R∞ ∪ B ′] ∩ A] (resp.
[A′ \ A] \ [[R∞ ∪ B ′] ∩ [A′ \ A]]) is a meager subset of A (resp. A′ \ A), and since

A \ [R∞ ∪ B ′] ⊆ A \ [[R∞ ∪ B ′] ∩ A]

and

[A′ \ A] \ [R∞ ∪ B ′] ⊆ [A′ \ A] \ [[R∞ ∪ B ′] ∩ [A′ \ A]],

we see that A \ [R∞ ∪ B ′] (resp. [A′ \ A] \ [R∞ ∪ B ′]) is a meager subset of A (resp.
A′ \ A) (Lemma 8). Because A \ [R∞ ∪ B ′] is a meager subset of A, A \ [R∞ ∪ B ′]
is a meager subset of A ∪ A′ (Lemma 9). Similarly, [A′ \ A] \ [R∞ ∪ B ′] is a meager
subset of A ∪ A′. Therefore, the union

[
A \ [R∞ ∪ B ′]] ∪ [[A′ \ A] \ [R∞ ∪ B ′]] = [A ∪ A′] \ [R∞ ∪ B ′]

is a meager subset of A ∪ A′, implying that R∞ ∪ B ′ is a residual subset of A ∪ A′.

Theorem 5 Suppose that G ⊆ B(X)N satisfies cl(G) ⊆ GX ∩ Gs
X (cl(G)). Then

every member of a dense, residual subset of G∗
X ∪ cl(G) is essential.

Proof By Lemma 6, it suffices to show that every member of a dense, residual subset
of GX ∪ cl(G) is essential.

For each ε, and for every u in a dense, residual subsetDε
X ofGε

X , any pure-strategy
Nash equilibrium of u is essential relative to Gε

X (Proposition 4). For each ε, Lemma
5 gives ηε < ε and an open subset N ε of B(X)N such that Gε

X ⊆ N ε ⊆ G
ηε

X . For
every u in a dense, residual subset AX of cl(G), any pure-strategy Nash equilibrium
of u is essential relative to cl(G) (Proposition 3).

Let A := B(X)N , A′ := cl(G), An := G
1
n
X , B := AX , Bn := D

1
n
X , and V n :=

N
1
n , and apply Proposition 6 to conclude that the set R∞ ∪ BX , where

R∞
X :=

∞⋃

n=1

(
D

1
n
X ∩ N

1
n

)
and BX := AX \ GX ,

is a dense, residual subset of GX ∪ cl(G).
It only remains to show that every member of R∞ ∪ BX is essential relative to

GX ∪ cl(G). Fix u ∈ R∞ ∪ BX , and let x be a pure-strategy Nash equilibrium of
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u. If u ∈ R∞
X , u ∈ D

ηε

X ∩ V ε for some ε. Since u ∈ D
ηε

X , every pure-strategy Nash
equilibrium of u is essential relative toGηε

X . It follows that given a neighborhood Vx of
x , there is a neighborhood Vu of u in B(X)N such that for every f ∈ Vu ∩G

ηε

X , Vx ∩
EX ( f ) �= ∅. Consequently, since V ε is an open set containing u and V ε ⊆ G

ηε

X , the
neighborhood Vu ∩ V ε of u satisfies the following: f ∈ Vu ∩ V ε ∩ [GX ∪ cl(G)]
implies Vx ∩ EX ( f ) �= ∅. It follows that x is essential relative to GX ∪ cl(G). If,
on the other hand, u ∈ BX , then u ∈ AX , and any pure-strategy Nash equilibrium
of u is essential relative to cl(G). That is, given a neighborhood Vx of x , there is a
neighborhood Nu of u in B(X)N such that for every f ∈ Nu∩cl(G), Vx ∩EX ( f ) �= ∅.
Because u ∈ AX \GX and since GX is closed in B(X)N , there is a neighborhood Uu

of u such that Uu ∩ GX = ∅. It follows that for f ∈ Nu ∩ Uu ∩ [GX ∪ cl(G)], we
have Vx ∩ EX ( f ) �= ∅. Hence, x is essential relative to GX ∪ cl(G). ��

5.5 Proof of Theorem 4

The following lemmata are taken from Carbonell-Nicolau (2010).

Lemma 11 Gw
X is closed in B(X)N .

Lemma 12 EX |Gw
X
is compact-valued and upper hemicontinuous.

The following lemmata are taken from Scalzo (2013).

Lemma 13 G
g
X is a complete subspace of the metric space B(X)N .

Lemma 14 EX |Gg
X
is compact-valued and upper hemicontinuous.

Theorem 4 Every member of a dense, residual subset ofG∗
X ∪G

g
X ∪Gw

X is essential.

Proof EX |Gg
X
and EX |Gw

X
are compact-valued and upper hemicontinuous (Lemma 14

and Lemma 12). Therefore, EX |Gg
X∪Gw

X
is compact-valued and upper hemicontinuous,

so by Lemma 2, Gg
X ∪ Gw

X ⊆ Gs
X (G

g
X ∪ Gw

X ). Consequently, since G
g
X , being a

complete subspace of the complete metric space B(X)N (Lemma 13), is closed in
B(X)N , andGw

X is closed in B(X)N (Lemma 11), and becauseGg
X ∪Gw

X ⊆ GX (from
the definition of Gg

X and Remark 1), we have

cl(Gg
X ∪ Gw

X ) = cl(Gg
X ) ∪ cl(Gw

X ) = G
g
X ∪ Gw

X ⊆ GX ∩ Gs
X (cl(Gg

X ∪ Gw
X )).

Applying Theorem 5, we see that for every u in a dense, residual subset ofG∗
X ∪G

g
X ∪

Gw
X , any pure-strategy Nash equilibrium of u is essential relative to G∗

X ∪ G
g
X ∪ Gw

X .��

6 Auxiliary results

6.1 Proof of Lemma 3

We first prove two preparatory lemmas.
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Lemma 15 For each ε, G
(c,ε)
X ⊆ Gs

X .

Proof Choose ε. Fix a game u inG(c,ε)
X . Take a sequence (un) in B(X)N with un → u

and a sequence (xn) in X with xn → x for some x ∈ X . Suppose that x is not
a Nash equilibrium of u. Then, since u is ε-continuously secure, there exist α ∈
R

N , a neighborhood Vx of x , and a nonempty-valued, convex-valued, closed product
correspondence � : Vx ⇒ X such that the following two conditions are satisfied:

(i) For each i and every y ∈ Vx , ui (zi , y−i ) ≥ αi + ε for all zi ∈ �i (y).
(ii) For each y ∈ Vx there exists i such that yi does not belong to the convex hull of

{zi ∈ Xi : ui (zi , y−i ) ≥ αi }.
Therefore, since xn → x , we have the following:

• For each i and each sufficiently large n, ui (zi , xn−i ) ≥ αi + ε for all zi ∈ �i (xn).
• For each sufficiently large n, there exists i such that ui (xn) < αi .

Because the player set is finite, it follows that there exist i and a subsequence (xk) of
(xn) such that for each k,

ui (zi , x
k
−i ) ≥ αi + ε > αi > ui (x

k), for all zi ∈ �i (x
k).

Therefore, since un → u, for each large enough k we have uki (zi , x
k
−i ) > uki (x

k) for
all zi ∈ �i (xk). It follows that u ∈ Gs

X . ��

Lemma 16 Suppose that (un) is a sequence in G
(c,ε)
X such that un → u for some

u ∈ B(X)N . Then u ∈ G
(c,ε−η)
X for every η > 0 with ε − η > 0.

Proof Fix x ∈ X , and suppose that x is not a Nash equilibrium of u. Then, since un →
u, for any large enough n, x is not a Nash equilibrium of un . Hence, since un ∈ G

(c,ε)
X

for each n, for any large enough n there exist αn ∈ R
N , a neighborhood V n

x of x , and
a nonempty-valued, convex-valued, closed product correspondence �n : V n

x ⇒ X
such that the following two conditions are satisfied:

(i) For each i and every y ∈ V n
x , uni (zi , y−i ) ≥ αn

i + ε for all zi ∈ �n
i (y).

(ii) For each y ∈ V n
x , there exists i such that yi does not belong to the convex hull of

{zi ∈ Xi : uni (zi , y−i ) ≥ αn
i }.

Passing to a subsequence if necessary, we have αn → α for some α ∈ R
N . Fix η > 0

with ε − η > 0. Let k := 2ε
η
, so that

ε
(
1 − 2

k

) = ε − η. (4)

Because un → u, and since αn → α, for any large enough n we have, for each i and
every y ∈ V n

x ,

ui (zi , y−i ) > uni (zi , y−i ) − ε
2k , for all zi ∈ �n

i (y),
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and

αn
i > αi − ε

2k .

Consequently, for any large enough n, the following two conditions are satisfied:

• For each i and every y ∈ V n
x , ui (zi , y−i ) ≥ αi + ε − ε

k for all zi ∈ �n
i (y).• For each y ∈ V n

x , there exists i such that yi does not belong to the convex hull of
{zi ∈ Xi : uni (zi , y−i ) ≥ αn

i }.
Since un → u and αn → α, for each i and for any large enough n we have

αn
i + ui (z) − uni (z) < αi + ε

k , for all z ∈ X.

Therefore, for each i and for any large enough n,

{
zi ∈ Xi : uni (zi , y−i ) ≥ αn

i

}

= {
zi ∈ Xi : ui (zi , y−i ) ≥ αn

i + ui (zi , y−i ) − uni (zi , y−i )
}

⊇ {
zi ∈ Xi : ui (zi , y−i ) ≥ αi + ε

k

}
,

for all y−i ∈ X−i . Hence, since for any large enough n and for each y ∈ V n
x , there

exists i such that yi does not belong to the convex hull of {zi ∈ Xi : uni (zi , y−i ) ≥ αn
i },

it follows that for any large enough n and for each y ∈ V n
x , there exists i such that yi

does not belong to the convex hull of
{
zi ∈ Xi : ui (zi , y−i ) ≥ αi + ε

k

}
. We conclude

that for any large enough n the following two conditions are satisfied:

• For each i and every y ∈ V n
x , ui (zi , y−i ) ≥ αi + ε − ε

k for all zi ∈ �n
i (y).• For each y ∈ V n

x , there exists i such that yi does not belong to the convex hull of{
zi ∈ Xi : ui (zi , y−i ) ≥ αi + ε

k

}
.

This implies that u satisfies ε
(
1 − 2

k

)
-continuous security. Since ε

(
1 − 2

k

) = ε − η

by (4), the proof is complete. ��
We are now ready to prove Lemma 3.

Lemma 3 For each ε, cl(G(c,ε)
X ) ⊆ G

(c,ε−η)
X ∩ Gs

X for every η > 0 with ε − η > 0.

Proof Fix ε. Let (un) be a sequence in G
(c,ε)
X . Suppose that un → u for some u ∈

B(X)N . It suffices to show that u ∈ G
(c,ε−η)
X ∩ Gs

X for every η > 0 with ε − η > 0.
But this follows immediately from Lemma 15 and Lemma 16.

6.2 Proof of Lemma 4

Lemma 4 For each ε and for every η > 0 with ε − η > 0, there is an open subset V
of B(X)N with cl(G(c,ε)

X ) ⊆ V ⊆ G
(c,ε−η)
X .
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Proof Fix ε > 0 and η > 0 with ε − η > 0. By Lemma 3, cl(G(c,ε)
X ) ⊆ G

(c,ε− η
2 )

X .

Consequently, given u ∈ cl(G(c,ε)
X ), we have u ∈ G

(c,ε− η
2 )

X . Therefore, for every x ∈ X
that is not a Nash equilibrium of u, there exist α ∈ R

N , a neighborhood Vx of x , and a
nonempty-valued, convex-valued, closed product correspondence � : Vx ⇒ X such
that the following two conditions are satisfied:

(i) For each i and every y ∈ Vx , ui (zi , y−i ) ≥ αi + ε − η
2 for all zi ∈ �i (y).

(ii) For each y ∈ Vx , there exists i such that yi does not belong to the convex hull of
{zi ∈ Xi : ui (zi , y−i ) ≥ αi }.

Choose β > 0 such that

ε − η
2 − 2β = ε − η. (5)

By (i) we have, for each f ∈ Nβ(u), i , and y ∈ Vx ,

fi (zi , y−i ) ≥ ui (zi , y−i ) − β ≥ αi + ε − η
2 − β, for all zi ∈ �i (y).

In addition, for each i and for every f ∈ Nβ(u) we have

{zi ∈ Xi : ui (zi , y−i ) ≥ αi }
= {zi ∈ Xi : fi (zi , y−i ) ≥ αi + fi (zi , y−i ) − ui (zi , y−i )}
⊇ {zi ∈ Xi : fi (zi , y−i ) ≥ αi + β} ,

for all y−i ∈ X−i . Therefore, since (ii) holds, for each y ∈ Vx there exists i such that
yi does not belong to the convex hull of {zi ∈ Xi : fi (zi , y−i ) ≥ αi + β}.

We conclude that if f ∈ Nβ(u), then, for every x ∈ X that is not a Nash equilibrium
of u, there exist α ∈ R

N , a neighborhood Vx of x , and a nonempty-valued, convex-
valued, closed product correspondence � : Vx ⇒ X such that the following two
conditions are satisfied:

(i) For each i and every y ∈ Vx , fi (zi , y−i ) ≥ αi + ε − η
2 − β for all zi ∈ �i (y).

(ii) For each y ∈ Vx , there exists i such that yi does not belong to the convex hull of
{zi ∈ Xi : fi (zi , y−i ) ≥ αi + β}.

Hence, f ∈ G
(c,ε− η

2−2β)

X = G
(c,ε−η)
X (recall (5)).

We have shown that for every u ∈ cl(G(c,ε)
X ), there exists a neighborhood Vu of u

such that Vu ⊆ G
(c,ε−η)
X . Consequently,

⋃

u∈cl(G(c,ε)
X )

Vu ⊆ G
(c,ε−η)
X ,

and the proof is complete. ��
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