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Abstract

A Nash equilibrium x of a normal-form game G is essential if any perturbation of G has an equilibrium
close to x. Using payoff perturbations, we show that for games that are generic in the set of compact, qua-
siconcave, and generalized payoff secure games with upper semicontinuous sum of payoffs, all equilibria
are essential. Some variants of this result are also established.
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1. Introduction

Given a normal-form game, we say that a Nash equilibrium x is essential if neighboring
games with slightly perturbed payoffs have equilibria close to x. Similar definitions have been
used elsewhere (e.g. Wu and Jiang [17] and Yu [16]).

Consider the class of normal-form games with the following properties: (1) the action space
of each player is a nonempty, convex, compact subset of a metrizable topological vector space;
(2) each player’s payoff is concave in his own strategy; (3) the sum of payoffs is upper semi-
continuous in all players’ strategies; and (4) each player’s payoff is lower semicontinuous in
the other players’ strategies. Yu [16] shows that for games that are generic within this class, all
pure-strategy equilibria are essential.
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1 I wish to thank Rich McLean and an anonymous referee for very useful comments.
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There is a recent literature that proves the existence of Nash equilibrium via conditions that
are significantly weaker than (2)–(4).2 It is thus natural to ask if the existence of standard refine-
ments of the Nash equilibrium concept can be established under weaker conditions. In this note,
we focus on the notion of essentiality and seek a genericity result along the lines of Yu [16].3

Specifically, we show that conditions (4) and (2) can be weakened: it suffices that the game be
generalized payoff secure (Barelli and Soza [4]) and that each player’s payoff be quasiconcave
in his own strategy.4 When each ui is upper semicontinuous, generalized payoff security can be
weakened to weak payoff security (Carmona [8]).

Our proofs rely on a theorem of Fort [11], which states that a correspondence F from a topo-
logical space to a metric space is lower hemicontinuous at a residual subset of its domain if F is
nonempty-valued, compact-valued, and upper hemicontinuous. When the domain of F is a Baire
space, the said residual set is dense Gδ . Our use of Fort’s theorem is standard: we identify a Baire
space of games and show that the associated Nash equilibrium correspondence has the desired
properties—specifically, it is nonempty-valued with a closed graph. While nonemptiness and
graph closeness can be established under relatively weak conditions (e.g., better-reply security
(Reny [13]) or generalized better-reply security (Barelli and Soza [4])), the requirement that the
class of games be a Baire space is tighter: we show that the set of (compact, quasiconcave, and)
better-reply secure games is not complete, so that one cannot invoke the Baire category theorem
to conclude that the space of games is Baire.5

A corollary of the main result states that a suitable strengthening of Reny’s [13] payoff security
(for the payoffs of the original game), along with the rest of the assumptions, ensures that for
generic games all mixed-strategy equilibria are essential.

2. Preliminaries

We consider normal-form games G = (Xi, ui)
N
i=1, where N is a finite number of players,

each Xi is a nonempty set, and each ui :X → R is bounded, with X :=×N

i=1 Xi . If each Xi is
a nonempty compact subset of a metric space, we say that G is a compact metric game. All the
normal-form games considered in this paper are compact metric games.

We use the symbol X−i to designate the set×j �=i
Xj , and, given a player i and (xi, x−i ) ∈

Xi × X−i , we slightly abuse notation and represent the point (x1, . . . , xN) ∈×j
Xj as (xi, x−i ).

If each Xi is a convex subset of a topological vector space and for each i and every x−i ∈ X−i

ui(·, x−i ) is quasiconcave on Xi , we say that G is quasiconcave.
The graph of G is the set

ΓG := {
(x,u) ∈ X × RN : ui(x) = ui, all i

}
.

The closure of ΓG is denoted Γ G.

2 See, for instance, Reny [13], Bagh and Jofre [3], Barelli and Soza [4], and Carmona [8,9].
3 Other refinement specifications are studied in Simon and Stinchcombe [14], Al-Najjar [2], and Carbonell-Nicolau

[5–7].
4 Our requirement that each player’s payoff be quasiconcave in his own strategy serves the sole purpose of applying

available results (on the existence of Nash equilibria in discontinuous games) to obtain the nonemptiness of the Nash
equilibrium correspondence. In this regard, Yu’s [16] concavity assumption can be relaxed by direct application of the
said existence results.

5 A similar statement is true about other classes of games considered in the literature on the existence of Nash equilib-
rium. This is discussed in Section 4.



O. Carbonell-Nicolau / Journal of Economic Theory 145 (2010) 421–431 423
Definition 1. A strategy profile x ∈ X is a pure-strategy Nash equilibrium of G if ui(x) �
ui(yi, x−i ) for each yi ∈ Xi and every i.

We now define Reny’s [13] better-reply security and payoff security.

Definition 2. The game G is better-reply secure if, for every (x,u) ∈ Γ G such that x is not a
(pure-strategy) Nash equilibrium of G, there exist i and yi ∈ Xi such that ui(yi,Ox−i

) � α > ui ,
some α ∈ R and some neighborhood Ox−i

of x−i .6

Definition 3. The game G is payoff secure if for each ε > 0, x ∈ X, and i, there exists yi ∈ Xi

such that ui(yi,Ox−i
) > ui(x) − ε for some neighborhood Ox−i

of x−i .

The following definitions appear in Barelli and Soza [4].

Definition 4. The game G is generalized better-reply secure if, for every (x,u) ∈ Γ G such that
x is not a (pure-strategy) Nash equilibrium of G, there exist a player i, a neighborhood Ox of x,
and a correspondence Φi :Ox ⇒ Xi such that ui(Φi(y), y−i ) � α > ui for every y ∈ Ox , some
α ∈ R, and Φi is nonempty, convex-valued, compact-valued, and upper hemicontinuous.7

Definition 5. The game G is generalized payoff secure if for each ε > 0, x ∈ X, and i, one can
find a neighborhood Ox of x and a correspondence Φi :Ox ⇒ Xi such that ui(Φi(y), y−i ) >

ui(x) − ε for every y ∈ Ox , and Φi is nonempty, convex-valued, compact-valued, and upper
hemicontinuous.

Carmona [8] presents the following variant of payoff security, which is weaker than general-
ized payoff security.

Definition 6. The game G is weakly payoff secure if for each ε > 0, x ∈ X, and i, there exists a
neighborhood Ox−i

of x−i for which y−i ∈ Ox−i
implies ui(yi, y−i ) > ui(x)− ε, some yi ∈ Xi .8

The following condition, which is stronger than payoff security, appears in Monteiro and
Page [12].

Definition 7. The game G is uniformly payoff secure if for each i, ε > 0, and xi ∈ Xi , there
exists yi ∈ Xi such that for every y−i ∈ X−i , there is a neighborhood Oy−i

of y−i such that
ui(yi,Oy−i

) > ui(xi, y−i ) − ε.

The following implications are immediate:

6 By a slight abuse of notation, we use the equation ui(yi ,Ox−i
) � α > ui to represent the following inequalities:

ui(yi , y−i ) � α > ui for all y−i ∈ Ox−i
.

7 The statement ‘ui(Φi(y), y−i ) � α > ui for every y ∈ Ox ’ means ‘ui(zi , y−i ) � α > ui for each zi ∈ Φi(y) and
every y ∈ Ox .’

8 Carmona’s notion was introduced by Dasgupta and Maskin [10] via the following equivalent formulation: Given i,
define vi :X−i → R by vi (x−i ) := supxi∈Xi

ui (xi , x−i ). The game G is weakly payoff secure if and only if vi is lower
semicontinuous for each i.
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uniform payoff security ⇒ payoff security

⇒ generalized payoff security

⇒ weak payoff security.

Definition 8. A correspondence Φ :A ⇒ B between topological spaces is upper hemicontinuous
at x ∈ A if the following is true: for every neighborhood OΦ(x) of Φ(x) there is a neighborhood
Ox of x such that y ∈ Ox implies Φ(x) ⊆ OΦ(x). Φ is upper hemicontinuous if it is upper
hemicontinuous at every x ∈ A.

A correspondence Φ :A ⇒ B between topological spaces is lower hemicontinuous at x ∈ A

if the following is true: for every open set O ⊆ B with O ∩ Φ(x) �= ∅ there is a neighborhood
Ox of x such that y ∈ Ox implies Φ(y) ∩ O �= ∅. Φ is lower hemicontinuous if it is lower
hemicontinuous at every x ∈ A.

3. Essential equilibria

For each player i, fix Xi , and let X :=×i
Xi . We shall consider the following classes of

games:

• The set g̃X of games (Xi, ui)
N
i=1 that are compact, metric, quasiconcave, and generalized

better-reply secure.
• The set gX of games (Xi, ui)

N
i=1 that are compact, metric, quasiconcave, and generalized

payoff secure, with
∑

i ui upper semicontinuous (usc).
• The set gw

X of games (Xi, ui)
N
i=1 that are compact, metric, quasiconcave, and weakly payoff

secure, with each ui usc.
• The set gu

X of games (Xi, ui)
N
i=1 that are compact, metric, and uniformly payoff secure, with∑

i ui usc and each ui Borel measurable.

We view g̃X , gX , gw
X , and gu

X as subsets of the metric space (B(X)N,ρX), where B(X) stands
for the set of bounded maps f :X → R, and the associated metric ρX :B(X)N × B(X)N → R is
defined by

ρX

(
(u1, . . . , uN), (f1, . . . , fN)

) :=
N∑

i=1

sup
x∈X

∣∣ui(x) − fi(x)
∣∣.

Let NX :B(X)N ⇒ X be the Nash equilibrium correspondence, which assigns the subset of
(pure-strategy) Nash equilibria of G, NX(G), to each game G in B(X)N . Given g ⊆ B(X)N , the
restriction of NX to g is denoted as NX|g.

Definition 9. Given a class of games g ⊆ B(X)N , a pure-strategy Nash equilibrium x of G ∈ g

is an essential equilibrium of G relative to g if for every open neighborhood Ox of x there is an
open neighborhood OG of G such that for every g ∈ OG ∩ g there exists y in Ox ∩ NX(g).

Remark 1. For the classes of games considered in this paper, essentiality is equivalent to the
lower hemicontinuity of the Nash equilibrium correspondence. (See, for instance, Lemma 4 be-
low.)
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This paper studies certain classes of games whose generic members have only essential equi-
libria. We adopt the standard topological notion of genericity, i.e., a property holds generically
in a topological space Y if it holds for all the elements of a dense Gδ (Definition 12) subset of Y .9

Lemma 1. Suppose that B(X) 	 f n → f ∈ B(X). If each f n is upper semicontinuous—
respectively, quasiconcave—then f is upper semicontinuous—respectively, quasiconcave.

Proof. Suppose that B(X) 	 f n → f ∈ B(X), where each f n is usc—respectively, quasi-
concave. Fix α ∈ R. Then the set {x: f (x) � α} can be written as

⋂
n{x: f (x) � α −

supx∈X |f n(x) − f (x)|}, a countable intersection of closed—respectively, convex—sets. It fol-
lows that {x: f (x) � α} is closed—respectively, convex—or, equivalently, that f is usc—
respectively, quasiconcave.10 �
Lemma 2. The sets gX , gw

X , and gu
X are closed in B(X).

Proof. We only prove the statement for the set gX (the other sets can be handled similarly).
Suppose that (un) = (un

1, . . . , un
N) is a sequence in gX with un → u = (u1, . . . , uN) for some

u ∈ B(X)N . It suffices to show that u lies in gX . Clearly, (Xi, ui) is compact. By Lemma 1,
(Xi, ui) is quasiconcave, with

∑
i ui usc (since each

∑
i u

n
i is usc and

∑
i u

n
i → ∑

i ui ). We
show that (Xi, ui) is generalized payoff secure.

Fix ε > 0, x ∈ X, and i. We have to find a neighborhood Ox of x and a correspondence
Φi :Ox ⇒ Xi such that ui(Φi(y), y−i ) > ui(x) − ε for every y ∈ Ox , and Φi is nonempty,
convex-valued, compact-valued, and upper hemicontinuous. Since each (Xi, u

n
i ) is generalized

payoff secure, given n and α > 0 there exist On
x and Φn

i :On
x ⇒ Xi such that un

i (Φ
n
i (y), y−i ) >

un
i (x) − α for every y ∈ On

x , and Φn
i is nonempty, convex-valued, compact-valued, and upper

hemicontinuous. Hence, because un → u, if α is small enough and n is large enough, un
i (x) − α

is close enough to ui(x) to ensure that un
i (Φ

n
i (y), y−i ) > ui(x)− ε

2 for every y ∈ On
x . Now, since

un → u we obtain, for n sufficiently large, ui(Φ
n
i (y), y−i ) > ui(x) − ε for every y ∈ On

x . �
Lemma 3. NX(G) �= ∅ for every G ∈ g̃X ∪ gw

X .

Proof. Given G ∈ g̃X , G is compact, quasiconcave, and generalized better-reply secure. It fol-
lows from Corollary 4.15 of Barelli and Soza [4] that G has a pure-strategy Nash equilibrium.

Given G ∈ gw
X , G is compact, metric, quasiconcave, usc, and weakly payoff secure. Therefore,

Corollary 2 of Carmona [8] gives a pure-strategy Nash equilibrium of G. �
Lemma 4. NX|g is compact-valued and upper hemicontinuous for each g ∈ {gX,gw

X}.

Proof. We only consider the case when g = gX , since the other case is analogous. Since X is
compact, it suffices to show that NX|gX

has a closed graph (e.g. Theorem 17.11 of Aliprantis
and Border [1]). Let (Gn = (Xi, u

n
i ), x

n) be a sequence in the graph of NX|gX
, i.e., each Gn

lies in gX and each xn is a Nash equilibrium of Gn. Suppose that (Gn, xn) → (G,x) for some

9 The measure-theoretic notion of genericity says that a property holds generically in a probability space if it holds
“almost everywhere,” or with probability one with respect to some probability measure. For the relationship between the
two approaches to genericity, see, for instance, Zindulka [18] and references therein.
10 We thank an anonymous referee for suggesting this proof.
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(G,x) in gX × X. We wish to show that x is a Nash equilibrium of G. We assume that x is not
an equilibrium and derive a contradiction.

Let G = (Xi, ui). Because xn → x and each ui is bounded, we may write (passing to a
subsequence if necessary)(

xn,
(
u1

(
xn

)
, . . . , uN

(
xn

))) → (
x, (u1, . . . , uN)

)
(1)

for some u := (u1, . . . , uN). Therefore, (x,u) belongs to Γ G. Hence, if x is not a Nash equilib-
rium of G, by generalized better-reply security of G we see that

ui

(
Φi(y), y−i

)
� ui + α, all y ∈ Ox,

some i, α > 0, some neighborhood Ox of x, and some nonempty Φi :Ox ⇒ Xi . This, together
with (1), gives

ui

(
Φi

(
xn

)
, xn

−i

)
> β > ui

(
xn

)
,

for some β ∈ R and for any large enough n. Consequently, since un
i → ui , we obtain, for some

yi ∈ Xi ,

un
i

(
yi, x

n
−i

)
> un

i

(
xn

)
,

for some large enough n, thereby contradicting that xn is a Nash equilibrium in Gn. �
Definition 10. A subset of a topological space Y is nowhere dense if it is not dense in any open
subset of Y . A subset A of a topological space is meager if it is a countable union of nowhere
dense sets. The set A is residual if it is the complement of a meager set, or, equivalently, if it is a
countable intersection of open dense sets.

Definition 11. A Baire space is a topological space for which every countable intersection of
open dense sets is also dense.

Definition 12. A subset of a topological space is a Gδ-set, or simply a Gδ , if it is a countable
intersection of open sets.

Lemma 5 (Fort [11], Theorem 2). Suppose that X is a metric space and Y a topological space.
Suppose further that F :Y ⇒ X is a compact-valued and upper hemicontinuous correspondence
with F(y) �= ∅ for all y ∈ Y . Then there exists a residual subset Q of Y such that F is lower
hemicontinuous at every point in Q.11

For completeness we furnish a proof of Lemma 5 in Section 5.
Lemma 5, along with Lemma 3 and Lemma 4, gives the following:

Theorem 1. For any G in a residual subset of g̃X , any pure-strategy Nash equilibrium of G is
essential.

Remark 2. Since we are after a genericity result, we are interested in the case where the residual
set given by Theorem 1 is dense Gδ in g̃X (or some subset of g̃X). If g̃X were a Baire space,

11 We thank an anonymous referee for pointing out the differences between this statement (Fort’s Theorem 2) and the
version reported in Yu ([16], Lemma 2.1) (Lemma 6 below) and Tan et al. ([15], Lemma 2.3).
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the said residual set would be dense in g̃X . Unfortunately, g̃X fails to be complete (Example 1,
Section 4) or locally compact, and therefore the Baire category theorem cannot be invoked to
show that g̃X is Baire. As shown below, a genericity result can be derived by restricting attention
to the sets gX and gw

X .

The following variant of Lemma 5 can be proven.

Lemma 6. Suppose that X is a metric space and Y a Baire space. Suppose further that F :Y ⇒ X

is a compact-valued and upper hemicontinuous correspondence with F(y) �= ∅ for all y ∈ Y .
Then there exists a dense Gδ subset Q of Y such that F is lower hemicontinuous at every point
in Q.

Proof. The proof of Lemma 5 (Section 5) makes it clear that the residual set Q given by
Lemma 5 is a Gδ set. We thus obtain a residual Gδ subset Q of Y such that F is lower hemi-
continuous at every point in Q. It only remains to observe that Q, being a residual subset of a
Baire space, is dense in Y . �
Lemma 7. There exists a dense Gδ subset q of gX such that NX is lower hemicontinuous at every
point in q.

Proof. By Lemma 2, gX is closed in B(X). Since B(X) is a complete metric space, it follows
that gX is complete and metric, and hence (by the Baire category theorem) a Baire space. Further,
by Lemma 3 and Lemma 4, NX|gX

is nonempty-valued, compact-valued, and upper hemicontin-
uous. Therefore, Lemma 6 gives a dense Gδ subset q of gX such that NX is lower hemicontinuous
at every point in q. �

The preceding lemmata give the following:

Theorem 2. For any G in a dense Gδ subset of gX , any pure-strategy Nash equilibrium of G is
essential.

When each ui is usc, generalized payoff security can be weakened. The proof of the following
lemma is analogous to that of Lemma 7.

Lemma 7′. There exists a dense Gδ subset q of gw
X such that NX is lower hemicontinuous at

every point in q.

Lemma 7′, together with Lemma 4, gives the following variant of Theorem 2:

Theorem 2′. For any G in a dense Gδ subset of gw
X , any pure-strategy Nash equilibrium of G is

essential.
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3.1. Mixed-strategy equilibria

For the members G = (Xi, ui) of gu
X , we can define the mixed extension of G as the game

G = (Mi,Ui), where Mi stands for the set of Borel probability measures on Xi , and Ui :M → R
is defined by

Ui(μ) :=
∫
X

ui dμ,

where M :=×i
Mi .12

Definition 13. A strategy profile μ ∈ M is a mixed-strategy Nash equilibrium of G if it is a
pure-strategy Nash equilibrium of G.

Consider the following redefinition of NX: NX :gu
X ⇒ M assigns the subset of (pure-strategy)

Nash equilibria of G, NX(G), to each game G in gu
X . As usual, given g ⊆ B(X)N , the restriction

of NX to g is denoted as NX|g.

Definition 14. Given a class of games g ⊆ B(X)N , a mixed-strategy Nash equilibrium μ of G ∈ g

is an essential equilibrium of G relative to g if for every open neighborhood Oμ of μ there is an
open neighborhood OG of G such that for every g ∈ OG ∩ g there exists ν in Oμ ∩ NX(g).

We have the following corollary to Theorem 2.

Corollary 1. For any G in a dense Gδ subset of gu
X , any mixed-strategy Nash equilibrium of G is

essential.

The proof of the corollary is analogous to that of Theorem 2: one can use the following result
in place of Lemma 3, together with the other lemmata, with ‘gu

X’ replacing ‘gX .’

Lemma 3′. NX(G) �= ∅ for every G ∈ gu
X .

Proof. Given G ∈ gu
X , G is compact, payoff secure (by Theorem 1 of [12]), with

∑
i Ui usc (by

Proposition 5.1 of [13], since
∑

i ui is usc). Therefore, Corollary 5.2 of Reny [13] gives a Nash
equilibrium of G. �
4. Discussion

Deriving Theorem 2 amounted to identifying a class of games, gX , with the following prop-
erties: (1) gX is a Baire space; (2) all the games in gX possess a Nash equilibrium; and (3) the
Nash equilibrium correspondence, defined on gX , has a closed graph. Items (1)–(3), together
with Fort’s theorem, gave Theorem 2.

The proofs of Lemma 3 and Lemma 4 reveal that items (2) and (3) can be established under
conditions that are weaker than those imposed on the members of gX .13 Thus, it is natural to ask

12 Since G ∈ gu
X

is compact and metric, each Mi is compact in the weak* topology.
13 Lemma 4 can also be proven for the class of games satisfying Bagh and Jofre’s [4] weak reciprocal upper semiconti-
nuity or the class of games satisfying weak payoff security.
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if a stronger version of Theorem 2 can be obtained by identifying an expanded class of games
that can replace gX in the statement of the theorem.

We argue that the proposed generalization poses difficulties. Let gb
X stand for the class of

games G = (Xi, ui) that are compact, metric, quasiconcave, and better-reply secure (so that
gX � gb

X). The following example demonstrates that gb
X is not a complete space, implying that

for the class gb
X one cannot rely on the Baire category theorem to derive the analogue of Lemma 7,

with ‘gb
X’ replacing ‘gX .’14 Thus, a strengthening of Theorem 2 in the proposed direction, with

‘gb
X’ replacing ‘gX ,’ would require a suitable generalization of some aspect of either the Baire

category theorem or Fort’s theorem.15

Example 1. Consider the two-player game G = ([0,1], [0,1], u1, u2), where u2(0,0) := 1,
u2 := 0 elsewhere, and u1(0,0) := 0, u1 := 1 elsewhere. It is easy to verify that G is quasicon-
cave with

∑
i ui usc. Further, G is not better-reply secure, but can be approximated by a sequence

of compact, quasiconcave, and better-reply secure games, with usc sum of payoffs. Indeed, it
suffices to take Gn := ([0,1], [0,1], un

1, u2), where un
1(0,0) := 0 and un

1 := 1
n
f + (1 − 1

n
)u1

elsewhere, and f : [0,1]2 → R is defined by f (x1, x2) := 1+x1. Consequently, gb
X is not closed,

and therefore gb
X is incomplete.

Similar arguments apply to other supersets of gX studied in the literature on the existence
of Nash equilibria. Let Ĝ := ([0,1], [0,1], û1, û2) be the following variant of G: û2 := 0, and
û1 := u1. The game Ĝ fails Carmona’s [8] weak upper semicontinuity, while the members of
the sequence (Ĝn := ([0,1], [0,1], ûn

1, û2)) with ûn
1 := 1

n
f + (1 − 1

n
)̂u1 (f defined as before)

satisfy weak usc. Hence, the class of games that are compact, metric, quasiconcave, weakly usc,
and weakly payoff secure (a class for which the Nash equilibrium correspondence is nonempty-
valued (Carmona [8])) is not complete. Similarly, G fails Barelli and Soza’s [4] generalized
better-reply security, unlike the sequence (Gn) defined in the example. Furthermore, Ĝ fails
Carmona’s [9] weak better-reply security and Bagh and Jofre’s [3] weak reciprocal upper semi-
continuity, unlike the sequence (Ĝn).

5. Proof of Lemma 5

Lemma 5 (Fort [11], Theorem 2). Suppose that X is a metric space and Y a topological space.
Suppose further that F :Y ⇒ X is a compact-valued and upper hemicontinuous correspondence
with F(y) �= ∅ for all y ∈ Y . Then there exists a residual subset Q of Y such that F is lower
hemicontinuous at every point in Q.

Proof. Given ε > 0, let C(ε) be the set of all points y ∈ Y such that for each α ∈ (0,3ε) and
every neighborhood Oy of y there exists z ∈ Oy with F(y) � Nα(F(z)).16

We first show that the interior of the closure of C(ε) is empty, implying that C(ε) is nowhere
dense. To this end, we first prove that C(ε) is closed. Let y be a point in the closure of
C(ε) and choose any α ∈ (0,3ε). Given β ∈ (α,3ε), since F is upper hemicontinuous at y,

14 The example shows that more is true: the class of games in gb
X

whose sum of payoffs is usc is not complete.
15 Locally compact Hausdorff (hence possibly incomplete) spaces are Baire spaces. Unfortunately, gb

X
and other super-

sets of gX fail to be locally compact.
16 Here Nα(F(z)) stands for the α-neighborhood of F(z), i.e., Nα(F(z)) := ⋃

x∈F(z) Nα(x), where Nα(x) is the α-
neighborhood of x.
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there exists a neighborhood Oy of y such that z ∈ Oy implies F(z) ⊆ Nβ−α(F (y)). Since y

lies in the closure of C(ε), we may choose z ∈ Oy ∩ C(ε), so that there exists w ∈ Oy such
that F(z) � Nβ(F (w)). We have F(y) � Nα(F(w)) (in fact, F(y) ⊆ Nα(F(w)) would imply
Nβ−α(F (y)) ⊆ Nβ(F (w)), which, combined with the inclusion F(z) ⊆ Nβ−α(F (y)) would give
F(z) ⊆ Nβ(F (w)), a contradiction), and therefore y ∈ C(ε). Thus, C(ε) is closed.

We now show that C(ε) cannot contain a nonempty open set. For y ∈ Y and ε > 0, let
n(F (y), ε) stand for the smallest integer n such that F(y) can be covered by n ε-neighborhoods
in X (note that n(F (y), ε) is well-defined since F is compact-valued). Observe that to prove that
C(ε) cannot contain a nonempty open set it suffices to show that y ∈ C(ε) implies the existence
of points z arbitrarily close to y for which n(F (z), ε) � n(F (y), ε) − 1 (for then any nonempty
open set in C(ε) would contain infinitely many points, some of which would be points y with
n(F (y), ε) < 0, which is impossible). Fix y ∈ C(ε) and let n = n(F (y), ε). Let O1, . . . ,On be n

ε-neighborhoods that cover F(y). Because F is upper hemicontinuous, there is a neighborhood
Oy of y such that F(z) ⊆ ⋃n

k=1 Ok for every z ∈ Oy . Moreover, since y ∈ C(ε), there exists
w ∈ Oy such that F(y) � N2ε(F (w)). We have F(w) ∩ Ok = ∅ for some k, for F(w) ∩ Ok �= ∅
for all k implies F(y) ⊆ N2ε(F (w)). Hence, F(w) can be covered by n− 1 ε-neighborhoods, so
that n(F (w), ε) � n − 1.

Now define

C :=
⋃

ε rational

C(ε).

Because C is a countable union of nowhere dense sets, C is meager, and so Y \ C is residual. It
remains to show that F is lower hemicontinuous at any point in Y \ C. Fix y ∈ Y \ C and let O

be an open set in X with O ∩ F(y) �= ∅. Since y /∈ C, for each α > 0 there is a neighborhood Oy

of y such that F(y) ⊆ Nα(F(z)) for every z ∈ Oy . Consequently, for α sufficiently small, there
exists a neighborhood Oy of y such that for every z ∈ Oy we have F(z) ∩ O �= ∅. �
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