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Abstract
This paper presents a novel axiomatic approach to measuring and comparing hier-
archical structures. Hierarchies are fundamental across a range of disciplines—from
ecology to organizational science—yet existing measures of hierarchical degree often
lack systematic criteria for comparison. We introduce a mathematically rigorous
framework based on a simple partial pre-order over hierarchies, denoted as �H , and
demonstrate its equivalence to intuitively appealing axioms for hierarchy comparisons.
Our analysis yields three key results. First, we establish that for fixed-size hierarchies,
one hierarchy is strictly more hierarchical than another according to �H if the latter
can be derived from the former through a series of subordination removals. Second, we
fully characterize the hierarchical pre-orders that align with �H using two fundamen-
tal axioms: Anonymity and Subordination Removal. Finally, we extend our framework
to varying-size hierarchies through the introduction of a Replication Principle, which
enables consistent comparisons across different scales.

1 Introduction

The concept of hierarchy is essential for understanding emergent properties in complex
systems across a wide range of scientific disciplines. In ecology and earth sciences,
hierarchical frameworks clarify the organization of ecosystems, encompassing every-
thing from individual organisms to vast biomes. Similarly, social scientists utilize
hierarchical models to examine power dynamics, social stratification, and organiza-
tional behavior within human societies. The evolution of economic entities—from
simple partnerships to multinational corporations—has been marked by increasingly
sophisticated hierarchical structures.

A critical examination of these hierarchical structures reveals both their advantages
and disadvantages across various contexts. In biology, hierarchies can be beneficial by
reducing conflict and enhancing group coordination among individuals. For instance,
social hierarchies in animal species often lead to established dominance relationships
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thatminimize aggressive encounters and promote stabilitywithin groups. This stability
can facilitate cooperative behaviors and improve resource allocation.

In organizational science and management, hierarchies establish clear lines of
authority, accountability, and communication within institutions. This structured
approach can enhance coordination, decision-making, and strategy implementation.
However, such frameworks can also impede the pursuit of desirable goals. For instance,
Wright (2024) argues that deeply entrenched knowledge-based hierarchies may yield
negative epistemic consequences by reinforcing conservative selection biases against
innovative research. This indicates that while hierarchies can streamline processes,
they may also stifle creativity and adaptability.

Furthermore, it is possible that the evolution of hierarchical structures in human
societies has significantly contributed to the historic development of incomeandwealth
inequality, which has now reached unprecedented levels. Although authoritative evi-
dence supporting this hypothesis is currently lacking, the notion aligns with some
findings in the literature and remains intuitively compelling. This perspective raises
critical questions about the social implications of hierarchical organization and its
potential role in perpetuating disparities.

To explore the link between hierarchy and income distribution further, we note
that hierarchical structures exhibit a strong correlation with earnings distributions.
Some researchers have employed theoretical hierarchical models to explain observed
worker compensation patterns. Empirical evidence suggests that the compensation of
a firm’s highest-paid official is primarily related to firm size, while other variables—
particularly profit—have minimal explanatory power (Roberts 1956). Simon (1957)
proposes a simple hierarchical structure to elucidate the relationship between CEO
compensation and firm size. Similarly, Lydall (1959) employs a comparable hierar-
chical mechanism to generate a labor income distribution whose upper tail aligns with
empirical power law distributions.

More recently, Fix (2018, 2019) adapted the hierarchical models of Simon (1957)
and Lydall (1959) in light of new data, finding that relative income within firms scales
strongly with the average number of subordinates under an individual’s control.

Both Simon (1957) and Lydall (1959) postulate a specific hierarchical structure in
which each supervisor has the same number of immediate subordinates—a concept
often referred to as the “span of control.” Under this assumption, these authors express
worker compensation as a function of both the span of control and the ratio of an indi-
vidual’s salary to those of their immediate subordinates. As noted by Simon (1957),
the span of control serves as a measure of the “steepness” of organizational hierar-
chies. However, empirically, the span of control varies across ranks. This variability is
documented in Fix (2018, 2019), where the span of control is replaced by the average
number of subordinates.

Despite these insights, measures of hierarchical “steepness” remain “informal” due
to the absence of a systematic criterion for comparing hierarchies. The distributional
consequences of hierarchical structures are not well understood—both theoretically,
owing to a lack of a general theory for hierarchy measurement, and empirically, due
to the paucity of publicly available data.

Despite the pivotal role that hierarchies play in shaping organizational structures and
influencing earnings distribution, our ability to systematically analyze and compare
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these structures remains limited. While several measures of hierarchical degree have
been developed by researchers across various disciplines, they predominantly take the
formof hierarchical indices that result in a complete rankingof hierarchical structures.1

Although these measures may seem intuitively appealing, they often lack a solid
theoretical foundation.

This paper represents a first attempt to advance beyond informal measures of hier-
archical steepness by introducing a systematic, mathematically grounded approach.
Methodologically, our analysis is akin to the axiomatic underpinnings of inequality
measurement (see, e.g., Cowell 2016; Chakravarty 2009, 2015).

We present an axiomatic theory of hierarchymeasurement, which serves as a crucial
precondition for systematically analyzing how organizational design shapes economic
outcomes and societal structures—particularly the relationship between income dis-
tribution and hierarchical frameworks. This theoretical approach also contributes to
a broader body of literature, as hierarchies are fundamental to the evolution and
transformation of societies as a whole. Indeed, the transition from small-scale to large-
scale societies is closely linked with increasing hierarchical complexity and per capita
energy capture (see, e.g., Turchin and Gavrilets 2009; Fix 2017; Bichler and Nitzan
2020; Graeber and Wengrow 2021).

Turning to the specifics of the formal analysis, we demonstrate that a simple partial
pre-order definedover the set of hierarchies is equivalent to a set of intuitively appealing
axioms or principles for hierarchy comparisons. This equivalence lays the groundwork
for a comprehensive characterization of hierarchy measures that align with this partial
pre-order.

We consider hierarchies represented as a series of nodes connected by paths. Each
node symbolizes an individual, while the paths between nodes delineate the subordina-
tion relationships among them. Our focus is on hierarchies in which each subordinate
has only one immediate supervisor.

A hierarchical pre-order� is a reflexive and transitive binary relation over the set of
all hierarchies. Because� need not be complete,�may render no judgment over some
comparisons of hierarchies. When two hierarchies h and h′ are comparable under �,

we write “h � h′” to indicate that “h is at least as hierarchical as h′.”
For hierarchies with the same number of individuals, we adopt two basic criteria for

hierarchy comparisons. First, relabeling the individuals in a hierarchy does not alter its
hierarchical structure. This property is calledAnonymity. The second criterion is based
on the notion of Subordination Removal. We say that a hierarchy h′ is obtained from
another hierarchy h by removal of a subordination relation if the sub-hierarchy h(i) of
h that begins at an immediate subordinate i of a supervisor j in h is moved up one level
in the hierarchy so that i is no longer an immediate subordinate of j, but rather either
an unsupervised individual (if j has no supervisors) or an immediate subordinate of
j’s immediate supervisor. The sub-hierarchy h(i) remains otherwise intact, and the
structure of h′ is otherwise identical to that of h.The Subordination Removal postulate
asserts that removing a subordination relation creates a less hierarchical structure.

1 See, e.g., Mones et al. (2012), Corominas-Murtra et al. (2013), Krackhardt (1994), Trusina et al. (2004),
Luo and Magee (2011) and Czégel and Palla (2015).
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We introduce a particular hierarchical pre-order, denoted by �H , which is instru-
mental in the formulation of our results. Specifically, we say that hierarchy h is at least
as hierarchical as h′ under �H (i.e., h �H h′) if there exists a bijection between the
sets of individuals in both hierarchies with a particular property: for every individual i
in h that corresponds to a subordinate j in h′, the immediate supervisor of j in h′ must
correspond to a supervisor of i in h.This relationship not only establishes a one-to-one
mapping between the individuals but also preserves the supervisory dynamics across
the two hierarchies.

It turns out that the hierarchical pre-order �H is closely related to the concept of
subordination relation. Notably, a key result of this paper (Theorem 1) establishes that
for any two hierarchies h and h′ with the same number of individuals, h is strictly
more hierarchical than h′ under �H (i.e., h �H h′) if and only if h′ can be derived
from a relabeling of h through a series of removals of subordination relations.

A hierarchical pre-order is said to be �H -consistent if it agrees with �H for pairs
of hierarchies that are comparable under�H . The second primary result of this paper
(Theorem 2) characterizes the class of �H -consistent hierarchical pre-orders in terms
of two axioms: for a fixed number of individuals, n, a hierarchical pre-order on the
set of all hierarchies of size n satisfies Anonymity and Subordination Removal if and
only if it is �H -consistent.

Similar results can be obtained for extensions of hierarchical pre-orders to pairs of
hierarchies of varying sizes. These results require the introduction of a third fundamen-
tal criterion alongside the existing Anonymity and Subordination Removal conditions:
replicating a hierarchy—which yields two identical hierarchies, a superstructure that
is itself a hierarchy in its own right—does not alter its hierarchical structure. This
property is called Replication Principle.

Using the Replication Principle, the hierarchical pre-order �H can be extended to
pairs of hierarchies of varying sizes as follows: h �H h′ if there exist two equally-sized
replications, hr and h′

r , of h and h′, respectively, such that hr �H h′
r .

The third main result of this paper (Theorem 3) states that a hierarchical pre-order
on the set of all hierarchies (of any size) satisfies Anonymity, Subordination Removal,
and the Replication Principle if and only if it is �H -consistent.

We examine two examples of �H -consistent hierarchical pre-orders. The first
compares hierarchies based on the number of supervisors between pairs of linked
individuals. This pre-order represents a partial completion of �H . The second exam-
ple, which provides a complete ordering, is derived from a hierarchical index that
computes the average number of supervisors for each hierarchy. Despite apparent
similarities, our measure differs fundamentally from the hierarchical metric in Mones
et al. (2012).We provide a thorough examination of this relationship within our frame-
work in Sect. 4.

The literature on rank mobility (see, e.g., D’Agostino and Dardanoni 2009; Bossert
et al. 2016) is pertinent to the analysis presented in this paper.2 Rankmobility examines
how individuals transition across indicators of economic or social “status” over time.
Since hierarchy inherently involves “rank” echelons that can be viewed as measures of

2 For additional context, see the surveys on income mobility by Maasoumi (1998), Fields and Ok (1999),
and Jäntti and Jenkins (2015).
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Fig. 1 Rank mobility vs.
hierarchical measurement

“status,” there is a potential link between measuring hierarchical degree and assessing
rank mobility.

However, this connection is, at best, tenuous. In fact, a fundamental difference exists
between rank mobility and the comparison of hierarchical structures, as illustrated by
the following example.

Consider the three simple hierarchies depicted in Fig. 1.
In hierarchies h and h′′, there are two levels, or ranks. In hierarchy h, individual

j is subordinate to individual i, while in h′′, j supervises i . In contrast, hierarchy h′
has no subordination relations, with both i and j occupying the same rank.

Notice that the transition from h to h′′ involves both individuals moving across
ranks, whereas only one individual changes rank in the transition from h to h′. This
indicates that the shift from h to h′′ reflects a greater degree of rank mobility. In fact,
rank mobility is maximal in the transition from h to h′′.

Despite the difference in rank mobility, our measures of hierarchical structure clas-
sify h and h′′ as equally hierarchical. This is because both h and h′′ share the same
hierarchical structure and differ only in the labeling of individuals. According to the
“Anonymity” axiom, this means that both hierarchies are essentially equivalent.

Thus, while h and h′′ are maximally hierarchical and h′ is minimally hierarchical,
rank mobility is higher—indeed, maximal—in the transition from h to h′′.

This analysis demonstrates that the degree of rank mobility between hierarchies
is independent of their relative hierarchical structure. Specifically, we have shown
that two equally hierarchical structures (h and h′′) can be connected by a transition
involving maximal rank mobility, while a transition to a less hierarchical structure (h′)
involves lower rank mobility.

The paper is structured as follows. Section 2 introduces the concept of hierarchy
along with its relevant terminology. Section 3 formally defines (potentially incom-
plete) hierarchical pre-orders for hierarchies of fixed size. It presents the Anonymity
and Subordination Removal axioms, and introduces a specific hierarchical pre-order,
denoted by �H , based on supervisory rank comparisons across hierarchies. This pre-
order satisfies the aforementioned axioms (see Lemma 1) and is utilized in the first
main result (Theorem 1) to fully characterize successive removals of subordination
relations. The second main result (Theorem 2) demonstrates the equivalence between
the Anonymity and Subordination Removal axioms and the�H -consistency of a hier-
archical pre-order—its alignment with�H whenever two hierarchies can be compared
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under this pre-order. Section 3 concludes with a discussion on two specific (partial)
completions of the hierarchical pre-order �H .

Section 4 broadens the analysis from Sect. 3 to hierarchies of varying sizes. It
introduces the Replication Principle and extends the hierarchical pre-order �H to
encompass hierarchies of any size, ensuring compliancewith theReplicationPrinciple,
as well as the Anonymity and Subordination Removal axioms (see Lemma 2). The
third main result (Theorem 3) establishes the equivalence of these three axioms with
�H -consistent hierarchical pre-orders. Additionally, Sect. 4 explores specific (partial)
completions of�H within the expanded domain of hierarchies of any size, comparing
them to the hierarchical index proposed by Mones et al. (2012).

Finally, Sect. 5 summarizes our key findings and explores potential avenues for
future research.

2 Hierarchies

We begin with the definition of a hierarchy.

Definition 1 A hierarchy is defined as a set of n ∈ N individuals satisfying the
following conditions:

• There exists a set of level-0 individuals, I0, such that each i ∈ I0 has either no
subordinates or a set of level-1 subordinates, Si , satisfying the following condi-
tions:

– Si ∩ I0 = ∅ for each i ∈ I0.
– Si ∩ Si ′ = ∅ for each i, i ′ ∈ I0 with i �= i ′.

In words, there is no overlap between the set of level-0 individuals, I0, and the set
of i’s subordinates, Si ; and a subordinate of i ∈ I0 in Si cannot be, at the same
time, a subordinate of another level-0 individual i ′ ∈ I0.

• Suppose that the set of level-k individuals has been defined, where k ∈
{0, 1, . . . , K − 1}, and where K represents the total number of levels in the hier-
archy. The set of level-(k+1) individuals is defined as follows. Each level-(k+1)
subordinate, j, has either no subordinates or a set of level-(k + 2) subordinates,
S j , satisfying the following conditions:

– For each level-(k + 1) subordinate j, the set of level-(k + 2) subordinates of
j, S j , contains no level-κ individuals, where κ ∈ {0, . . . , k + 1}.

– For any two distinct level-(k+1) subordinates j and j ′, the sets of level-(k+2)
subordinates S j and S j ′ of j and j ′, respectively, are disjoint.

For each level-k subordinate i in a given hierarchy h, where k ∈ {1, . . . , K } (and
where K denotes the total number of levels in h), there is one level-(k−1) supervisor,
ph(i), one level-(k − 2) supervisor, p2h(i), etc. The supervisor ph(i) of i is called i’s
immediate supervisor. p2h(i), p

3
h(i), . . . are indirect supervisors of i, being supervisors

of i’s immediate supervisor, ph(i).

123



Measuring hierarchy

Fig. 2 A hierarchy

In the sequel, the subscript “h” in expressions like ph(i) and p2h(i) is sometimes
omitted for simplicity. These omissions should not cause confusion, as the underlying
hierarchy can be easily inferred from the context.

Individuals i and j in a given hierarchy are related if there is a path linking them,
i.e., if either i = j or j = pl(i) for some l. If i �= j, we say that i is a subordinate of
j . If i �= j = p(i), we say that i is an immediate subordinate of j .
For each individual i in a hierarchy h, the sub-hierarchy containing i and all

of i’s subordinates constitutes a properly defined hierarchy, denoted by h(i). The
subordinates of i are the members of the sub-hierarchy h(i) other than i .

Note that, given a hierarchy h and its set of level-0 individuals, I0, h can be rep-
resented as a vector of sub-hierarchies (h(i))i∈I0 . Note also that, given a hierarchy
h = (h(i))i∈I0 , (h(i))i∈I , where I ⊆ I0, is a hierarchy in its own right, sometimes
also referred to as a sub-hierarchy of h.

Hierarchies can be conveniently represented graphically as a series of nodes linked
by paths. Each node represents an individual in the hierarchy. Figure 2 presents a
hierarchy with two level-0 individuals, four level-1 individuals, and three level-2 indi-
viduals.

It should be noted that our definition of a hierarchy is not flexible enough to account
for structures where a subordinate reports to multiple immediate supervisors.

3 Hierarchical pre-orders

To begin, we consider pre-orders on hierarchies of a fixed size. Extensions of these
pre-orders to hierarchies of varying sizes are studied in Sect. 4.

Let Hn be the set of all n-person hierarchies.

Definition 2 A hierarchical pre-order onHn is a reflexive and transitive binary rela-
tion � onHn .

For h, h′ ∈ Hn, “h � h′” means that “h is at least as hierarchical as h′.”
Note that hierarchical pre-orders are not necessarily complete.
The symmetric and asymmetric parts of � are denoted by ∼ and �, respectively.

For h, h′ ∈ Hn, the interpretation of the dominance relation “h � h′” (respectively,
“h ∼ h′”) is that “h is more hierarchical than h′” (respectively, “h and h′ are equally
hierarchical”).

We now present two basic properties of hierarchical pre-orders.
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Fig. 3 Relabeling

A hierarchy h′ is said to be a relabeling of another hierarchy h if h′ is obtained
from h by relabeling the individuals in h. For example, the two hierarchies in Fig. 3,
h and h′, are relabelings of each other.

Anonymity (A) A hierarchical pre-order� onHn satisfies A if for any two hierarchies
h and h′ inHn, h ∼ h′ whenever h′ is a relabeling of h.

The Anonymity axiom asserts that, given a hierarchical pre-order, all relabelings
of a given hierarchy belong to the same equivalence class. Note that relabelings do
not alter the fundamental structure of a hierarchy; they simply rename the individuals
involved.

We now introduce the notion of subordination relation removal.

Definition 3 We say that h′ is obtained from a hierarchy h by removing a subordina-
tion relation if there exists a level-k subordinate i in h, where k ∈ {1, . . . , K } (with
K denoting the total number of levels in the hierarchy h), satisfying the following
conditions:

• If i’s immediate supervisor in h, ph(i), is a level-0 individual, then h′ is the
hierarchy in which the sub-hierarchy h(i) is no longer under ph(i)’s supervision,
i becomes a level-0 individual, and the sub-hierarchy that begins at i is h(i); h′ is
otherwise equal to h.

• If i’s immediate supervisor in h, ph(i), is a not level-0 individual, then ph(i)
is an immediate subordinate of p2h(i), i.e., ph(i) ∈ Sp2h(i)

. In this case, h′ is the
hierarchy in which the sub-hierarchy h(i) is no longer under ph(i)’s supervision,
but rather under the direct supervision of p2h(i), so that i is no longer a level-k
subordinate, but rather a level-(k−1) subordinate in Sp2h(i)

, and the sub-hierarchy

that begins at i is h(i); h′ is otherwise equal to h.

Figure 4 illustrates the previous definition. In Fig. 4, h′ can be obtained from h by
taking the sub-hierarchy h(a) that starts at the node labeled “a” and moving it up so
that the individuals in h(a) are no longer subordinates of the level-0 individual in h.

Figure 5 presents another example where individual b loses one subordinate, indi-
vidual c, who becomes a direct subordinate of b’s supervisor, a.

The following axiom states that removing a subordination relation creates a less
hierarchical structure.

Subordination Removal (SR) A hierarchical pre-order � onHn satisfies SR if for any
two hierarchies h and h′ in Hn, h � h′ whenever h′ is obtained from h by removing
a subordination relation.

123



Measuring hierarchy

Fig. 4 Removing a
subordination relation

Fig. 5 Removing a
subordination relation

We now define a particular hierarchical pre-order, denoted by �H , based on the
comparison of supervisory ranks across hierarchies.

For any twohierarchies h and h′ inHn, h �H h′ if and only if there exists a bijection
φ from the set of individuals in h to the set of individuals in h′ satisfying the following:
for each individual i in h such that φ(i) is not a level-0 individual, the immediate
supervisor of φ(i) in h′, ph′(φ(i)), is linked (via φ−1) to a supervisor j of i in h, so
that j is in the path from i to i’s level-0 supervisor: φ−1(ph′(φ(i))) = j = plh(i) for
some l.

As an example, consider the two hierarchies given in Fig. 6. The bijection φ from
the set of individuals in h to the set of individuals in h′ is represented by means of
double-arrowed lines connecting nodes across the two hierarchies.

One can easily verify that the linked pairs across hierarchies depicted in Fig. 6
satisfy the conditions from the definition of �H . For example, take individual 2 in h,

who is linked to individual b in h′, and whose immediate supervisor, a, is linked to
individual 1 in h, who is a supervisor of 2. As another example, take individual 4 (in
h), who is linked to individual c (in h′), whose immediate supervisor, b, is linked to 2
(in h), a supervisor of 4. Note that 2 lies in the path from 4 to 4’s level-0 supervisor,
1, in h. Similar conditions can be verified for the other nodes in h. Hence, h �H h′.

The symmetric and asymmetric parts of �H are denoted by ∼H and �H , respec-
tively.

Our main results reveal an intrinsic relationship between the hierarchical pre-order
�H and our two basic axioms.
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Fig. 6 h �H h′

We begin the analysis with a preliminary result, which asserts that �H satisfies
both Anonymity and Subordination Removal.

Lemma 1 The hierarchical pre-order �H defined on Hn is reflexive and transitive
and satisfies A and SR.

The proof of Lemma 1 is relegated to Appendix A.2.
Before fully characterizing the hierarchical pre-order�H ,we should note an impor-

tant property: while�H is reflexive and transitive, it is not complete. A simple example
illustrates this incompleteness.

Consider the two hierarchies h and h′ shown in Fig. 7. We will prove that no
bijection φ exists mapping individuals from h to those in h′ that satisfies the required
supervisory relationship: for any individual i in h whose image φ(i) is not at level 0,
the immediate supervisor of φ(i) in h′ must be mapped (via φ−1) to some supervisor
of i in h.

The proof is by contradiction. Any valid bijection must map subordinates in h to
subordinates in h′—if not, some level-0 individual i in h′ would map to a subordinate
in h, violating the supervisory requirement for i, who has no supervisor. Without loss
of generality, assume i maps to i ′ and j maps to j ′ as shown in the figure. By definition
of �H , the shared supervisor of i and j would need to map to both the supervisor of
j ′ and the supervisor of i ′—an impossibility since these are distinct individuals.
This incompleteness, while preventing comparison of certain hierarchies, aligns

with our goal of characterizing hierarchical pre-orders through fundamental, intuitive
axioms. Such axioms typically cannot definitively rank structures when multiple com-
peting factors are at play. Our approach mirrors the inequality measurement literature,
where the fundamental Lorenz pre-order exists alongside more complete measures
like the Gini index.

By establishing this core hierarchical pre-order through basic axioms, we create
a foundation for studying all pre-orders that extend it, including both partial and
complete extensions. These extensions can offer additional comparisons in ambigu-
ous cases, though analysts must evaluate whether such added comparability resolves
ambiguities appropriately. We will explore specific examples of such extensions later
in this work.
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Fig. 7 Incompleteness of �H

Thenotionof successive subordination removal, introducednext, plays an important
role in our first main result.

For h1, hL ∈ Hn, h1 is obtained from hL by successive removals of subordination
relations if there are finitely many hierarchies h2, . . . , hL−1 in Hn such that hl is
obtained from hl+1 by removing a subordination relation, for each l ∈ {1, . . . , L−1}.

Our first main result provides a complete characterization of successive subordina-
tion relation removals in terms of the hierarchical pre-order �H .

Theorem 1 For h, h′ ∈ Hn, h �H h′ if and only if h′ can be obtained from some
relabeling of h by successive removals of subordination relations.

The following discussion aims to offer visual and intuitive insights into Theorem 1.
The formal proof is available in Appendix A.3.

Suppose that h and h′ are hierarchies inHn . First, note that Theorem 1 is trivially
true when n = 1 (i.e., when both h and h′ are 1-person hierarchies). Proceeding by
induction, we argue that Theorem 1 is true for arbitrary n > 1 if we know it is true for
(n − 1)-sized hierarchies.

Consider the hierarchies h and h′ depicted in Fig. 8 and suppose that h �H h′.
Then h �H h′, which implies that there exists a bijection φ mapping the individuals
in h to those in h′ with the following property: for every individual i in h such that
φ(i) is not a level-0 individual in h′, the immediate supervisor of φ(i) in h′ is linked
(via φ−1) to a supervisor of i in h.

Suppose that the bijection φ is represented by the double-arrowed lines connecting
the nodes across the hierarchies, as shown in Fig. 8. Now let h\ι be the hierarchy
obtained from h by removing individual ι, as shown in Fig. 9. Note that all the direct
subordinates of ι in h become level-0 individuals in h\ι.

Similarly, let h′\φ(ι) denote the hierarchy formed by removing the individual φ(ι)

from h′, as illustrated in Fig. 9. This results in the two direct subordinates of φ(ι) in
h′ becoming level-0 individuals, leading to a total of exactly four level-0 individuals
in h′\φ(ι).

Note that the bijection represented in Fig. 9 by the double-arrowed lines is the
restriction of φ to the hierarchy h\ι.The properties of φ imply that for every individual
i in h\ι where φ(i) is not a level-0 individual in h′\φ(ι), the immediate supervisor of
φ(i) in h′\φ(ι) is connected (through φ−1) to a supervisor of i in h\ι.
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Fig. 8 Illustrating Theorem 1

Fig. 9 Illustrating Theorem 1

Hence, h\ι �H h′\φ(ι). There are two cases to consider:

(i) h\ι �H h′\φ(ι) and (ii) h\ι ∼H h′\φ(ι).

In the first case, the induction hypothesis implies that h′\φ(ι) can be obtained from
h\ι by successive removals of subordination relations, since both h\ι and h′\φ(ι) are
(n − 1)-person hierarchies.3

Note that, in the transition from h\ι to h′\φ(ι), the removal of each subordination
relation affects only the individuals within a single sub-hierarchy of h\ι. This means
that the entire sequence of subordination removals from h\ι to h′\φ(ι) can be decom-

3 More precisely, h′\φ(ι) can be obtained from some relabeling of h\ι by successive removals of sub-
ordination relations. While not explicitly mentioned in the remainder of this discussion, it is implicitly
understood that two hierarchies are considered equivalent if they share the same structure, regardless of
how their nodes are labeled.
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Fig. 10 Illustrating Theorem 1

posed into subsequences that transform sub-hierarchies of h\ι into sub-hierarchies of
h′\φ(ι).

For instance, in the specific case illustrated in Fig. 9, this indicates that each of
the four sub-hierarchies in h′\φ(ι) can be derived, through a series of subordination
relation removals, from exactly one of the four sub-hierarchies in h\ι.

Now, consider the hierarchy formed by adding the individual ι at the top of h\ι, as
depicted in the left panel of Fig. 10. Observe that the resulting hierarchy is precisely
h. Similarly, let h′′ be the hierarchy created by adding the individual φ(ι) at the top of
hierarchy h′\φ(ι), as shown in the right panel of Fig. 10.

As we have noted, each of the four sub-hierarchies in h′\φ(ι) can be derived from
exactly one of the four sub-hierarchies in h\ι through a series of subordination relation
removals. This implies that the hierarchy h′′ from Fig. 10 can be obtained from h by
successive removals of subordination relations. This is not yet the conclusion we seek,
as our goal is to demonstrate that h′ (rather than h′′) can be obtained from h through
successive removals of subordination relations. However, note that in our example, h′
can be derived from h′′ by moving two of the four level-1 sub-hierarchies in h′′ up to
level 0.

Since h′′ (respectively, h′) can be obtained from h (respectively, h′′) by successive
removals of subordination relations, it follows that h′ can also be obtained from h by
successive removals of subordination relations, as we sought.

It remains to consider the case when h\ι ∼H h′\φ(ι). To address this case, we
rely on Lemma 4 (proven in Appendix A.1). In our context, this lemma states that
h\ι ∼H h′\φ(ι) implies that h\ι is a relabeling of h′\φ(ι). Consequently, the hier-
archies h and h′′ depicted in Fig. 10 are also relabelings of one another. Thus, since
we have established that h′ can be derived from h′′ through successive removals of
subordination relations, we conclude that h′ can be obtained from h by successive
removals of subordination relations, as we aimed to show.

Theorem 1 establishes the equivalence between two distinct concepts: the intuitive
process of successively removing subordination relations within a hierarchy and the
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more formal notion embodied by the pre-order �H , which is defined through the
comparison of supervisory ranks across different hierarchies.

A hierarchical pre-order� onHn is�H -consistent if the following two conditions
are satisfied for every pair h, h′ inHn :

• h �H h′ ⇒ h � h′.
• h ∼H h′ ⇒ h ∼ h′.

Thus, a �H -consistent hierarchical pre-order can only differ from �H for pairs
of incomparable hierarchies under �H . In other words, �H -consistent hierarchical
pre-orders are partial completions of �H .

The next main result states that the Anonymity and Subordination Removal axioms
fully characterize �H -consistent hierarchical pre-orders.

Theorem 2 A hierarchical pre-order on Hn satisfies A and SR if and only if it is
�H -consistent.

The proof of Theorem 2, which builds on Theorem 1, is sufficiently straightfor-
ward to be included in the main text. This proof references two lemmata proven in
Appendix A.

Proof of Theorem 2 [Sufficiency.] Suppose that � is �H -consistent. Because �H sat-
isfies A and SR (Lemma 1), and since � is �H -consistent, it follows that � also
satisfies A and SR.

[Necessity.] Suppose that � is a hierarchical pre-order onHn satisfying A and SR.
We must show that � is �H -consistent, i.e., that the following two conditions are
satisfied for every pair h, h′ inHn :

• h �H h′ ⇒ h � h′.
• h ∼H h′ ⇒ h ∼ h′.

Suppose first that h ∼H h′.Then, by applying Lemma 4 (which is stated and proven
in Appendix A.1), we can conclude that h is a relabeling of h′. Because � satisfies A,
it follows that h ∼ h′.

Now suppose that h �H h′.ByTheorem 1, h′ can be obtained from some relabeling
of h, denoted by h∗, by successive removals of subordination relations. Therefore,
there exist hierarchies h1, . . . , hL inHn such that

h′ ←RS h1 ←RS · · · ←RS hL ←RS h
∗,

where, for ĥ, h ∈ Hn, “ĥ ←RS h” symbolically indicates that “ĥ can be obtained
from h by removing a subordination relation.”

Consequently, because � satisfies SR, we have

h∗ � hL � · · · � h1 � h′,

and since h∗ is a relabeling of h and � satisfies A, we see that

h ∼ h∗ � hL � · · · � h1 � h′. (1)
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Because � is reflexive and transitive, (1) implies that h � h′ (Sen 2017, Lemma 1*a,
p. 56), as desired. �

As an example of a �H -consistent hierarchical pre-order onHn, consider the pre-
order �s defined as follows: h �s h′ if and only if there exists a bijection φ from
the set of individuals in h to the set of individuals in h′ such that, for each i in h, the
number of supervisors of i in h is greater than or equal to the number of supervisors
of φ(i) in h′.

In other words, h is considered more hierarchical than h′ under �s if there exists a
bijective correspondence between the individuals in the two hierarchies such that each
individual i in h has at least as many (or more) supervisors compared to the individual
in h′ that corresponds to i .

The symmetric and asymmetric parts of �s are denoted, as usual, by ∼s and �s,

respectively.
To illustrate, consider again the hierarchy from Fig. 6. It is easy to see that the

bijection represented via double-arrowed lines connecting nodes across hierarchies
has the property that each linked pair of individuals has (weakly) more supervisors in
h than in h′. Thus, h �s h′.

Like �H , the pre-order �s also satisfies Anonymity and Subordination Removal.

Proposition 1 The hierarchical pre-order�s defined onHn is reflexive and transitive
and satisfies A and SR.

The proof of Proposition 1 is provided in Appendix A.4.
By Proposition 1 and Theorem 2, �s is �H -consistent, i.e., �s agrees with �H for

pairs of hierarchies inHn that are comparable under �H .

The converse assertion is false, i.e., �H is not �s-consistent. In fact, in general,
h �s h′ need not imply h �H h′.To see this, consider the two seven-person hierarchies
depicted in Fig. 11. It is easy to see that, for the bijection represented in the figure,
each linked pair of individuals has (weakly) more supervisors in h than in h′. Thus,
h �s h′.

However, h ⋡H h′. To understand this, we refer to Lemma 6 from Appendix A.1,
which is restated here for the reader’s convenience:

Suppose that I0 (respectively, I ′
0) represents the set of level-0 individuals in h

(respectively, h′). Then h �H h′ if and only if there exists a finite partition of I ′
0

consisting of #I0 elements,
{I ′

1, . . . , I
′
#I0},

where #I0 denotes the cardinality of I0, such that for each i ∈ I0, h(i) �H

(h′(ι))ι∈I ′
i
.

Note that, for the sub-hierarchy of h, ĥ, depicted in Figure 11, we cannot have ĥ �H

(h′(ι))ι∈I ′ for I ′ ⊆ I ′
0, since ĥ �H (h′(ι))ι∈I ′ implies that ĥ and (h′(ι))ι∈I ′ have the

same size, and yet all the sub-hierarchies of h′ with only one level-0 supervisor have
more than two individuals.

Hence, h ⋡H h′, and Theorem 1 implies that h′ cannot be obtained from some
relabeling of h by successive removals of subordination relations.
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Fig. 11 h �s h′ and h ⋡H h′

Next, we consider complete orders over the set of hierarchies Hn induced by
hierarchical indices.

A hierarchical index on Hn is a map I : Hn → R that assigns a “hierarchi-
cal degree” I (h) to every hierarchy h ∈ Hn . The index I gives rise to a complete
hierarchical order on Hn, �I , defined as follows:

h �I h
′ ⇔ I (h) ≥ I (h′).

Clearly, �I is a properly defined hierarchical order, i.e., a reflexive and transitive
order on Hn .

For example, given h ∈ Hn, let sh(i) represent the number of supervisors of i in h
and define

Is(h) = 1

n

∑

i∈h
sh(i), (2)

i.e., Is(h) denotes the average number of supervisors per individual in the hierarchy
h.

Clearly, �s⊆�Is , i.e., h is at least as hierarchical as h′ under �Is whenever h is at
least as hierarchical as h′ under �s . What is more, �Is is �s-consistent. Indeed, for
h, h′ ∈ Hn, h �s h′ implies that there exists a bijection φ from the set of individuals
in h to the set of individuals in h′ such that

sh(i) ≥ sh′(φ(i)), for each i ∈ h,

with the inequality being strict for at least one i . Consequently,

Is(h) = 1

n

∑

i∈h
sh(i) >

1

n

∑

i∈h
sh′(φ(i)) = 1

n

∑

i∈h′
sh′(i) = Is(h

′),

whence h �Is h
′. Similarly, one can show that h ∼s h′ implies h ∼Is h

′.
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Fig. 12 h �Is h′ and h ⋡s h′

Conversely, �s is not �Is -consistent. Indeed, �Is -dominance need not imply �s-
dominance, as the following example illustrates.

Consider the hierarchies h and h′ depicted in Fig. 12. It is easily verified that the
average number of supervisors per individual in either h or h′ is 3/5:

Is(h) = Is(h
′) = 3/5.

Hence, h ∼Is h′. Nevertheless, h �s h′. Put differently, we have h �Is h′ and yet
h ⋡s h′. To see that h ⋡s h′, it suffices to note that there is one individual in h′ who has
two supervisors, while all individuals in h have at most one supervisor.

We have seen that �Is is �s-consistent and that �Is and �s are �H -consistent.
Thus, �Is , being a complete order on Hn, is a completion of �H and �s .

Since �Is is reflexive, transitive, and �H -consistent, Theorem 2 implies that �Is
satisfies A and SR.

Proposition 2 The hierarchical order �Is defined on Hn is complete, reflexive, and
transitive and satisfies A and SR.

4 Comparing hierarchies of varying sizes

In this section, we expand the previous analysis to encompass hierarchies of different
sizes.

Recall that Hn is the set of n-person hierarchies. The superset

H =
⋃

n

Hn

represents the set of hierarchies of any size.

Definition 4 Ahierarchical pre-order onH is a reflexive and transitive binary relation
onH .
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Fig. 13 (h, h) is a replication of h

A replication of a hierarchy h ∈ H is a hierarchy in H of the form (h, . . . , h).

By convention, h is a replication of itself.
For example, the ten-person hierarchy (h, h) in Fig. 13 is a replication of the five-

person hierarchy h.

The Replication Principle allows one to compare hierarchies inH with their repli-
cations.
Replication Principle (RP) A hierarchical pre-order � on H satisfies RP if for any
two hierarchies h and h′ inH , h′ ∼ h whenever h′ is a replication of h.

This axiom asserts that, for a hierarchical pre-order on H , any replication of a
given hierarchy h is as hierarchical as h.

Note that, according to the Replication Principle, two hierarchies in H can only
be compared through replication if the number of individuals in one hierarchy is a
multiple of the number in the other. For instance, if h is a two-person hierarchy, then
any replication of h will result in a 2k-person hierarchy, where k ∈ N.

The hierarchical pre-order �H onHn introduced in Sect. 3 can be extended to the
domainH as follows: for h, h′ ∈ H , h′ �H h if and only if there exists n such that
hr (respectively, h′

r ) is a replication of h (respectively, h′) inHn and h′
r �H hr .

In other words: for h, h′ ∈ H , h′ is at least as hierarchical as h if and only if there
exist equally sized replications of h′ and h, denoted h′

r and hr respectively, such that
h′
r is at least as hierarchical as hr .
Lemma 1 implies that the extension of �H toH is reflexive and transitive and sat-

isfies A and SR.4 Moreover, the extension�H satisfies RP. Indeed, if h′ = (h, . . . , h)

is a replication of h, then h′ ∼H h because (h, . . . , h) ∼H (h, . . . , h).

4 Indeed, given h, h′, and h′′ inH , we have

h �H h,

[h �H h′ & h′ �H h′′] ⇒ [hr �H h′
r & h′

r �H h′′
r ] ⇒ hr �H h′′

r ⇒ h �H h′′,

where the relation “hr �H h′′
r ” follows from the transitivity of�H restricted to the domainHn (Lemma 1).

To see that �H , defined on H , satisfies A, suppose that h and h′ are hierarchies in H such that h′ is
a relabeling of h. Then h and h′ have the same size, n. Since the restriction of �H to Hn satisfies A
(Lemma 1), we have h ∼H h′.
To see that �H satisfies SR, suppose that h and h′ are hierarchies in H and that h′ can be obtained from
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Lemma 2 The hierarchical pre-order�H defined onH is reflexive and transitive and
satisfies A, SR, and RP.

Given the extension �H defined on H , one can define �H -consistency as in the
previous section.

A hierarchical pre-order � onH is�H -consistent if the following two conditions
are satisfied for every pair h, h′ inH :

• h �H h′ ⇒ h � h′.
• h ∼H h′ ⇒ h ∼ h′.

The following result states that the axioms A, SR, and RP fully characterize �H -
consistency for hierarchical pre-orders defined onH . This result extends Theorem 2
to the domain H .

Theorem 3 A hierarchical pre-order onH satisfies A, SR, and RP if and only if it is
�H -consistent.

Similar to Theorem 2, Theorem 3 can be proven using Theorem 1 and two ancillary
lemmas proven in Appendix A.

Proof of Theorem 3 [Sufficiency.] Suppose that � is �H -consistent. Because �H sat-
isfies A, SR, and RP (Lemma 2), and since � is �H -consistent, it follows that � also
satisfies A, SR, and RP.

[Necessity.] Suppose that � is a hierarchical pre-order onH satisfying A, SR, and
RP. We must show that � is �H -consistent, i.e., that the following two conditions are
satisfied for every pair h, h′ inH :

(a) h �H h′ ⇒ h � h′.
(b) h ∼H h′ ⇒ h ∼ h′.

Fix h and h′ in H . Suppose that h ∈ Hm and h′ ∈ Hn . Let hr (respectively, h′
r )

be an n-times (respectively, m-times) replication of h (respectively, h′). Then hr and
h′
r are hierarchies in Hmn .

Suppose first that h ∼H h′. Since �H satisfies RP (Lemma 2),

hr ∼H h ∼H h′ ∼H h′
r . (3)

Because �H is reflexive and transitive (Lemma 2), ∼H is transitive (Sen 2017,
Lemma 1*a, p. 56). Consequently, (3) implies that hr ∼H h′

r .

Since hr , h′
r ∈ Hmn and hr ∼H h′

r , hr is a relabeling of h′
r (see Lemma 4 in

Appendix A.1). Because � satisfies A and RP, it follows that

h ∼ hr ∼ h′
r ∼ h′.

By transitivity of ∼, we see that h ∼ h′. This establishes (b).

h by removing a subordination relation. Then h and h′ have the same size, n. Since the restriction of �H
toHn satisfies SR (Lemma 1), we have h �H h′.
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Now suppose that h �H h′. Let hr (respectively, h′
r ) be an n-times (respectively,

m-times) replication of h (respectively, h′). Since �H satisfies RP (Lemma 2),

hr ∼H h �H h′ ∼H h′
r . (4)

Because �H is reflexive and transitive (Lemma 2), (4) gives hr �H h′
r (Sen 2017,

Lemma 1*a, p. 56).
Since hr , h′

r ∈ Hmn and hr �H h′
r , h

′
r can be obtained from some relabeling of

hr , denoted by h∗
r , by successive removals of subordination relations (Theorem 1).

Therefore, there exist hierarchies h1, . . . , hL inHn such that

h′
r ←RS h1 ←RS · · · ←RS hL ←RS h

∗
r ,

where, for ĥ, h ∈ Hmn, “ĥ ←RS h”means that “ĥ can be obtained from h by removing
a subordination relation.”

Consequently, because � satisfies SR,

h∗
r � hL � · · · � h1 � h′

r ,

and since h∗
r is a relabeling of hr and � satisfies A, we see that

hr ∼ h∗
r � hL � · · · � h1 � h′

r . (5)

Because� is reflexive and transitive, (5) implies that hr � h′
r (Sen 2017, Lemma 1*a,

p. 56). Since � satisfies RP, and since hr (respectively, h′
r ) is a replication of h

(respectively, h′), it follows that

h ∼ hr � h′
r ∼ h′,

implying that h � h′. This establishes (a). �
Recall the hierarchical pre-order �s on Hn introduced in Sect. 3: h �s h′ if and

only if there exists a bijection φ between the sets of individuals in the two hierarchies
such that, for each i in h, the number of supervisors of i in h is greater than or equal
to the number of supervisors of φ(i) in h′.

This pre-order can be extended to H as follows: for h, h′ ∈ H , h′ �s h if and
only if there exists n such that hr (respectively, h′

r ) is a replication of h (respectively,
h′) inHn and h′

r �s hr .
Proposition 1 implies that the extension of �s to H is reflexive and transitive

and satisfies A and SR.5 In addition, the extension �s satisfies RP. Indeed, if h′ =
(h, . . . , h) is a replication of h, then h′ ∼s h because (h, . . . , h) ∼s (h, . . . , h).

Proposition 3 The hierarchical pre-order �s defined onH is reflexive and transitive
and satisfies A, SR, and RP.

5 This assertion can be proven using a method entirely analogous to that employed in the proof from
Footnote 4, which demonstrates that the extension of �H to H is reflexive, transitive, and satisfies the
conditions A and SR.
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By Proposition 3 and Theorem 3, �s is �H -consistent.
In Sect. 3, we demonstrated that for the hierarchical pre-orders �H and �s defined

on Hn, �s-dominance need not imply �H -dominance.6 This implies that the exten-
sions �H and �s defined on H share the same property. Consequently, since �s,

defined on H , is �H -consistent, �s aligns with �H for pairs of hierarchies that are
comparable under �H , but there are cases where �H deems two hierarchies incom-
parable, whereas �s still orders them.

The hierarchical index Is defined in (2) can also be extended toH : for h ∈ H , let

Is(h) = 1

n

∑

i∈h
sh(i), (6)

where sh(i) denotes the number of supervisors of i in h. For each h ∈ H , Is(h)

represents the average number of supervisors per individual in the hierarchy h.

The hierarchical order �Is induced by Is onH is defined by

h �Is h
′ ⇔ Is(h) ≥ Is(h

′).

The order �Is agrees with �s for those pairs of hierarchies h, h′ ∈ H that can be
�s-ordered. In other words, �Is is �s-consistent. To see this, suppose that h �s h′
for h, h′ ∈ H . Then there exists n such that hr (respectively, h′

r ) is a replication of
h (respectively, h′) in Hn and hr �s h′

r . Since hr , h
′
r ∈ Hn and hr �s h′

r , we have
Is(hr ) > Is(h′

r ) (since we know, from the previous section, that the restriction of �Is
to Hn is �s-consistent). Next, note that if h ∈ Hm and hr is a k-times replication of
h, so that mk = n, then

Is(hr ) = 1

n

∑

i∈hr
shr (i) = 1

mk
k

∑

i∈h
sh(i) = Is(h).

Similarly, Is(h′
r ) = Is(h′). Consequently,

Is(h) = Is(hr ) > Is(h
′
r ) = Is(h

′),

whence h �Is h
′.

In a similar vein, one can show that h ∼s h′, for h, h′ ∈ H , implies h ∼Is h′.
Thus, �Is is �s-consistent.

Conversely, �s is not �Is -consistent. In fact, for h, h′ ∈ H , h �Is h′ need not
imply h �s h′.To illustrate this point, refer back to Fig. 12 and its detailed explanation.
Figure 12 represents two hierarchies h and h′ inH forwhich h ∼Is h

′ and yet h �s h′.
We have seen that �Is is �s-consistent and that �Is and �s are �H -consistent.

Thus, �Is , being a complete order on H , is a completion of �H and �s .

Since �Is is reflexive, transitive, and �H -consistent, Theorem 3 implies that �Is
satisfies A, SR, and RP.

6 Refer to Fig. 11 and its detailed explanation.
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Proposition 4 The hierarchical order �Is defined on H is complete, reflexive, and
transitive and satisfies A, SR, and RP.

Remark 1 The hierarchical index Is : H → R defined in (6) can be equivalently
formulated in terms of the average number of subordinates. Formally, let Ib : H → R

be defined by

Ib(h) = 1

n

∑

i∈h
bh(i),

where bh(i) denotes the number of subordinates of i in h.

We claim that
Is(h) = Ib(h), for every h ∈ H . (7)

Wefirst establish the equivalence for hierarchieswith exactly one level-0 individual.
Consider the following induction argument. The equivalence is clearly true for any
1-person hierarchy. Now assume that (7) is satisfied for any (n − 1)-person hierarchy
h with exactly one level-0 individual, where n > 1. We will show that (7) must also
hold for any n-person hierarchy with exactly one level-0 individual.

Suppose that h is an n-person hierarchy, where n > 1, and that h has only one level-
0 individual, ι. Let h\ι denote the hierarchy derived from h by removing individual ι.
Then h\ι is an (n − 1)-person hierarchy and we have

Is(h\ι) = 1

n − 1

∑

i∈h\ι
sh\ι(i) = 1

n − 1

∑

i∈h\ι
bh\ι(i) = Ib(h\ι)

by the induction hypothesis. Using this equality, we can write

Is(h) = 1

n

∑

i∈h
sh(i) = 1

n

∑

i∈h\ι
(sh\ι(i) + 1) = 1

n

∑

i∈h\ι
sh\ι(i) + n − 1

n

= n − 1

n
· Is(h\ι) + n − 1

n
= n − 1

n
· Ib(h\ι) + n − 1

n

= 1

n

∑

i∈h\ι
bh\ι(i) + n − 1

n

= 1

n

⎛

⎝
∑

i∈h\ι
bh\ι(i) + n − 1

⎞

⎠ = 1

n

∑

i∈h
bh(i) = Ib(h),

as desired.
Now let h be an arbitrary n-person hierarchy. Then h can be expressed as

h = (h(i))i∈I0 ,

where I0 denotes the set of all level-0 individuals in h. Let nh(i) represent the number
of individuals in h(i) for i ∈ I0. Because

Is(h(i)) = Ib(h(i)), for all i ∈ I0,
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we have

Is(h) = 1

n

∑

j∈h
sh( j) = 1

n

∑

i∈I0

∑

j∈h(i)

sh( j)

= 1

n

∑

i∈I0
[nh(i) Is(h(i))] = 1

n

∑

i∈I0
[nh(i) Ib(h(i))]

= 1

n

∑

i∈I0

∑

j∈h(i)

bh( j) = 1

n

∑

j∈h
bh( j) = Ib(h),

which establishes the desired conclusion.

The hierarchical index Is : H → R defined in (6) bears certain similarities to the
“global reaching centrality” measure introduced byMones et al. (2012). This measure
is defined for unweighted directed graphs—a framework that naturally encompasses
our notion of hierarchies. Indeed, any hierarchy can be mapped to a directed graph by
replacing the paths linking individuals with directed edges (one-sided arrows). This
mapping can be constructed in two distinct ways: either by directing arrows from each
supervisor to their immediate subordinates, or conversely, from each subordinate to
their immediate supervisor.

Using the subordinate-to-supervisor mapping, we can express the core concept
from Mones et al. (2012) as follows. For an individual i in an n-person hierarchy h,

the “local reaching centrality” Ch(i) is defined as the proportion of all individuals in
h, other than i, that can be reached from i via outgoing edges. More formally, Ch(i)
is calculated by dividing the number of individuals reachable from i through outgoing
edges by the total number of individuals in h minus 1 (excluding i itself from both the
numerator and denominator).

Let Ch denote the maximum local reaching centrality among all individuals in
hierarchy h. The global reaching centrality of h, denoted by GRC(h), is then defined
as the average deviation of individuals’ local reaching centrality from this maximum:

GRC(h) =
∑n

i=1(Ch − Ch(i))

n − 1
,

where n is the number of individuals in the hierarchy.
To illustrate this concept, consider the five-person hierarchy h depicted in Fig. 14.

In this representation, directed edges indicate subordination relations, with arrows
pointing from subordinates to their immediate supervisors. This example allows us
to demonstrate the calculation of both local reaching centralities for individual nodes
and the global reaching centrality for the entire hierarchy.

In Fig. 14, local reaching centralities are displayed next to each individual’s node.
As can be observed, the maximum local reaching centrality Ch is 1/2. Using these
values, we can compute the global reaching centrality:

GRC(h) =
1
2 − 1

2

4
+

1
2 − 1

4

4
+

1
2 − 0

4
+

1
2 − 0

4
+

1
2 − 0

4
= 7

16
.
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Fig. 14 Calculating GRCh

We note that

Ch(i) = sh(i)

n − 1
, for each individual i in h,

where sh(i) represents the number of supervisors of i in h. With this foundation, we
can now explore the relationship between the individual supervision index Is(h) and
the global reaching centrality index GRC(h) as follows:

GRC(h) =
∑n

i=1(Ch − Ch(i))

n − 1
= nCh − ∑n

i=1 Ch(i)

n − 1
= nCh − 1

n−1

∑n
i=1 sh(i)

n − 1

= nCh − n
n−1

1
n

∑n
i=1 sh(i)

n − 1
= nCh − n

n−1 Is(h)

n − 1
= n

n − 1

(
Ch − Is(h)

n − 1

)
. (8)

The relationship between Is(h) and GRC(h) described by (8) implies that for pairs
of equally-sized hierarchies h and h′ in H with identical maximum local reaching
centralities, i.e., satisfying Ch = Ch′ , we have

GRC(h) ≥ GRC(h′) ⇔ Is(h
′) ≥ Is(h). (9)

However, this equivalence no longer holds for pairs of hierarchies with different
maximum local reaching centralities. In fact, the global reaching centrality index fails
to be �H -consistent.

To see this, consider first the two three-person hierarchies represented in Fig. 15.
These hierarchies have the same number of individuals and the same maximum local
reaching centralities, since

Ch = Ch′ = 1

2
.

Consequently, (9) holds, and so

Is(h) = 2

3
>

1

3
= Is(h

′)

implies that GRC(h) < GRC(h′).
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Fig. 15 h �H h′ and
GRC(h) < GRC(h′)

On the other hand, it is easy to see that h �H h′ (for example, using the bijection
depicted in Fig. 15) and yet h′ ⋡H h, so that h �H h′. To see that h′ ⋡H h, consider
that any bijection between the set of individuals in h′ and those in h must associate
a level-0 individual in h′, denoted as i, with a level-1 individual in h. However, the
supervisor of this level-1 individual cannot be linked to i or any supervisor of i .

Thus, we have h �H h′ and GRC(h) < GRC(h′).
Now consider the two hierarchies, h and h′, depicted in Fig. 16. We can establish

that h �H h′ using the bijection illustrated in the figure. However, the reverse relation
does not hold: h′ ⋡H h. To see why, consider any bijection from the individuals in h′ to
those in h. Such a bijection must map some level-1 individual i in h′ to a subordinate
in h. This subordinate in h necessarily has a supervisor that does not correspond to
any supervisor of i in h′, thus violating the conditions for h′ �H h.

Note that the maximum local reaching centralities differ across hierarchies in this
example:

Ch′ = 1

2
< 1 = Ch .

Since

Is(h
′) = 2

3
< 1 = Is(h),

we can use (8) to compute the corresponding global reaching centralities:

GRC(h′) = 1

4
<

3

4
= GRC(h).

This example, in conjunction with the previous one, yields a key insight into the
relationship between hierarchical structures and centrality measures. Firstly, in the
last example we observe that h �H h′, indicating that hierarchy h is strictly more
hierarchical than h′ according to �H . Secondly, we find that the global reaching cen-
trality measures of these hierarchies satisfyGRC(h′) < GRC(h). This ordering stands
in contrast to our previous example, where the relationship between global reaching
centrality and �H was reversed. This reversal demonstrates that the global reaching
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Fig. 16 h �H h′ and
GRC(h) > GRC(h′)

centrality index is not �H -consistent. In other words, a more hierarchical structure as
defined by �H does not necessarily imply a lower global reaching centrality.

Alternatively, we can reformulate global reaching centrality by considering the
downward flow of authority rather than the upward chain of command, i.e., using
directed edges that flow from supervisors to their immediate subordinates, without
altering the key insights derived from our previous analysis. This alternative formula-
tion provides a different perspective on hierarchical relationships while maintaining
consistency with our established findings regarding the non-monotonicity of global
reaching centrality with respect to �H .

Indeed, this alternative formulation of global reaching centrality yields consistent
results with our previous findings. Examining the example in Fig. 15, we observe that

h �H h′ and GRC(h) > GRC(h′),

indicating that themore hierarchical structure h corresponds to a higher global reaching
centrality. Conversely, the example from Fig. 16 demonstrates that

h �H h′ and GRC(h′) > GRC(h).

Here, despite h being more hierarchical, it exhibits a lower global reaching centrality
than h′. This juxtaposition of results clearly illustrates the non-monotonic relationship
between hierarchical structure and global reaching centrality, reinforcing our earlier
conclusion that GRC is not �H -consistent, even under this alternative formulation.

5 Concluding remarks

This paper introduces a novel axiomatic framework for measuring and compar-
ing hierarchical structures. By establishing a mathematical foundation for hierarchy
comparison, our work represents a first step towards a systematic analysis of how orga-
nizational architecture influences economic outcomes and shapes societal structures.

At the core of our framework are three novel axiomatic principles that provide a
basis for systematic hierarchy comparison. The Anonymity axiom establishes that the
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underlying hierarchical structure remains invariant under any relabeling of individuals
within the hierarchy, ensuring that the hierarchical nature of an organization is deter-
minedby its structural relationships rather thanby the specific identities of itsmembers.
The Subordination Removal axiom formalizes the intuitive notion that eliminating a
supervisory relationship necessarily results in a less hierarchical structure, providing
a crucial basis for comparing the relative “steepness” of different hierarchies. Finally,
the Replication Principle extends our framework beyond the constraints of fixed-size
comparisons by stipulating that replicating a hierarchy—creating multiple identical
copies of its structure—preserves its hierarchical degree, thus enabling meaningful
comparisons between hierarchies of different sizes while maintaining consistency
with our other axioms.

We introduce a new and straightforward hierarchical pre-order, �H , defined
through the comparison of supervisory ranks across hierarchies. We demonstrate that
this pre-order is intrinsically related to our axioms. Specifically, we show that one
hierarchy is strictly more hierarchical than another under �H if and only if the lat-
ter can be derived from the former—up to relabeling—through a series of successive
subordination removals.

We define �H -consistent hierarchical pre-orders as those that align with �H when
comparing two hierarchies that can be ranked under �H . We characterize all �H -
consistent hierarchical pre-orders via the Anonymity and Subordination Removal
axioms andextendour framework to accommodate hierarchies of varying sizes through
the Replication Principle.

Our analysis reveals that the notion of hierarchical degree encapsulated in our basic
axioms is fundamentally distinct from the essence of rank mobility measurement.
Additionally, we study examples of partial and full completions of the core hierarchical
pre-order �H , comparing them to existing hierarchical indices.

The theoretical foundations established in this work naturally point to a number of
avenues for future research. The first involves expanding our framework to encompass
networkswithmultiple immediate supervisors, as the current focus on hierarchies with
single immediate supervisors may not capture all real-world organizational structures.

The second avenue leverages our framework’s refined hierarchical comparison
methods to explore the interplay between organizational design and socioeconomic
outcomes. This research direction examines the broad implications of organizational
structure for income distribution and social dynamics.

Of particular interest is the prospect of a nuanced theoretical analysis investigat-
ing the correlation between “deeper hierarchy” and established measures of income
inequality, poverty, and polarization. Even in the context of “economic growth,” deeply
entrenched hierarchies can hinder equitable resource distribution. In such scenarios,
similar levels of absolute poverty become increasingly normatively regrettable. Under-
standing these determinants requires a comprehensive analysis of howpower dynamics
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and social stratification might counteract poverty alleviation efforts, drawing on exist-
ing research about poverty reduction failure.7

Data availability This work is theoretical in nature; therefore, it does not involve dataset analysis or gener-
ation.

Appendix A

A.1 Preliminary lemmata

Lemma 3 For h, h′ ∈ Hn, h ∼H h′ implies that there exists a bijection φ from the
set of individuals in h to the set of individuals in h′ satisfying the following:
(a) For each level-k individual i in h, φ(i) is a level-k individual in h′.
(b) For each individual i in h, the number of immediate subordinates of i in h equals

the number of immediate subordinates of φ(i) in h′.
(c) For each individual i in h, the set

φ(Ih(i)) = {φ(i) : i ∈ Ih(i)},

where Ih(i) denotes the set of all individuals in the sub-hierarchy h(i), is equal to
the set of all individuals in the sub-hierarchy h′(φ(i)).

Proof Since h �H h′, there exists, by definition, a bijection φ from the set of individ-
uals in h to the set of individuals in h′ satisfying the following:

(I) For each individual i in h such thatφ(i) is not a level-0 individual, the immediate
supervisor of φ(i) in h′, ph′(φ(i)), links (via φ−1) to a supervisor j of i in h:
φ−1(ph′(φ(i))) = j = plh(i) for some l.

Similarly, since h′ �H h, there exists a bijection φ′ from the set of individuals in h′
to the set of individuals in h satisfying the following: for each individual i in h′ such
that φ′(i) is not a level-0 individual, the immediate supervisor of φ′(i) in h, ph(φ′(i)),
links (via φ′−1) to a supervisor j of i in h′: φ′−1

(ph(φ′(i))) = j = plh′(i) for some l.
Let I0 (respectively, I ′

0) be the set of all level-0 individuals in h (respectively, h′).
First, we show that

φ(I0) = {φ(i) : i ∈ I0} ⊆ I ′
0.

To see this, note that j ∈ φ(I0)\I ′
0 implies that there exist i ∈ I0 and a level-k

individual j in h′, where k > 0, such that φ(i) = j . But then φ−1(ph′(φ(i))) �=
plh(i) for any l, which contradicts (I). Therefore, φ(I0)\I ′

0 = ∅, which implies that
φ(I0) ⊆ I ′

0.

Similarly, we can show that φ′(I ′
0) ⊆ I0.

Next, let Il (respectively, I ′
l ) be the set of all level-l individuals in h (respectively,

h′). Suppose that the containments φ(Il) ⊆ I ′
l and φ′(I ′

l ) ⊆ Il have been proven for

7 Poverty reduction failure is studied in Kanbur and Mukherjee (2007) and Chakravarty and D’Ambrosio
(2013).
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each l ∈ {0, . . . , k} and some k ≥ 0. Then the containments φ(Ik+1) ⊆ I ′
k+1 and

φ′(I ′
k+1) ⊆ Ik+1 can also be proven.

To see this, note first that, for each l, the two containments φ(Il) ⊆ I ′
l and φ′(I ′

l ) ⊆
Il imply that h and h′ have the same number of level-l individuals. Indeed, if there
were more level-l individuals in h′, then φ(Il) would be a strict subset of I ′

l , and,
since both Il and φ(Il) have the same cardinality, Il would be a smaller set than I ′

l ,

contradicting the containment φ′(I ′
l ) ⊆ Il . A similar contradiction can be obtained

under the assumption that there are more level-l individuals in h.

Now, if j ∈ φ(Ik+1)\I ′
k+1, since φ(Il) ⊆ I ′

l and Il and I ′
l have the same cardinality

for each l ∈ {0, . . . , k},we see that j ∈ φ(Ik+1)\(⋃k+1
l=0 I ′

l ).Consequently, there exist
i ∈ Ik+1 and a level-κ ′ individual j in h′, where κ ′ > k + 1, such that φ(i) = j . But
then φ−1(ph′(φ(i))) must be a level-κ individual in h, where κ ≥ k + 1. Indeed, if
φ−1(ph′(φ(i)))where a level-l individual in h for some l ∈ {0, . . . , k}, thenφ(Il) � I ′

l
(since ph′(φ(i)) = ph′( j) is a level-(κ ′ − 1) individual in h′ and κ ′ > k + 1),
contradicting the assumed containment φ(Il) ⊆ I ′

l . Consequently, φ
−1(ph′(φ(i))) �=

p�
h(i) for any �, which contradicts (I). Therefore, φ(Ik+1)\I ′

k+1 = ∅, which implies
that φ(Ik+1) ⊆ I ′

k+1.

Next, fix a level-k individual i in h. Since φ(Ik) ⊆ I ′
k, it follows that φ(i) is a

level-k individual in h′. This establishes (a).
To see that (b) holds, let i be an individual in h. Suppose that i is a level-k individual.

Proceeding by contradiction, suppose that the number of immediate subordinates of i
in h is not equal to the number of immediate subordinates of φ(i) in h′. If he number
of immediate subordinates of φ(i) is greater, then (by (a)) there exists a subordinate
j of φ(i) linking (via φ−1) to a level-(k + 1) subordinate ι in h whose immediate
supervisor, i∗, is not i . But then φ(ι) = j and φ(i) is j’s immediate supervisor in h′,
and yet φ(i) links (via φ−1) to i �= i∗, implying that i is not a supervisor of ι, which
contradicts (I).

Hence, the number of immediate subordinates of i in h must be greater than or
equal to the number of immediate subordinates of φ(i) in h′.

If the number of immediate subordinates of i in h is greater than the number of
immediate subordinates of φ(i) in h′, there exists an immediate subordinate ι of i
in h such that φ(ι)’s immediate supervisor in h′, ph′(φ(ι)), is not φ(i). But then
φ−1(ph′(φ(ι))) is a level-k individual different from i, implying that φ−1(ph′(φ(ι)))

is not a supervisor of ι in h, which contradicts (I).
Thus, the number of immediate subordinates of i in h is equal to the number of

immediate subordinates of φ(i) in h′. This establishes (b).
It only remains to prove (c). Fix an individual i in h, and let Ih(i) (respectively,

Ih′(φ(i))) be the set of all individuals in the hierarchy h(i) (respectively, h′(φ(i))). We
must show that φ(Ih(i)) = Ih′(φ(i)).

Suppose that i is a level-k individual. Note that it suffices to prove the following:
Suppose that j is a level-(k+l) individual in h(i) for l ≥ 0.Thenφ(S j ) = Sφ( j),where
S j (respectively, Sφ( j)) represents the set of immediate subordinates of j (respectively,
φ( j)) in h (respectively, h′).

Suppose that j is a level-(k + l) individual in h(i) for l ≥ 0. Suppose that there
exists ι ∈ S j such that φ(ι) /∈ Sφ( j). Then, since ι is a level-(k + l + 1) individual
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in h, so that φ(ι) is a level-(k + l + 1) individual in h′ (by (a)), φ(ι)’s immediate
supervisor in h′, ph′(φ(ι)), is a level-(k + l) individual in h′ who links (via φ−1)
to a level-(k + l) individual in h, φ−1(ph′(φ(ι))). Note that φ−1(ph′(φ(ι))), being
different from j (since φ(ι) /∈ Sφ( j) and so ph′(φ(ι)) �= φ( j)), is not a supervisor of
ι in h. Since this contradicts (I), we see that φ(S j ) ⊆ Sφ( j). But then φ(S j ) = Sφ( j),

since S j and Sφ( j) (and hence φ(S j ) and Sφ( j)) have the same cardinality (by (b)). �
Lemma 4 For h, h′ ∈ Hn, h ∼H h′ implies that h is a relabeling of h′.

Proof It suffices to show that there exists a bijection φ from the set of individuals in h
to the set of individuals in h′ such that h(i) is a relabeling of h′(φ(i)) for each i in h.

Let φ be the bijection given by Lemma 3. Let K be the largest level for which
there are level-K individuals in h. Then all the level-K individuals in h have zero
subordinates. By item (a) of Lemma 3, for any level-K individual i in h, φ(i) is
a level-K individual in h′; moreover, since φ(i) has zero subordinates, item (b) of
Lemma 3 implies that h(i) is a relabeling of h′(φ(i)).

Suppose that h(i) has been shown to be a relabeling of h′(φ(i)) for each level-k
individuals i in h, where k ∈ {K , K − 1, . . . , 1}. Then h(i) is a relabeling of h′(φ(i))
for each level-(k − 1) individual i in h.

To see this, fix a level-(k − 1) individual i in h. Let Si (respectively, S′
i ) be the set

of level-k subordinates of i (respectively, φ(i)) in h (respectively, h′). If

φ(Si ) = {φ( j) : j ∈ Si } = S′
i

were true, then, because h( j) is a relabeling of h′(φ( j)) for each j ∈ Si , it would
follow that h(i) is a relabeling of h′(φ(i)). Thus, it suffices to show that φ(Si ) = S′

i .

By items (a) and (c) of Lemma 3, we know that φ(Si ) is a set of level-k individuals
in h′ contained in the set of all individuals in the sub-hierarchy h′(φ(i)). Since S′

i is the
set of all level-k individuals in h′(φ(i)), item (a) of Lemma 3 gives φ(Si ) ⊆ S′

i . But
then φ(Si ) = S′

i , since Si and S′
i (and hence φ(Si ) and S′

i ) have the same cardinality
(by item (b) of Lemma 3). �
Lemma 5 For h, h′ ∈ Hn, if h′ can be obtained from h by removing a subordination
relation, then h �H h′.

Proof We proceed by induction on n. The statement is clearly true if n = 1. We now
prove the statement for any n > 1 under the assumption that it is true for m-person
hierarchies, where m ∈ {1, . . . , n − 1}.

Because h′ can be obtained from h by removing a subordination relation, there
exists a level-k subordinate i∗ in h, where k ∈ {1, . . . , K } (and where K denotes the
total number of levels in the hierarchy h), satisfying the following:

(i) If i∗’s immediate supervisor, ph(i∗), is a level-0 individual in h, then h′ is the
hierarchy in which the sub-hierarchy h(i∗) is no longer under ph(i∗)’s supervi-
sion, i∗ becomes a level-0 individual, and the sub-hierarchy that begins at i∗ is
h(i∗); h′ is otherwise equal to h.

(ii) If i∗’s immediate supervisor in h, ph(i∗), is a not level-0 individual, then ph(i∗)
is an immediate subordinate of p2h(i

∗), i.e., ph(i∗) ∈ Sp2h(i∗)
. In this case, h′
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is the hierarchy in which the sub-hierarchy h(i∗) is no longer under ph(i∗)’s
supervision, but rather under the direct supervision of p2h(i

∗), so that i∗ is no
longer a level-k subordinate, but rather a level-(k − 1) subordinate in Sp2h(i∗)

,

and the sub-hierarchy that begins at i∗ is h(i∗); h′ is otherwise equal to h.

First, we show that h �H h′. To see this, let φ be the identity map from the set of
individuals in h to the set of individuals in h′. It suffices to prove the following:
(∗) For each individual i in h such that φ(i) is not a level-0 individual, the immediate

supervisor of φ(i) in h′, ph′(φ(i)), links (via φ−1) to a supervisor j of i in h:
φ−1(ph′(φ(i))) = j = plh(i) for some l.

Note that if the sub-hierarchy h(i∗) is removed from h and the sub-hierarchy
h′(φ(i∗)) = h′(i∗) is removed from h′, the remaining hierarchies are identical. There-
fore, for any individual i in h not in h(i∗), (∗) holds.

Next, fix an individual i in h(i∗). If i �= i∗, then, since the two sub-hierarchies
h(i∗) and h′(i∗) are identical, and since φ is the identity map, (∗) holds.

It remains to prove (∗) for i = i∗. Note that if φ(i∗) = i∗ is not a level-0 individual
in h′, then (ii) must hold. But then the immediate supervisor of φ(i∗) = i∗ in h′ is
p2h′(i∗), which links (via φ−1) to p2h(i

∗) in h, a supervisor of i∗ in h, implying that
(∗) holds.

Since h �H h′, it remains to show that h′ ⋡H h. Proceeding by contradiction,
h′ �H h implies that h′ ∼H h. Consequently, h′ is a relabeling of h (Lemma 4),
contradicting that h′ can be obtained from h by removing a subordination relation. �
Lemma 6 Suppose that h, h′ ∈ Hn, and let I0 (respectively, I ′

0) be the set of level-0
individuals in h (respectively, h′). The following two statements are equivalent:
(i) h �H h′.
(ii) There exists a finite partition of I ′

0 consisting of #I0 elements,

{I ′
1, . . . , I

′
#I0},

where #I0 denotes the cardinality of I0, such that for each i ∈ I0, h(i) �H

(h′(ι))ι∈I ′
i
.

Proof Suppose that (ii) holds. Then there exists a finite partition of I ′
0 consisting of

#I0 elements,
{I ′

1, . . . , I
′
#I0}, (10)

such that for each i ∈ I0, there exists a bijection φi from the set of individuals in h(i)
to the set of individuals in (h′(ι))ι∈I ′

i
satisfying the following: for each individual j in

h(i) such that φi ( j) is not a level-0 individual,

φ−1
i (p(h′(ι))ι∈I ′i

(φi ( j))) = plh(i)( j), for some l. (11)

Define a function φ from the set of individuals in h to the set of individuals in h′
as follows:

φ( j) = φi ( j) if j ∈ h(i), i ∈ I0.
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We claim that φ is a bijection. To see this, note first that if j ′ is an individual in h′ then
j ′ is an individual in the sub-hierarchy h′(i ′) for some i ′ ∈ I ′

0. Since i
′ ∈ I ′

0, there
exists i ∈ I0 such that i ′ ∈ I ′

i . Thus, j
′ is an individual in the sub-hierarchy (h′(ι))ι∈I ′

i
,

and so there exists an individual j in the sub-hierarchy h(i) such that j = φ−1
i ( j ′).

Because i ∈ I0 and j ∈ h(i), we see that

φ( j) = φi ( j) = φi (φ
−1
i ( j ′)) = j ′.

Hence, φ is an onto map.
To see that φ is one-to-one, note that for every j in h, there is a unique i ∈ I0 such

that j is an individual in the sub-hierarchy h(i), and so there is a unique element I ′
i

of the partition in (10) and a unique individual i ′ in the sub-hierarchy (h′(ι))ι∈I ′
i
such

that φ( j) = i ′.
Thus, φ is a bijection.
Next, fix an arbitrary individual j in h such that φ( j) is not a level-0 individual.

Then j ∈ h(i) for some i ∈ I0 and φ( j) = φi ( j), where φi is a bijection from the set
of individuals in h(i) to the set of individuals in (h′(ι))ι∈I ′

i
satisfying (11). Therefore,

since

φ−1(ph′(φ( j))) = φ−1(ph′(φi ( j))) = φ−1(p(h′(ι))ι∈I ′i
(φi ( j))) = φ−1

i (p(h′(ι))ι∈I ′i
(φi ( j)))

and
plh( j) = plh(i)( j),

we have
φ−1(ph′(φi ( j))) = plh( j), for some l,

and so (i) holds.
Now suppose that (i) holds. Then, there exists a bijection φ from the set of individ-

uals in h to the set of individuals in h′ satisfying the following:

(∗) For each individual i in h such that φ(i) is not a level-0 individual,

φ−1(ph′(φ(i))) = plh(i), for some l.

For each i ∈ I0 (respectively, i ∈ I ′
0), let Ih(i) (respectively, Ih′(i)) be the set of all

individuals in h(i) (respectively, h′(i)).
First, we show that

∀i ∈ I ′
0, ∃ j ∈ I0 : φ−1(Ih′(i)) = {φ−1(ι) : ι ∈ Ih′(i)} ⊆ Ih( j). (12)

Fix i ∈ I ′
0. Then φ−1(i) is an individual in h. Let j be the level-0 supervisor of

φ−1(i) in h. It suffices to show that φ−1(Ih′(i)) ⊆ Ih( j).

Proceeding by contradiction, suppose that there exists ι ∈ φ−1(Ih′(i))\Ih( j). Then
ι ∈ Ih(ι∗) for some ι∗ ∈ I0\{ j}. Note that φ(ι) �= i, since φ−1(i) �= ι. Since i is the

123



Measuring hierarchy

only level-0 individual in h′(i), and since Ih′(i) � φ(ι) �= i, φ(ι), an individual in the
sub-hierarchy h′(i), is not a level-0 individual. Therefore, by (∗),

φ−1(ph′(φ(ι))) = plh(ι), for some l,

implying that
φ−1(ph′(φ(ι))) ∈ Ih(ι∗). (13)

If ph′(φ(ι)) is a level-0 individual, since p(φ(ι)) ∈ Ih′(i), then p(φ(ι)) = i (since i
is the only level-0 individual in h′(i)); in this case, since φ−1(i) ∈ Ih( j) and j �= ι∗,
φ−1(ph′(φ(ι))) = φ−1(i) cannot be a member of Ih(ι∗), contradicting (13).

If p(φ(ι)) is not a level-0 individual, then, again applying (∗), we see that

φ−1(p2h′(φ(ι))) = plh(ι), for some l,

implying that
φ−1(p2h′(φ(ι))) ∈ Ih(ι∗). (14)

If p2h′(φ(ι)) is a level-0 individual, since p2h′(φ(ι)) ∈ Ih′(i), then p2h′(φ(ι)) = i; in this
case, since φ−1(i) ∈ Ih( j) and j �= ι∗, φ−1(p2h′(φ(ι))) = φ−1(i) cannot be a member
of Ih(ι∗), which contradicts (14).

If p2(φ(ι)) is not a level-0 individual, again applying (∗), we see that

φ−1(p3h′(φ(ι))) = pl(ι), for some l,

implying that φ−1(p3h′(φ(ι))) ∈ Ih(ι∗). This argument can be reiterated until a contra-
diction is reached in finitely many steps.

This proves (12).
Next, we show that there exists a finite partition of I ′

0 consisting of #I0 elements,

{I ′
1, . . . , I

′
#I0},

such that for each i ∈ I0, we have

φ(Ih(i)) = {φ(ι) : ι ∈ Ih(i)} =
⋃

ι∈I ′
i

Ih′(ι). (15)

To see this, note that by (12), for each ι ∈ I ′
0, there exists jι ∈ I0 such that

φ−1(Ih′(ι)) = {φ−1(ι′) : ι′ ∈ Ih′(ι)} ⊆ Ih( jι).

In addition, because φ is a bijection, each jι must be unique.
For i ∈ I0, define

I ′
i = {ι ∈ I ′

0 : jι = i}. (16)

First, we show that
{I ′

1, . . . , I
′
#I0},
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where each I ′
i is defined by (16), is a partition of I

′
0. First, note that for i, j ∈ I0 with

i �= j,
I ′
i ∩ I ′

j = {ι ∈ I ′
0 : jι = i} ∩ {ι ∈ I ′

0 : jι = j} = ∅,

since jι is uniquely defined for each ι ∈ I ′
0. Next, note that

⋃

i∈I0
I ′
i = I ′

0.

To see this, note that the containment
⋃

i∈I0 I
′
i ⊆ I ′

0 is obvious, so we only need to
show that

⋃
i∈I0 I

′
i ⊇ I ′

0.

Suppose that ι ∈ I ′
0. Then ι ∈ I ′

jι
, and so ι ∈ ⋃

i∈I0 I
′
i . Thus,

⋃
i∈I0 I

′
i ⊇ I ′

0.

Next, we prove (15) for each i ∈ I0.
Fix i ∈ I0. Suppose that j ′ ∈ φ(Ih(i)). Then there exists j ∈ Ih(i) such that

j ′ = φ( j), implying that j ′ ∈ Ih′(ι) for some ι ∈ I ′
0. If ι /∈ I ′

i , then there exists
jι ∈ I0\{i} such that φ−1(Ih′(ι)) ⊆ Ih( jι). Since j ′ ∈ Ih′(ι), this implies that

j = φ−1( j ′) ∈ Ih( jι).

But this contradicts the fact that j ∈ Ih(i). Indeed, since jι �= i, we have

Ih( jι) ∩ Ih(i) = ∅.

Therefore, we must have j ′ ∈ Ih′(ι) for some ι ∈ I ′
i .

Hence, φ(Ih(i)) ⊆ ⋃
ι∈I ′

i
Ih′(ι).

Conversely, if j ′ ∈ Ih′(ι) for some ι ∈ I ′
i , then the definition of I ′

i in (16) entails
that

φ−1(Ih′(ι)) ⊆ Ih(i),

implying that φ−1( j ′) ∈ Ih(i), and so j ′ ∈ φ(Ih(i)).

Consequently, φ(Ih(i)) ⊇ ⋃
ι∈I ′

i
Ih′(ι).

We conclude that (15) holds. Now let φ|Ih(i) be the restriction of φ to Ih(i).

By (15), φ|Ih(i) is a bijection from Ih(i) to
⋃

ι∈I ′
i
Ih′(ι).

By (∗),φ|Ih(i) satisfies the following: for each individual j in h(i) such thatφ|Ih(i) ( j)
is not a level-0 individual in (h′(ι))ι∈I ′

i
,

φ|Ih(i)
−1(p(h′(ι))ι∈I ′i

(φ|Ih(i) ( j))) = plh(i)( j), for some l.

Consequently, h(i) �H (h′(ι))ι∈I ′
i
. Since i was arbitrary in I0, this establishes (ii).

�
Lemma 7 Suppose that h, h′ ∈ Hn, and let I0 (respectively, I ′

0) be the set of level-0
individuals in h (respectively, h′). Then (i) implies (ii):

(i) h �H h′.
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(ii) For each i ∈ I0, there exists I ′
i ⊆ I ′

0 such that h(i) �H (h′( j)) j∈I ′
i
; and there

exists i∗ ∈ I0 such that h(i∗) �H (h′( j)) j∈I ′
i∗ .

Proof Suppose that h �H h′. Then h �H h′, and so Lemma 6 implies that there exists
a finite partition of I ′

0 consisting of #I0 elements,

{I ′
1, . . . , I

′
#I0},

where #I0 denotes the cardinality of I0, such that for each i ∈ I0, h(i) �H (h′(ι))ι∈I ′
i
.

If (h′(ι))ι∈I ′
i

�H h(i) for each i ∈ I0, then h(i) ∼H (h′(ι))ι∈I ′
i
for each i ∈ I0,

and so by Lemma 4, h(i) is a relabeling of (h′(ι))ι∈I ′
i
for each i ∈ I0. But then

h = (h(i))i∈I0 and h′ = ((h′(ι))ι∈I ′
i
)i∈I0

are relabelings of each other, and so A implies that

h = (h(i))i∈I0 ∼H h′ = ((h′(ι))ι∈I ′
i
)i∈I0 ,

a contradiction (recall that �H satisfies A by Proposition 1).
Therefore, there exists i∗ ∈ I0 such that (h′(ι))ι∈I ′

i∗ ⋡H h(i∗), implying that

h(i∗) �H (h′(ι))ι∈I ′
i∗ , and so (ii) holds. �

A.2 Proof of Lemma 1

Lemma 1 is restated here for the reader’s convenience.

Lemma 1 The hierarchical pre-order �H defined on Hn is reflexive and transitive
and satisfies A and SR.

Proof Reflexivity follows immediately from the definition of �H .

Let Ih̃ represent the set of individuals in h̃ ∈ Hn .

To see that �H is transitive, suppose that

h �H h′ �H h′′, for h, h′, h′′ ∈ Hn .

Then, there exist bijections φ : Ih → Ih′ and φ′ : Ih′ → Ih′′ satisfying the following:

{1} For each individual i in h such that φ(i) is not a level-0 individual, the immediate
supervisor of φ(i) in h′, ph′(φ(i)), links (via φ−1) to a supervisor j of i in h, i.e.,

φ−1(ph′(φ(i))) = j = plh(i), for some l.

{2} For each individual i in h′ such that φ′(i) is not a level-0 individual, the immediate
supervisor of φ′(i) in h′′, ph′′(φ′(i)), links (via φ′−1) to a supervisor j of i in h′,
i.e.,

φ′−1
(ph′′(φ′(i))) = j = plh′(i), for some l.
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Since φ and φ′ are bijections, the composition φ∗ := φ′ ◦ φ is also a bijection (see,
e.g., Blyth 1975, Theorem 5.10, p. 37). Thus, it suffices to show the following:

(◦) For each individual i in h such that φ∗(i) is not a level-0 individual, the immediate
supervisor of φ∗(i) in h′′, ph′′(φ∗(i)), links (via φ∗−1) to a supervisor j of i in
h, i.e.,

φ∗−1
(ph′′(φ∗(i))) = j = plh(i), for some l.

Fix an individual i in h such that φ∗(i) is not a level-0 individual. Proceeding by
contradiction, suppose that

φ∗−1
(ph′′(φ∗(i))) �= plh(i), for any l. (17)

Consider the sequence

i, φ(i), ph′(φ(i)), φ−1(ph′(φ(i))), φ−1(ph′(φ(i))), ph′(φ(i)), p2h′(φ(i)),

φ−1(p2h′(φ(i))), φ−1(p2h′(φ(i))), p2h′(φ(i)), p3h′(φ(i)), φ−1(p3h′(φ(i))), . . . .

This sequence can be subdivided into four-element cycles as follows:

Cycle 1: i, φ(i), ph′(φ(i)), φ−1(ph′(φ(i))).

Cycle 2: φ−1(ph′(φ(i))), ph′(φ(i)), p2h′(φ(i)), φ−1(p2h′(φ(i)))

Cycle 3: φ−1(p2h′(φ(i))), p2h′(φ(i)), p3h′(φ(i)), φ−1(p3h′(φ(i)))

Cycle 4: φ−1(p3h′(φ(i))), p3h′(φ(i)), p4h′(φ(i)), φ−1(p4h′(φ(i)))

...
...

The first and last elements of each cycle are individuals in h, while the second and
third elements of each cycle are individuals in h′. Moreover, by {1}, the first and last
elements of each cycle belong to the path connecting i and i’s level-0 supervisor in h,

i.e., if j is the first or the fourth element of a cycle, we have j = pl(i) for some l. In
addition, by construction, the second and third elements of every cycle belong to the
path connecting φ(i) and φ(i)’s level-0 supervisor in h′, i.e., if j is the second or the
third element of a cycle, we have j = plh′(φ(i)) for some l.

Note that each individual in the path connecting φ(i) and φ(i)’s level-0 supervisor
in h′ must eventually become the third element of a cycle. Hence, because

φ′−1
(ph′′(φ∗(i))) = plh′(φ(i)), for some l (by {2}),

φ′−1
(ph′′(φ∗(i))) is equal to the third element of some cycle �. But then the fourth

element of cycle �, which can be expressed as

φ−1(φ′−1
(ph′′(φ∗(i)))),
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belongs to the path connecting i and i’s level-0 supervisor in h (as noted in the previous
paragraph). Noting that

φ−1(φ′−1
(ph′′(φ∗(i)))) = φ∗−1

(ph′′(φ∗(i)))),

this contradicts our initial assumption in (17).
We conclude that (◦) holds, implying that �H is transitive.
By Lemma 5, �H satisfies SR.
To see that �H satisfies A, let h′ be a relabeling of h. Then there exists a bijection

φ : Ih → Ih′ with the following property: if each individual i in h′ is assigned the
label “φ−1(i),” then the resulting hierarchy is identical to h.

It is easy to see that, for the bijection φ, the following condition is satisfied: for each
individual i in h such that φ(i) is not a level-0 individual, the immediate supervisor
of φ(i) in h′, ph′(φ(i)), links (via φ−1) to a supervisor j of i in h, i.e.,

φ−1(ph′(φ(i))) = j = plh(i), for some l.

Hence, h �H h′.
A similar condition can be verified for the bijection φ−1 : Ih′ → Ih : for each

individual i in h′ such that φ−1(i) is not a level-0 individual, the immediate supervisor
of φ−1(i) in h, ph(φ−1(i)), links (via φ) to a supervisor j of i in h′, i.e.,

φ(ph(φ
−1(i))) = j = plh′(i), for some l.

Consequently, h′ �H h and h �H h′, implying that h ∼H h′. �

A.3 Proof of Theorem 1

Theorem 1 For h, h′ ∈ Hn, h �H h′ if and only if h′ can be obtained from some
relabeling of h by successive removals of subordination relations.

Proof [Necessity.] First, we prove the “only if” part of the statement under the assump-
tion that h has only one level-0 individual.

We proceed by induction on n. The statement is clearly true if n = 1. We now
prove the statement for any n > 1 under the assumption that it is true for m-person
hierarchies, where m ∈ {1, . . . , n − 1}.

Suppose that h �H h′.Wemust show that h′ can be obtained from some relabeling
of h by successive removals of subordination relations.

Since h �H h′, there exists a bijection φ from the set of individuals in h to the set
of individuals in h′ satisfying the following:

( ) For each individual i in h such that φ(i) is not a level-0 individual, the immediate
supervisor of φ(i) in h′, ph′(φ(i)), links (via φ−1) to a supervisor j of i in h, i.e.,

φ−1(ph′(φ(i))) = j = plh(i), for some l.
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Let the (unique) level-0 individual h be denoted by ι. Then φ(ι) is a level-0
individual in h′ (otherwise ph′(φ(ι)) would not link (via φ−1) to a supervisor of
ι, contradicting ( )).

If φ(ι) �= ι, the individuals in h can be relabeled so that φ(ι) = ι. The resulting
relabeling will be denoted again by h.

Let h\ι be the hierarchy resulting from removing individual ι from h: in h\ι, every
j in the set Sι of all level-1 subordinates of ι becomes a level-0 individual, and the
sub-hierarchy that begins at j is h( j).

Let h′\ι be the hierarchy resulting from removing individual ι from h′:
• In h′\ι, every j in the set of all level-1 subordinates of ι becomes a level-0 indi-
vidual, and the sub-hierarchy that begins at j is h′( j).

• The structure of h′ remains otherwise intact, i.e., the sub-hierarchy that begins at
any level-0 i other than ι is h′(i).
Let φ∗ be the restriction of φ to the individuals in h\ι. Note that φ∗ is a bijection

between the individuals in h\ι and those in h′\ι.Moreover, because φ satisfies ( ) and
φ(ι) = ι, φ∗ has the following property: for each individual i in h\ι such that φ∗(i)
is not a level-0 individual,

φ∗−1
(ph′(φ∗(i))) = plh(i), for some l.

Thus, we have h\ι, h′\ι ∈ Hn−1 and h\ι �H h′\ι.
Suppose first that h′\ι �H h\ι. Then, h\ι ∼H h′\ι, and Lemma 4 implies that h\ι

is a relabeling of h′\ι.
Since ι is the only level-0 individual in h, we can write

h = h(ι) and h′ = (h′(ι), (h′( j)) j∈I ′
0\{ι}),

where I ′
0 denotes the set of all level-0 individuals in h′. Now, letting Sι (respectively,

S′
ι) be the set of level-1 subordinates of ι in h (respectively, h′), we can write

h\ι = (h( j)) j∈Sι and h′\ι = ((h′( j)) j∈S′
ι
, (h′( j)) j∈I ′

0\{ι}).

Since h\ι is a relabeling of h′\ι, there is no loss of generality in assuming that h\ι
and h′\ι are identical (since the individuals in h\ι can always be relabeled in such a
way that h\ι and h′\ι are identical). Hence,

Sι = S′
ι ∪ (I ′

0\{ι}) and h( j) = h′( j) for all j ∈ Sι. (18)

Now let {i1, . . . , im} be an enumeration of I ′
0\{ι} and define the sequence of hier-

archies h0, . . . , hm as follows:

• h0 = h.

• h1 is obtained from h by the removal of a subordination relation as follows: i1 is
no longer a level-1 subordinate in h under the direct supervision of ι, but rather a
level-0 individual, and the sub-hierarchy that begins at i1 is h(i1); h1 is otherwise
equal to h.
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• h2 is obtained from h1 by removing a subordination relation as follows: i2 is no
longer a level-1 subordinate in h1 under the direct supervision of ι, but rather a
level-0 individual, and the sub-hierarchy that begins at i2 is h(i2); h2 is otherwise
equal to h1.

...

• hm is obtained from hm−1 by removing a subordination relation as follows: im
is no longer a level-1 subordinate in hm−1 under the direct supervision of ι, but
rather a level-0 individual, and the sub-hierarchy that begins at im is h(im); hm is
otherwise equal to hm−1.

Since h� is obtained from h�−1 by removing a 0each � ∈ {1, . . . ,m}, and since
(18) and the definition of the sequence of hierarchies h0, . . . , hm entails hm = h′,
we see that h′ can be obtained from some relabeling of h by successive removals of
subordination relations, as we sought.

Next, suppose that h′\ι⋡H h\ι. Since h\ι �H h′\ι,we see that h\ι �H h′\ι. Since
h\ι, h′\ι ∈ Hn−1 and h\ι �H h′\ι, the induction hypothesis gives some relabeling
of h\ι, denoted again by h\ι, such that

h′\ι ⇐RS h\ι;

here (and in the remainder of the proof), for any two hierarchies ĥ and h, “ĥ ⇐RS

h” means that “ĥ can be obtained from h by successive removals of subordination
relations.”

Recall that h and h′ can be expressed as

h = h(ι) and h′ = (h′(ι), (h′( j)) j∈I ′
0\{ι}),

and that h\ι and h′\ι are expressible as

h\ι = (h( j)) j∈Sι and h′\ι = ((h′( j)) j∈S′
ι
, (h′( j)) j∈I ′

0\{ι}),

where Sι (respectively, S′
ι) represents the set of level-1 subordinates of ι in h (respec-

tively, h′).
Because every removal of a subordination relation in the transition

h′\ι ⇐RS h\ι

affects only the players of one and only one of the sub-hierarchies in (h( j)) j∈Sι , there
exists a partition

(I j ) j∈Sι

of the set S′
ι ∪ (I ′

0\{ι}) such that each I j is a subset of the set of individuals in h( j)
and

(h′( j ′)) j ′∈I j ⇐RS h( j), for all j ∈ Sι. (19)

Each partition member I j can be further partitioned into two sets: the members of
I j that are immediate subordinates of ι in h′, I sj , and the members of I j that are not
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immediate subordinates of ι in h′, I nsj :

I sj = I j ∩ S′
ι and I nsj = I j ∩ (I ′

0\{ι}).

Using this notation, (19) can be rewritten as

((h′( j ′)) j ′∈I sj , (h
′( j ′)) j ′∈I nsj ) ⇐RS h( j), for all j ∈ Sι. (20)

Now let h′′ be the hierarchy obtained from the hierarchy

((h′( j ′)) j ′∈I sj , (h
′( j ′)) j ′∈I nsj ) j∈Sι

by adding individual ι at the top, so that ι is the only level-0 individual in h′′ and the
level-1 subordinates of ι are the members of

S′
ι ∪ (I ′

0\{ι}) =
⋃

j∈Sι

I j =
⎛

⎝
⋃

j∈Sι

I sj

⎞

⎠ ∪
⎛

⎝
⋃

j∈Sι

I nsj

⎞

⎠ .

Similarly, let h∗ be the hierarchy obtained from

(h( j)) j∈Sι

by adding individual ι at the top, so that ι is the only level-0 individual in h∗ and the
level-1 subordinates of ι are the members of Sι.

Note that (20) implies that
h′′ ⇐RS h

∗.

Consequently, since h∗ = h = h(ι), we have

h′′ ⇐RS h(ι) = h. (21)

Note that, by successive removals of subordination relations in h′′, we can, for any
level-1 subordinate j ′ in

⋃
j∈Sι

I nsj , move the sub-hierarchy h′( j ′) up to level 0, thus
obtaining the hierarchy

(h′′′, (h′( j ′)) j ′∈⋃
j∈Sι I

ns
j
),

where h′′′ is a hierarchy defined as follows:

• h′′′ has only one level-0 individual, ι.
• The level-1 subordinates of ι are the members of

⋃
j∈Sι

I sj , and the sub-hierarchy
that begins at any such level-1 subordinate j ′ is given by h′( j ′).

We therefore have
(h′′′, (h′( j ′)) j ′∈⋃

j∈Sι I
ns
j
) ⇐RS h

′′. (22)
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Moreover, since all the immediate subordinates of ι in h′ are the same as all the
immediate subordinates of ι in h′′′ and all the non-subordinates of ι in h′ are the same
as all the non-subordinates of ι in

(h′′′, (h′( j ′)) j ′∈⋃
j∈Sι I

ns
j
),

we see that
h′ = (h′′′, (h′( j ′)) j ′∈⋃

j∈Sι I
ns
j
).

This, together with (21)–(22), gives h′ ⇐RS h, as desired.
It remains to prove the “only if” part of the statement when h has more than one

level-0 individual.
Suppose that h �H h′.Wemust show that h′ can be obtained from some relabeling

of h by successive removals of subordination relations.
Let I0 (respectively, I ′

0) be the set of level-0 individuals in h (respectively, h′). By
Lemma 7, for each i ∈ I0, there exists I ′

i ⊆ I ′
0 such that h(i) �H (h′( j)) j∈I ′

i
; and

there exists i∗ ∈ I0 such that h(i∗) �H (h′( j)) j∈I ′
i∗ .

Let I ∗ be the set of all i ∈ I0 such that h(i) �H (h′( j)) j∈I ′
i
. The set I ∗ is nonempty

since i∗ ∈ I ∗. Note that, for each i ∈ I0\I ∗, we have h(i) ∼H (h′( j)) j∈I ′
i
.

From the first part of this proof, we obtain the following:

(h′( j)) j∈I ′
i
⇐RS h(i), for all i ∈ I ∗.

Therefore, since h(i) ∼H (h′( j)) j∈I ′
i
for each i ∈ I0\I ∗, and since the relation

h(i) ∼H (h′( j)) j∈I ′
i
implies that (h′( j)) j∈I ′

i
is a relabeling of h(i) (Lemma 4), it

follows that h′ can be obtained from some relabeling of h by successive removals of
subordination relations.

[Sufficiency.] Suppose that h′ can be obtained from some relabeling of h, denoted
by h, by successive removals of subordination relations, i.e.,

h′ ←RS h1 ←RS · · · ←RS hL ←RS h

for finitely many hierarchies h1, . . . , hL ; here (and in the remainder of the proof), for
any two hierarchies ĥ and h, “ĥ ←RS h” means that “ĥ can be obtained from h by
removing a subordination relation.” We must show that h �H h′.

By Lemma 5,
h �H hL �H · · · �H h1 �H h′.

By reflexivity and transitivity of �H (Lemma 1), it follows that h �H h′ (Sen 2017,
Lemma 1*a, p. 56). Moreover, since h is a relabeling of h, Lemma 1 gives h ∼H h.

Consequently,
h ∼H h �H h′,

implying that h �H h′ (Sen 2017, Lemma 1*a, p. 56). �
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A.4 Proof of Proposition 1

Proposition 1 The hierarchical pre-order�s defined onHn is reflexive and transitive
and satisfies A and SR.

Proof Reflexivity follows immediately from the definition of �s .

To see that �s is transitive, suppose that

h �s h
′ �s h

′′, for h, h′, h′′ ∈ Hn .

Then, letting Iĥ represent the set of individuals in hierarchy ĥ, there exist bijections
φ : Ih → Ih′ and φ′ : Ih′ → Ih′′ satisfying the following:

• For each individual i in h, the number of supervisors of i in h, #hi, is greater than
or equal to the number of supervisors of φ(i) in h′, #h′φ(i).

• For each individual i in h′, the number of supervisors of i in h′, #h′ i, is greater
than or equal to the number of supervisors of φ′(i) in h′′, #h′′φ′(i).

Since φ and φ′ are bijections, the composition φ∗ := φ′ ◦ φ is also a bijection (see,
e.g., Blyth 1975, Theorem 5.10, p. 37). Moreover, for each individual i in h, we have

#hi ≥ #h′φ(i) ≥ #h′′φ′(φ(i)).

Consequently, for each individual i in h,

#hi ≥ #h′′ [φ′ ◦ φ](i) = #h′′φ∗(i),

implying that h �s h′′.
To see that �s satisfies A, suppose that h′ is a relabeling of h. Then there exists

a bijection φ : Ih → Ih′ with the following property: if each individual i in h′ is
assigned the label “φ−1(i),” then the resulting hierarchy is identical to h.

For the bijection φ, the following condition is satisfied: for each i in h, the number
of supervisors of i in h is equal to the number of supervisors of φ(i) in h′.

Hence, h �s h′.
A similar condition can be verified for the bijection φ−1 : Ih′ → Ih : for each

individual i in h′, the number of supervisors of i in h′ is equal to the number of
supervisors of φ−1(i) in h.

Consequently, h′ �s h and h �s h′, implying that h ∼s h′.
It remains to show that �s satisfies SR. Suppose that h′ can be obtained from h

by removing a subordination relation. Then there exists a level-k subordinate i∗ in h,

where k > 0, satisfying the following:

(i) If i∗’s immediate supervisor in h, ph(i∗), is a level-0 individual, then h′ is the
hierarchy in which the sub-hierarchy h(i∗) is no longer under ph(i∗)’s supervi-
sion, i∗ becomes a level-0 individual, and the sub-hierarchy that begins at i∗ is
h(i∗); h′ is otherwise equal to h.
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(ii) If i∗’s immediate supervisor in h, ph(i∗), is a not level-0 individual, then ph(i∗)
is an immediate subordinate of p2h(i

∗), i.e., ph(i∗) ∈ Sp2h(i∗)
. In this case, h′

is the hierarchy in which the sub-hierarchy h(i∗) is no longer under ph(i∗)’s
supervision, but rather under the direct supervision of individual p2h(i

∗), so that
i∗ is no longer a level-k subordinate, but rather a level-(k − 1) subordinate in
Sp2h(i∗)

, and the sub-hierarchy that begins at i∗ is h(i∗); h′ is otherwise equal to
h.

We must show that h �s h′.
Note that the only individuals whose set of supervisors is altered as a result of the

subordination removals specified in items (i) and (ii) are those in the sub-hierarchy
h(i∗) of h containing i∗ and all of i∗’s subordinates. Moreover, after the removal
of a subordination relation, the individuals in h(i∗) are left with less supervisors.
Consequently, if i is an individual in h not in the sub-hierarchy h(i∗), the number of
supervisors of i in h is equal to the number of supervisors of i in h′, while if i is in
h(i∗), the number of supervisors of i in h is greater than the number of supervisors of
i in h′, implying that h �s h′.

It remains to show that h′ ⋡s h. Proceeding by contradiction, suppose that h′ �s h.

Then there exists a bijection ϕ : Ih′ → Ih such that for each i in h′, the number of
supervisors of i in h′ is greater than or equal to the number of supervisors of ϕ(i) in
h.

Let I ∗ be the (nonempty) set of all individuals in h(i∗) who have the most super-
visors in h among all the individuals in h(i∗). Let s∗ be the number of supervisors
in h for the individuals in I ∗. Then s∗ − 1 is the number of supervisors in h′ for
the individuals in I ∗ (since h′ can be obtained from h by removing a subordination
relation and (i) and (ii) hold).

Let s be the maximum number of supervisors that an individual in h can have. Note
that s ≥ s∗.

We claim that if s > s∗, then ϕ(I ′
s) = Is .

To see this, note that if s > s∗, then all the individuals in h with s supervisors are not
in the sub-hierarchy h(i∗), and so the number of individuals in h with s supervisors,
denoted by Is, is equal to the number of individuals in h′ with s supervisors, denoted
by I ′

s .

This implies that ϕ(I ′
s) ⊇ Is . Indeed, if that were not the case, there would exist

an individual ι ∈ Is\ϕ(I ′
s), i.e., ι would have s supervisors in h and any individual in

h′ with s supervisors would link, via ϕ, to an individual in h other than ι. But since
Is = I ′

s, this would imply that for some individual in h′ with less than s supervisors,
ι′, ϕ(ι′) = ι, contradicting the fact that for each i in h′, the number of supervisors of
i in h′ is greater than or equal to the number of supervisors of ϕ(i) in h.

Since Is = I ′
s and ϕ is a bijection, ϕ(I ′

s) and Is have the same cardinality, and so
the containment ϕ(I ′

s) ⊇ Is implies that ϕ(I ′
s) = Is .

Similarly, for any � ∈ N for which s − � > s∗, we have ϕ(I ′
s−�) = Is−� (where

Is−� (respectively, I ′
s−�) represents the set of all individuals in h (respectively, h

′) with
s − � supervisors).

Next, note that there exists �∗ ∈ {0, 1, 2, . . .} such that s − �∗ = s∗, since s ≥ s∗.
Therefore, Is−�∗ = Is∗ . Moreover, since Is∗ is the set of all individuals in h with s∗
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supervisors, and since I ∗ is the set of all individuals in the sub-hierarchy h(i∗) of h
with s∗ supervisors, it follows that Is∗ contains I ∗.

Next, we show that I ′
s∗ = Is∗\I ∗. To see this, suppose that i ∈ I ′

s∗ . Then i is not in
h(i∗). Indeed, if i were in h(i∗), since i has s∗ supervisors in h′, then i would have
s∗ +1 supervisors in h, contradicting the fact that those individuals in h(i∗)who have
the most supervisors in h have s∗ supervisors.

Since i is not in h(i∗), we have i /∈ I ∗ (since the members of I ∗ are also in h(i∗)).
Now, because h′ can be obtained from h by removing a subordination relation and (i)
and (ii) hold, and since the removal of a subordination relation specified in items (i)
and (ii) does not affect the number of supervisors for those individuals not in h(i∗),
i ∈ I ′

s∗ implies i ∈ Is∗ . Thus, i ∈ Is∗\I ∗, and so I ′
s∗ ⊆ Is∗\I ∗.

Conversely, suppose that i ∈ Is∗\I ∗. Then i is not in h(i∗) (since I ∗ is the set of
all individuals in h(i∗) who have s∗ supervisors in h). Therefore, because the removal
of a subordination relation specified in items (i) and (ii) does not affect the number of
supervisors for those individuals not in h(i∗), we have i ∈ I ′

s∗ . Hence, I
′
s∗ ⊇ Is∗\I ∗.

Now, since I ′
s∗ = Is∗\I ∗ and I ∗ is nonempty, it follows that the number of individu-

als in hwith s∗ supervisors exceeds the number of individuals in h′ with s∗ supervisors.
Consequently, using the fact (proven earlier) that

ϕ(I ′
s−�) = Is−�, for any � ∈ N for which s − � > s∗,

we see that there exists some individual ι in h′ with less than s∗ supervisors whose
corresponding individual in h, ϕ(ι), has s∗ supervisors. But this contradicts the fact
that the number of supervisors of ι in h′ is greater than or equal to the number of
supervisors of ϕ(ι) in h.

We conclude that h′ ⋡s h.

Since h �s h′ and h′ ⋡s h, we see that h �p h′. �
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