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a b s t r a c t

We compare the properties of several notions of trembling-hand perfection within classes of compact,
metric, and possibly discontinuous games, and show that in the presence of payoff discontinuities,
standard notions of trembling-hand perfection fail a weakening of admissibility termed limit
admissibility.We also provide conditions ensuring the existence of a limit admissible perfect equilibrium.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The notion of trembling-hand perfect equilibrium was intro-
duced by Selten (1975) as a refinement of the Nash equilibrium
concept. Nash equilibria survive trembling-hand perfection if they
are ‘‘good’’ predictors of equilibrium behavior in some perturbed
games in which the players make slight mistakes in the execution
of their strategies.

It is well-known that for finite games, trembling-hand perfect
equilibria exist in the set of Nash equilibria and put no mass
on weakly dominated strategies. In other words, trembling-hand
perfect equilibria satisfy existence, (E), and admissibility, (Ad).
Moreover, a trembling-hand perfect equilibrium is the limit of
a sequence of exact equilibria in perturbed games in which the
players are constrained to play completely mixed strategies, (P).

Ideally, one would like an infinite-game extension of the stan-
dard solution concept that satisfies (E), (Ad), (P), and reduces to
the set of trembling-hand perfect equilibria in finite games, (R).
For infinite games, however, properties (E) and (Ad) are not gen-
erally compatible. In fact, there are (compact, continuous) games
that have a unique Nash equilibrium in weakly dominated strate-
gies (e.g., Simon and Stinchcombe, 1995, Example 2.1). However,
condition (E) is compatible with a weaker property, termed limit
admissibility (LA) in Simon and Stinchcombe (1995). This property
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requires that equilibria put mass only on the limits of weakly un-
dominated strategies. For compact, continuous games, Simon and
Stinchcombe (1995) present three infinite-game generalizations of
Selten’s (1975) trembling-hand perfect equilibrium: strong perfec-
tion (satisfying the four criteria, (E), (LA), (P), and (R)),weak perfec-
tion (satisfying all but (P)), and limit-of-finite perfection (which fails
(LA) but satisfies the remaining three properties). Of the three ap-
proaches, it is argued in Simon and Stinchcombe (1995) that strong
perfection most closely respects the strategic aspects of infinite
games.

Our treatment allows for potential discontinuities in the pay-
offs of a game. In the presence of discontinuities, condition (E) is
not guaranteed by standard arguments. This, in turn, influences
(P) (through the potential nonexistence of exact equilibria in per-
turbations of the original game). Moreover, discontinuities may af-
fect (LA) via their effect on the topological properties of the set of
weakly dominated strategies.

Carbonell-Nicolau (2011b) considers an infinite-game exten-
sion of the standard notion of perfection and identifies a rich class
of possibly discontinuous games for which the set of trembling-
hand perfect equilibria is nonempty.1 The extension consid-
ered in Carbonell-Nicolau (2011b) is termed trembling-hand per-
fection. Building on the existence results of Carbonell-Nicolau
(2011b), in this paper we compare several notions of trembling-
hand perfection in terms of their properties. We first present
the equilibrium concepts of Simon and Stinchcombe (1995) and

1 The existence of pure-strategy trembling-hand perfect equilibria is addressed
in Carbonell-Nicolau (2011c).
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state an analogue of the standard three-way characterization of
trembling-hand perfection (e.g. van Damme, 2002, p. 28) for dis-
continuous games (Theorem 2). We then study a class of pos-
sibly discontinuous games (subsuming the set of all compact,
metric, continuous games) for which the behavior of the ex-
isting concepts of perfection is standard (i.e., as in Simon and
Stinchcombe, 1995). The properties of the various solution con-
cepts within this class are summarized in Theorem 4. This re-
sult considers two notions of weak domination.Weak∗ domination
confines attention to domination by pure strategies, while weak
domination allows for domination by both pure and mixed strate-
gies. Limit admissibility∗ (LA∗) is based onweak∗ domination, while
limit admissibility (LA) is consistent with weak domination.

In Section 4, we show, by means of an example, that
trembling-hand perfection and strong (or weak) perfection fail
limit admissibility∗ (and hence limit admissibility) in rather well-
behaved discontinuous games. Thus, as the universe of games is ex-
panded to include larger classes of discontinuous games, the strong
approach, which is equivalent to trembling-hand perfection, loses
some of its appeal: it ceases to satisfy (LA∗) and (LA). It is there-
fore natural to ask whether there are alternative approaches to
trembling-hand perfection (or stronger refinements) that do not
suffer from this drawback.

We argue that for the classes of discontinuous games consid-
ered in this paper, natural strengthenings of trembling-hand per-
fection for infinite games are likely to pose existence problems,
in the sense that, for the said classes, conditions leading to exis-
tence (e.g., better-reply security in perturbed games) fail. By con-
trast, the set of trembling-hand perfect equilibria minus the in-
terior of the set of weakly dominated (resp. weakly∗ dominated)
strategy profiles, a solution concept that we call limit admissible
perfection (resp. limit admissible perfection∗), need not be subject to
this trade-off: there are rich collections of games for which the set
of limit admissible perfect (resp. limit admissible perfect∗) equi-
libria is nonempty. For these collections, limit admissible perfec-
tion (resp. limit admissible perfection∗) selects a subset of the set
of trembling-hand perfect equilibria and, unlike the existing for-
mulations of perfection, meets (LA) (resp. (LA∗)) and (E), as well
as the other desiderata. These properties, along with those of the
other solution concepts, are summarized in Theorems 6 and 7.

2. Preliminaries

A metric game is a collection

G = (Xi, ui)
N
i=1,

whereN is a finite number of players, each Xi is a nonemptymetric
space, and each ui : X → R is bounded and Borel measurable, with
domain X := ×

N
i=1 Xi. A metric game G = (Xi, ui)

N
i=1 such that each

Xi is compact is called a compact metric game.
In the sequel, by X−i we mean the set ×j≠i Xj, and, given i, xi ∈

Xi, and

x−i = (x1, . . . , xi−1, xi+1, . . . , xN) ∈ X−i,

we slightly abuse notation and denote the point (x1, . . . , xN) by
(xi, x−i).

The mixed extension of G is the game

G = (Mi,Ui)
N
i=1,

where eachMi represents the set of Borel probability measures on
Xi, endowed with the weak∗ topology, and Ui : M → R is defined
by

Ui(µ) :=

∫
X
uidµ,

where M := ×
N
i=1 Mi.
Henceforth, the set ×j≠i Mj is denoted byM−i, and given i, µi ∈

Mi, and
µ−i = (µ1, . . . , µi−1, µi+1, . . . , µN) ∈ M−i,

we sometimes represent the point (µ1, . . . , µN) as (µi, µ−i).
Given xi ∈ Xi, let δxi be the Dirac measure on Xi with support

{xi}. We sometimes write, by a slight abuse of notation, xi in place
of δxi . For δ ∈ [0, 1] and (µi, νi) ∈ M2

i ,
(1 − δ)νi + δµi

denotes the member σi of Mi for which σi(B) = (1 − δ)νi(B) +

δµi(B) for every Borel set B ⊆ Xi. When νi = δxi for some xi ∈ Xi,
we sometimes write (1− δ)xi + δµi for (1− δ)νi + δµi. Similarly,
given (ν, µ) ∈ M2,
(1 − δ)ν + δµ

denotes the point
((1 − δ)ν1 + δµ1, . . . , (1 − δ)νN + δµN),

where ν = (ν1, . . . , νN) and µ = (µ1, . . . , µN).
The following notation shall be used in Section 3 to formally

define various notions of trembling-hand perfection.
A Borel probability measureµi on Xi is said to be strictly positive

if µi(O) > 0 for every nonempty open set O ⊆ Xi.
For each i, let Mi represent the set of all strictly positive

members of Mi. Set M := ×
N
i=1

Mi. For νi ∈ Mi and

δ = (δ1, . . . , δN) ∈ [0, 1)N ,

define
Mi(δiνi) := {µi ∈ Mi : µi ≥ δiνi}

andM(δν) := ×
N
i=1 Mi(δiνi). Given δ = (δ1, . . . , δN) ∈ [0, 1)N and

ν = (ν1, . . . , νN) ∈ M , the game
Gδν = (Mi(δiνi),Ui|M(δν))

N
i=1

is called a Selten perturbation of G. We often work with perturba-
tionsGδν satisfying δ1 = · · · = δN . When referring to these objects,
we simply write Gδν with δ = δ1 = · · · = δN .

3. Comparison of perfect equilibria

In this section, we introduce several formulations of perfection
and compare their properties in families of possibly discontinuous
games. Let gc designate the set of compact, metric, and continuous
games.We show that the strengths of the various solution concepts
within gc , as highlighted by Simon and Stinchcombe (1995), need
not extend to larger classes of games. In this section, we consider
a strict superset of gc for which the existing solution concepts
behave as in gc . In a subsequent section (Section 4), we point to
the following fact: in the presence of discontinuities, the existing
concepts fail limit admissibility. We then study refinements of
trembling-hand perfection that do not suffer from this limitation.

Definition 1. A strategy profile x = (x1, . . . , xN) ∈ X is a Nash
equilibrium of G if for each i, ui(x) ≥ ui(yi, x−i) for every yi ∈ Xi.

A Nash equilibrium of the mixed extension G is called amixed-
strategy Nash equilibrium of G. By a slight abuse of terminology,
we sometimes refer to a mixed-strategy Nash equilibrium of G
simply as a Nash equilibrium of G.

We first define trembling-hand perfection in terms of Selten
perturbations.

Definition 2. A strategy profileµ ∈ M is a trembling-handperfect
(thp) equilibrium of G if there are sequences (δn), (νn), and (µn)
such that (0, 1)N ∋ δn

→ 0, νn
∈ M, µn

→ µ, and each µn is a
Nash equilibrium of the perturbed game Gδnνn .

In words, µ is a thp equilibrium of G if it is the limit of some
sequence of equilibria of neighboring Selten perturbations of G.
See Carbonell-Nicolau (2011b) for an intuitive interpretation of
Definition 2.
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Remark 1. Note that, in Definition 2, we do not require thatµ be a
Nash equilibrium of G. It is well-known that, for continuous games,
the fact that a strategy profile µ is the limit of some sequence of
equilibria of Selten perturbations of G guarantees that µ is a Nash
equilibrium of G. While we do not impose continuity of payoff
functions, our conditions also ensure that the limit point is an
equilibrium (cf. Carbonell-Nicolau, 2011b).

The following definitions adapt the perfection concepts in
Simon and Stinchcombe (1995) to potential discontinuities in the
payoff functions of a game.

For µ ∈ M , let Bri(µ) denote player i’s set of best responses in
Mi to the vector of strategies µ:

Bri(µ) :=


σi ∈ Mi : Ui(σi, µ−i) ≥ sup

ϱi∈Mi

Ui(ϱi, µ−i)

.

Consider the following distance functions betweenmembers ofMi:

ρs
i (µi, νi) := sup

B
|µi(B) − νi(B)|,

and

ρw
i (µi, νi) := inf{ϵ > 0 : ∀B, µi(B) ≤ νi(Nϵ(B)) + ϵ

and νi(B) ≤ µi(Nϵ(B)) + ϵ},

where Nϵ(B) denotes the ϵ-neighborhood of the (measurable) set
B (i.e., Nϵ(B) :=


x∈B Nϵ(x)).

Definition 3 (Simon and Stinchcombe, 1995). Given ϵ > 0, a
strong ϵ-perfect equilibrium of G is a vector µϵ

∈ M such that
for each i,

ρs
i (µ

ϵ
i , Bri(µ

ϵ)) < ϵ,

and aweak ϵ-perfect equilibrium of G satisfies

ρw
i (µϵ

i , Bri(µ
ϵ)) < ϵ.

A strategy profile in G is a strong (resp.weak) perfect equilibrium
of G if it is the weak∗ limit as ϵn

→ 0 of strong (resp. weak) ϵn-
perfect equilibria.

Strong closedness impliesweak closedness, andhence all strong
perfect equilibria are weak perfect.2

It is well-known that for finite games, thp equilibria exist in
the set of Nash equilibria and put no mass on weakly dominated
strategies. In other words, thp equilibria satisfy existence, (E), and
admissibility, (Ad). Moreover, a thp equilibrium is the limit of a
sequence of exact equilibria in perturbed games in which players
are constrained to play completely mixed strategies, (P).

As demonstrated by Simon and Stinchcombe (1995, Example
2.1), (E) and (Ad) are not generally compatible, for there are infinite
games with a unique Nash equilibrium in weakly dominated
strategies. Simon and Stinchcombe propose a weakening of
(Ad), termed limit admissibility (LA), which states that a Nash
equilibrium is limit admissible if it puts mass only on the limits
of undominated strategies, or, equivalently, if no player assigns
positive mass to the interior of the set of weakly dominated
strategies.

For compact, continuous games, the set of thp equilibria
(according to Definition 2) satisfies (E), (LA), (P), and reduces to
the set of trembling-hand perfect equilibria for finite games, (R)
(Theorem 3). Our purpose is to compare the properties of the
solution concepts in Definitions 2 and 3 in the presence of payoff
discontinuities.3

2 The converse is false (see Simon and Stinchcombe, 1995, Example 2.3).
3 Simon and Stinchcombe (1995) introduced a third equilibrium refinement,

termed limit-of-finite (lof) perfection. Roughly speaking, µ is a limit-of-finite perfect
We first state the existence result of Carbonell-Nicolau (2011b).

Condition (A). There exists (µ1, . . . , µN) ∈ M such that for each i
and every ε > 0 there is a Borel measurable map f : Xi → Xi such
that the following is satisfied:

(a) For each xi ∈ Xi and every y−i ∈ X−i, there is a neighborhood
Oy−i of y−i such that ui(f (xi), z−i) > ui(xi, y−i) − ε for all
z−i ∈ Oy−i .

(b) For each y−i ∈ X−i, there is a subset Yi of Xi with µi(Yi) = 1
such that for every xi ∈ Yi, there is a neighborhood Vy−i of y−i

such that ui(f (xi), z−i) < ui(xi, z−i) + ε for all z−i ∈ Vy−i .
4

Theorem 1 (Carbonell-Nicolau, 2011b, Theorem 2). Suppose that a
compact, metric game G satisfies Condition (A). Suppose further that∑N

i=1 ui is upper semicontinuous. ThenG has a trembling-hand perfect
equilibrium, and all trembling-hand perfect equilibria of G are Nash.

The following result establishes the relationship between trem-
bling-hand perfection and strong perfection. The equivalence of
(1)–(3) is analogous to the standard characterization of trem-
bling-hand perfect equilibria in finite games (e.g. van Damme,
2002, p. 28).

Theorem 2. For a metric game G = (Xi, ui)
N
i=1, the following three

conditions are equivalent:

(1) µ is a trembling-hand perfect equilibrium of G.
(2) µ is a strong perfect equilibrium of G.
(3) µ is the limit of a sequence (µn) in M with the property that for

each i and every ϵ > 0,

µn
i


xi ∈ Xi : Ui(xi, µn

−i) ≥ sup
yi∈Xi

Ui(yi, µn
−i)


≥ 1 − ϵ,

for any sufficiently large n.

Proof. Let G = (Xi, ui)
N
i=1 be a metric game. Suppose that µ is a

thp equilibrium of G. Then there are sequences (δn), (νn), and (µn)
such that (0, 1)N ∋ δn

→ 0, νn
∈ M, µn

→ µ, and each µn is a
Nash equilibriumof the perturbed gameGδnνn . Sinceµn

∈ M(δnνn)
for each n, it is easily seen that for each i and n there exists ρn

i ∈ Mi
such that

µn
i = (1 − δn

i )ρ
n
i + δn

i ν
n
i .

Because each µn is a Nash equilibrium of Gδnνn , ρn
i ∈ Bri(µn) for

each i and n. In fact, ρn
i ∉ Bri(µn) implies that

Ui(pni , µ
n
−i) > Ui(ρ

n
i , µ

n
−i)

for some pni ∈ Mi, so

Ui((1 − δn
i )p

n
i + δn

i ν
n
i , µ

n
−i) > Ui((1 − δn

i )ρ
n
i + δn

i ν
n
i , µ

n
−i)

= Ui(µ
n
i , µ

n
−i),

thereby contradicting that µn is a Nash equilibrium of Gδnνn .
Consequently, because µn

i = (1 − δn
i )ρ

n
i + δn

i ν
n
i and ρn

i ∈ Bri(µn)
for each i and n, and since δn

i → 0 for each i, we have

ρs
i (µ

n
i , Bri(µ

n)) → 0

equilibrium in G if it is the limit of ϵ-perfect equilibria for successively larger finite
approximations of G. As pointed out in Simon and Stinchcombe (1995), the lof
approach is ill-suited as a general solution concept even in continuous games. We
shall not reiterate the limitations of the lof approach. These limitations extend to
families of possibly discontinuous games. See Carbonell-Nicolau andMcLean (2011)
for a limit-of-finite formulation that does not suffer from the drawbacks of Simon
and Stinchcombe’s (1995) approach.
4 Condition (A) can be slightly weakened. See footnote 11 in Carbonell-Nicolau

(2011b).
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for each i, so that µ is a strong perfect equilibrium. Hence, (1)
implies (2).

Ifµ is a strong perfect equilibrium of G, then there is a sequence
(µn) in M such that for each i and every ϵ > 0, ρs

i (µ
n
i , Bri(µ

n)) < ϵ
for any sufficiently large n, and this implies that

µn
i


xi ∈ Xi : Ui(xi, µn

−i) ≥ sup
yi∈Xi

Ui(yi, µn
−i)


≥ 1 − ϵ

for any sufficiently large n. Hence, (2) implies (3).
Now assume (3). Let

Xn
i :=


xi ∈ Xi : Ui(xi, µn

−i) < sup
yi∈Xi

Ui(yi, µn
−i)


.

Let σ n
i ∈ Mi be defined by

σ n
i (B) :=

µn
i (B ∩ Xn

i ) +
1
nµ

n
i (B ∩ (Xi \ Xn

i ))

µn
i (X

n
i ) +

1
nµ

n
i (Xi \ Xn

i )
.

For large enough n, µn
i (X

n
i ) +

1
nµ

n
i (Xi \ Xn

i ) < 1, and µn is an
equilibrium of Gδnσ n , where

δn
= (δn

1, . . . , δ
n
N) :=


µn

1(X
n
1 ) +

1
nµ

n
1(X1 \ Xn

1 ), . . . , µn
N(Xn

N)

+
1
nµ

n
N(XN \ Xn

N)

.

In fact, for large enough n,

µn
i (B) ≥ µn

i (B ∩ Xn
i ) +

1
nµ

n
i (B ∩ (Xi \ Xn

i )) = δn
i σ

n
i (B)

for every B, and so µn
i ∈ Mi(δ

n
i σ

n
i ) for each i. Moreover, for each

i and every pi ∈ Mi(δ
n
i σ

n
i ), since pi(Xn

i ) ≥ δn
i σ

n
i (Xn

i ) = µn
i (X

n
i ),

it follows that Ui(pi, µn
−i) ≤ Ui(µ

n). Consequently, µn
i is a best

response to µn
−i.

Because µn is an equilibrium of Gδnσ n (for large enough n) and
we have δn

→ 0 and µn
→ µ, µ is a thp equilibrium of G. Hence,

(3) implies (1). �

Theorems 1 and 2 give the following:

Corollary 1. Suppose that a compact, metric game G satisfies Condi-
tion (A). Suppose further that

∑N
i=1 ui is upper semicontinuous. Then

G possesses a trembling-hand perfect equilibrium, which is also strong
perfect and weak perfect, and all trembling-hand perfect equilibria of
G are Nash.

In this section we consider the family of games satisfying the
conditions of Theorem 1, and impose an additional constraint on
the dominance relations between strategies (to be formally defined
below). We drop the extra requirement in Section 4.

Recall that gc denotes the set of compact, metric, and contin-
uous games. Let gdd represent the set of compact, metric games
G = (Xi, ui)

N
i=1 satisfying Condition (A) and upper semicontinuity

of the sum of payoffs
∑N

i=1 ui.

Remark 2. Not all games satisfy Condition (A) (or some of its
weakenings (such as Reny’s (1999) payoff security) for that matter)
or upper semicontinuity of

∑N
i=1 ui. For example, the game G =

([0, 1], [0, 1], u1, u2), where u1(0, 0) := 1, u1 := 0 elsewhere,
and u2 is identically zero fails Condition (A) (even payoff security).
In fact, we have u1(0, 0) = 1 and for each x1 ∈ [0, 1] and
every neighborhood [0, ϵ) of 0, u1(x1, 1

2ϵ) = 0 < u1(0, 0) = 1.
Nevertheless, gdd is a rich class in that it contains several economic
games of interest (cf. Carbonell-Nicolau (2011b, Section 3) and
Carbonell-Nicolau (2011c, Section 4)).

On the other hand, for fixed action spaces X1, . . . , XN (with X :=

×i Xi), it can be shown that the class gdd(X) of gamesG = (Xi, ui)
N
i=1

in gdd is closed when viewed as a metric subspace of the metric
space (B(X)N , ρX ), where B(X) represents the set of boundedmaps
f : X → R and ρX : B(X)N × B(X)N → R is defined by

ρX ((f1, . . . , fN), (g1, . . . , gN)) :=

N−
i=1

sup
x∈X

|fi(x) − gi(x)|.

Consequently, this class is complete andmetric (since B(X) is com-
plete andmetric) andhence (by the Baire category theorem) a Baire
space.

To see that gdd(X) is closed in B(X)N , suppose that (un) =

(un
1, . . . , u

n
N) is a sequence of games in gdd(X) with un

→ u =

(u1, . . . , uN). We need to show that u lies in gdd(X). The proof that∑N
i=1 ui is upper semicontinuous is left to the reader.We show that

(Xi, ui)
N
i=1 satisfies Condition (A).

For each n there exists (µn
1, . . . , µ

n
N) ∈ M such that for each i

and every α > 0 there is a Borel measurable map f n(i,α) : Xi → Xi
such that the following is satisfied:

(a) For each xi ∈ Xi and every y−i ∈ X−i, there is a neighborhood
Oy−i of y−i for which un

i (f
n
(i,α)(xi), z−i) > un

i (xi, y−i) − α for all
z−i ∈ Oy−i .

(b) For each y−i ∈ X−i, there is a subset Yi of Xi with µn
i (Yi) = 1

such that for every xi ∈ Yi, there is a neighborhood Vy−i of y−i
such that un

i (f
n
(i,α)(xi), z−i) < un

i (xi, z−i) + α for all z−i ∈ Vy−i .

Fix i and ε > 0. In light of (a), and since un
→ u, if n is large

enough and α > 0 is small enough, then, for every (xi, y−i) ∈

X, un
i (xi, y−i) − α is close enough to ui(xi, y−i) to ensure that

un
i (f

n
(i,α)(xi), z−i) > ui(xi, y−i) −

ε
2 for all z−i ∈ Oy−i ,

and, since un
→ u, we see that for any large enough n,

ui(f n(i,α)(xi), z−i) > ui(xi, y−i) − ε for all z−i ∈ Oy−i .

We conclude that given i and ε > 0, and for any sufficiently large
n and any sufficiently small α, the map f n(i,α) satisfies the following:
for each xi ∈ Xi and every y−i ∈ X−i, there is a neighborhood Oy−i
of y−i such that ui(f n(i,α)(xi), z−i) > ui(xi, y−i) − ε for all z−i ∈ Oy−i .
Hence, to show that (Xi, ui)

N
i=1 satisfies Condition (A), it suffices to

prove that for any large enough n and any small enough α, themap
f n(i,α) satisfies the following: For each y−i ∈ X−i, there is a subset
Yi of Xi with µn

i (Yi) = 1 such that for every xi ∈ Yi, there is a
neighborhoodVy−i of y−i such that ui(f n(i,α)(xi), z−i) < ui(xi, z−i)+ε
for all z−i ∈ Vy−i . But this flows from the following observations.
In light of (b), because un

→ u, for large enough n and small
enough α, and given any y−i ∈ X−i, given a subset Yi satisfying
condition (b), an xi ∈ Yi, and a z−i ∈ Vy−i (where Vy−i is given
by condition (b)), un

i (xi, z−i) is close enough to ui(xi, z−i) to en-
sure that un

i (f
n
(i,α)(xi), z−i) < ui(xi, z−i) +

ε
2 . Consequently, since

un
→ u, for any large enough n and any small enough α we have

ui(f n(i,α)(xi), z−i) < ui(xi, z−i) + ε.

Two notions of weak domination have been considered in the
literature.

Definition 4. A strategy xi ∈ Xi isweakly* dominated for i if there
exists a strategy yi ∈ Xi such that ui(yi, x−i) ≥ ui(xi, x−i) for all
x−i ∈ X−i, with strict inequality for some x−i.

Definition 5. A strategy xi ∈ Xi is weakly dominated for i if there
exists a strategy µi ∈ Mi such that Ui(µi, x−i) ≥ ui(xi, x−i) for all
x−i ∈ X−i, with strict inequality for some x−i.

The first definition is less restrictive and has been considered in
Salonen (1996), while the second definition is used in Simon and
Stinchcombe (1995) to formulate limit admissibility.

Recall that gdd denotes the set of compact, metric games G =

(Xi, ui)
N
i=1 satisfying Condition (A) and upper semicontinuity of
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the sum of payoffs
∑N

i=1 ui. Define the set gd of all members
G = (Xi, ui)

N
i=1 of gdd with the following property: if xi is weakly

dominated inG for player i, then for someµi thatweakly dominates
xi, there exists y−i ∈ X−i with Ui(µi, z−i) > ui(xi, z−i) for all
z−i ∈ Oy−i and for some neighborhood Oy−i of y−i.

In words, gd is the set of members of gdd for which any strategy
xi that isweakly dominated for i has the property that there is some
µi thatweakly dominates xi and is a better response than xi to some
neighborhood of action profiles of the other players. This condition
is clearly satisfied by all continuous games, but need not be met in
the set gdd (Example 1, Section 4). We have gc $ gd $ gdd.

The next results are concerned with the properties of the var-
ious notions of perfection in the families of games gc, gd, and gdd.
For the axioms that are not affected by potential payoff disconti-
nuities, the characterization of the solution concepts follows from
the analysis in Simon and Stinchcombe (1995). We expand on the
cases when Simon and Stinchcombe (1995) uses continuity to ver-
ify a property.

Definition 6. A strategy profile µ ∈ M is admissible* if µi(D∗

i ) =

0 for all i, whereD∗

i denotes the set of strategiesweakly∗ dominated
for i.

Definition 7. A strategy profile µ ∈ M is limit admissible* if
µi(O∗

i ) = 0 for all i, where O∗

i denotes the interior of the set of
strategies weakly∗ dominated for player i.

Definition 8. A strategy profile µ ∈ M is admissible if µi(Di) = 0
for all i, where Di denotes the set of strategies weakly dominated
for i.

Definition 9. A strategy profile µ ∈ M is limit admissible if
µi(Oi) = 0 for all i, where Oi denotes the interior of the set of
strategies weakly dominated for player i.

We say that a refinement specification satisfies property (N)
(resp. (W), (S)) if it selects a set of strategy profiles that is closed in
the set of Nash equilibria (resp. the set of weak perfect equilibria
and the set of strong perfect equilibria); property (E) if it chooses a
nonempty set of strategy profiles; and property (LA∗) (resp. (LA)) if
it selects a set of limit admissible∗ (resp. limit admissible) strategy
profiles.

A notion of perfection satisfies property (R) if it reduces to the
standard set of trembling-hand perfect equilibria in finite games;
and property (P) if it chooses strategy profiles that can be viewed
as limits of equilibria in perturbed games, so that the agents can be
thought of as optimizing against the play of others, subject to the
constraint that they and the others make mistakes.

We follow Simon and Stinchcombe (1995), where the interpre-
tation of condition (P) varies across the various equilibrium refine-
ments: in each case, the conception of a perturbed game arises
‘‘naturally’’ from the ‘‘spirit’’ of the corresponding approach to re-
finement.

Formally, a perturbation for the strong approach is a game
(Ms

i (ϵ),Ui), whereMs
i (ϵ) denotes a convex, weak∗ compact subset

of Mi within Hausdorff distance ϵ ofMi, where the strong distance,
ρs
i , is the associated metric. The definition of a perturbation for the

weak approach is analogous, with theweak distance, ρw
i , replacing

ρs
i .
When applied to strong perfection, condition (P) requires that

any strong perfect equilibrium be the limit of a sequence (µn),
where eachµn is a Nash equilibriumof a perturbation (Ms

i (ϵ
n),Ui),

for some ϵn
→ 0.5 The requirement is analogous for the weak

approach.

5 Even when the choice of a perturbation for G has been made, one can furnish
(at least) two definitions of (P). The alternative to the above definition (for strong
perfection) imposes the equivalence of the set of strong perfect equilibria and
the set of limits of sequences (µn) with the said properties. We adopt the weak
criterion.
Simon and Stinchcombe (1995) study the properties of the
strong and weak approaches within the class gc .

Theorem 3 (Simon and Stinchcombe, 1995). For the family of games
gc , we have the following:

• Strong perfection and trembling-hand perfection satisfy (E), (LA)
(hence (LA∗)), (P), (R), and (W).

• Weak perfection satisfies (E), (LA) (hence (LA∗)), (R), and (N), and
fails (P).

Theorem 3 holds with gd replacing gc .

Theorem 4. For the family of games gd, we have the following:

• Strong perfection and trembling-hand perfection satisfy (E), (LA)
(hence (LA∗)), (P), (R), and (W).

• Weak perfection satisfies (E), (LA) (hence (LA∗)), (R), and (N), and
fails(P).

Proof. Theorems 1 and 2 give (E) in gd for all the equilibrium
concepts.

We now show that weak perfect equilibrium profiles must be
limit admissible. Suppose that µ is a weak perfect equilibrium of
G ∈ gd. Let Oi denote the interior of the set of strategies weakly
dominated for i. Because µ is a weak perfect equilibrium, there are
sequences (µϵn) and (ϵn) with M ∋ µϵn

→ µ and ϵn
↘ 0 such

that for each i,

ρw
i (µϵn

i , Bri(µϵn)) < ϵn, for all n. (1)

Fix i. Suppose that νi(Oi) > 0 and νi ∈ Bri(µϵn). Then there exists zi
in Bri(µϵn)∩Oi. But this is a contradiction, since zi ∈ Oi implies that
there exists a strategy σi ∈ Mi such that Ui(σi, x−i) ≥ Ui(zi, x−i)
for all x−i ∈ X−i and, for some y−i and some neighborhood Oy−i of
y−i,Ui(σi, z−i) > Ui(zi, z−i) for all z−i ∈ Oy−i (recall thatG ∈ gd), so
(because µϵn

∈ M) one cannot have zi ∈ Bri(µϵn). Consequently,
νi(Oi) = 0 for every νi ∈ Bri(µϵn), and this implies that for every
sequence (νn

i ) in Mi such that νn
i ∈ Bri(µϵn) for each n, we have

lim inf
n→∞

νn
i (Oi) = 0. (2)

Now, given (1), one can choose a sequence (νn
i ) in Mi such that

νn
i ∈ Bri(µϵn) for each n and

ρw
i (µϵn

i , νn
i ) → 0.

Consequently, because µϵn
→ µ, we have νn

i → µi. This yields

lim inf
n→∞

νn
i (Oi) ≥ µi(Oi),

since Oi is open. Therefore, using (2), we see that µi(Oi) = 0.
Thus, µi(Oi) = 0 for each i, and µ is limit admissible.

Because weak perfection satisfies (LA) (and thp equilibria are weak
perfect), so do strong perfection and trembling-hand perfection
(Theorem 2).

Now consider condition (P). It is clear that trembling-hand per-
fection satisfies (P), and hence so does strong perfection (Theo-
rem 2). Simon and Stinchcombe (1995) show, in their Example 2.6,
that there are games in which the limit of some sequence (µn),
where each µn is a Nash equilibrium of (Mw

i (ϵn),Ui), and ϵn
→

0, fails to be a weak perfect equilibrium. Moreover, according to
Simon and Stinchcombe (1995) (footnote 23) one can construct a
(five-agent) game with a weak perfect equilibrium that is not the
limit of any sequence of weakly perturbed games. Thus, weak per-
fection fails (P).

Because the metrics ρs and ρw are equivalent for mixtures on
finite sets, for finite games weak and strong perfection coincide,
and are identical to Selten’s (1975) definition.
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By Theorem 1, trembling-hand perfection selects Nash equi-
libria. Furthermore, the set of thp equilibria is closed. In fact, for
α ∈ (0, 1), let P(α) be the set of profiles µ such that µ is a Nash
equilibrium ofGδν , for some δ ∈ (0, α]

N and some ν ∈ M . Since the
set of thp equilibria can be expressed as


α cl(P(α)), trembling-

hand perfection and strong perfection satisfy (W).
To see thatweakperfect equilibria areNash, letµbe aweakper-

fect equilibrium of G. Then there is a sequence (ϵn) with ϵn
→ 0

such that µn
→ µ, where each µn is a weak ϵn-perfect equilib-

rium. Hence, for each i and every n,

µn
i (Nϵn(Bri(µn))) > 1 − ϵn,

where

Bri(µ) :=


xi ∈ Xi : Ui(xi, µ−i) ≥ sup

yi∈Xi
Ui(yi, µ−i)


,

and, since µn
→ µ, µi puts mass 1 on LsnBri(µn), the limes su-

perior (in the sense of Kuratowski) of Bri(µn). Thus it suffices to
show that LsnBri(µn) ⊆ Bri(µ). To establish this containment, let
xki → xi, where xki ∈ Bri(µk), for some subsequence (Bri(µk)) of
(Bri(µn)), and xi ∉ Bri(µ). Because xki → xi, µk

→ µ, and each ui
is bounded, we have (passing to a subsequence if necessary)

((xki , µ
k
−i), (U1(xki , µ

k
−i), . . . ,UN(xki , µ

k
−i)))

→ ((xi, µ−i), (α1, . . . , αN)) (3)

for someα := (α1, . . . , αN) ∈ RN . Therefore, ((xi, µ−i), α)belongs
to the closure of the set

{(ρ, a) ∈ M × RN
: Ui(ρ) = ai, for all i}.

Consequently, sinceG ∈ gd, and Condition (A), togetherwith upper
semicontinuity of

∑N
i=1 ui, implies Reny’s (1999) better-reply secu-

rity of G, the fact that xi ∉ Bri(µ) (so that δxi ∉ Bri(µ)) gives i and
σi ∈ Mi such that, for some neighborhood Oµ−i of µ−i and some
γ > 0,

Ui(σi, σ−i) ≥ αi + γ , for all σ−i ∈ Oµ−i .

We therefore have, in view of (3),

Ui(σi, µ
k
−i) > Ui(xki , µ

k
−i)

for any sufficiently large k, thereby contradicting that xki is a best
response to µk

−i (i.e., that x
k
i ∈ Bri(µk)). Therefore, xi ∈ LsnBri(µn)

implies xi ∈ Bri(µ), as desired. We omit the proof that the set of
weak perfect equilibrium profiles is closed. �

4. Limit admissibility in discontinuous games

While trembling-hand perfection and strong perfection appear
to better respect the structure of infinite games relative to weak
perfection (cf. Simon and Stinchcombe, 1995), expanding the do-
main of games beyond gc or gd affects the properties of these
solution concepts. In fact, there are members of gdd in which care-
fully chosen ‘‘trembles’’ may render a weakly dominated strategy
no less appealing than a corresponding dominant strategy: if the
opponent’s ‘‘tremble’’ gives measure zero to the strategies against
which the dominant strategy is superior, associated Selten pertur-
bations may exhibit equilibria assigning large mass to the interior
of the set of weakly∗ dominated strategies. As a result, trembling-
hand perfection and strong perfection fail (LA∗) and (LA). This is
illustrated in the following example.
Fig. 1. Example 1: the payoff function for player 1.

Example 1. Define f : [0, 1] → R by

f (x) :=


0 if x > 0,
1 if x = 0.

Let (f n) be a sequence of continuous, strictly decreasing functions
f n : [0, 1] → R with the following properties:
(a) Each f n intersects with f only once at xn2 ∈


0, 1

2


, where

xn2 → 0, and f n(1) = −
1
n < 0 = f (1) for each n.

(b) f n converges to f pointwise.

Let (xn1) be a sequence from
 1
2 , 1


with xn1 ↘

1
2 .

Consider the two-player game G = ([0, 1], [0, 1], u1, u2),
where

u1(x1, x2)

:=


0 if (x1, x2) ∈


0, 1

2


× [0, 1],

f (x2) if x1 =
1
2 ,

f n(x2) if x1 = xn1,
αf n(x2) + (1 − α)f n+1(x2) if x1 = αxn1 + (1 − α)xn+1

1 ,
some α ∈ (0, 1),

and u2(x1, x2) := x2 (Fig. 1).
For this game,

∑N
i=1 ui is upper semicontinuous (in fact, each ui

is upper semicontinuous), and Condition (A) is fulfilled.6
The action profile (0, 1) is clearly a Nash equilibrium in weakly

dominated strategies. In fact, 0, and any sufficiently small neigh-
borhood around 0, is weakly dominated for player 1 by 1

2 .
We claim that (0, 1) is a thp equilibrium of G. In fact, consider

a tremble sequence (νn
2) ∈ M2 for player 2 such that νn

2 is the
Lebesgue measure on [0, 1]. Note that for large enough n, choos-
ing the action 0 (in fact, choosing any action in


0, 1

2


) is a best

response for player 1 to the perturbed strategy

1 −

1
n


1+

 1
n


νn
2 .

To see this, note that for every x1 ∈

0, 1

2


we have

U1

x1,


1 −

1
n


1 +

1
nν

n
2


= 0,

and for every x1 ∈
 1
2 , 1


we have

U1

x1,


1 −

1
n


1 +

1
nν

n
2


=


1 −

1
n


u1(x1, 1) +

1
nU1(x1, νn

2)

≤ −

1 −

1
n

 1
n +

1
n
1
2

=
1
2


−

1
2 +

1
n


,

6 The game G satisfies even Carbonell-Nicolau’s (2011b) generic entire payoff
security and generic local equi-upper semicontinuity.
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so, for large enough n,

U1

0,


1 −

1
n


1 +

1
nν

n
2


≥ U1


x1,


1 −

1
n


1 +

1
nν

n
2


for every x1 ∈ [0, 1]. Consequently, since 0 is a best response for
player 1 to the perturbed strategy


1 −

1
n


1+

 1
n


νn
2 , and since the

action 1 is strictly dominant for player 2, for large enough n,
1 −

1
n


0 +

 1
n


νn
1 ,


1 −

1
n


1 +

 1
n


νn
2


is an equilibrium of the Selten perturbation Gn−1νn for any νn

1 ∈M1. Hence, (0, 1) is trembling-hand perfect, and therefore strongly
(hence weakly) perfect (Theorem 2).

Since the action 0 lies in the interior of the set of strategies
weakly dominated for 1, it follows that trembling-hand perfection
and strong perfection fail limit admissibility∗ and limit admissibil-
ity.

The following result summarizes the properties of strong per-
fection, trembling-hand perfection, andweak perfection in gdd. The
statements that are given with no direct proof can be established
as in the proof of Theorem 4.

Theorem 5. For the family of games gdd, we have the following:

• Strong perfection and trembling-hand perfection satisfy (E), (P),
(R), and (W), and fail (LA∗) and (LA).

• Weak perfection satisfies (E), (R), and (N), and fails (P), (LA∗),
and (LA).

5. Limit admissible perfect equilibria

Because (limit) admissibility is regarded as a basic requirement
for stability of equilibria (e.g. Kohlberg and Mertens, 1986, and
references listed therein), the fact that the existing notions
of trembling-hand perfection for infinite games fail (LA∗) and
(LA) raises questions on the existence of alternative refinement
specifications that do not suffer from this drawback.We argue that,
even if therewere refinements of trembling-hand perfection, along
the lines of Kohlberg andMertens’ (1986) stability, satisfying (LA∗)
or (LA), these refinements would pose existence problems for the
classes of games considered in this paper. By contrast, there are rich
families of games for which the concept of limit admissible perfect
(lap) equilibrium (defined below) is immune to this problem, and
meets other criteria.

We first define a lap equilibrium and compare the properties of
the various solution concepts.

We consider two concepts for limit admissible perfection. The
first one uses the less restrictive notions of weak domination or
(limit) admissibility in Definitions 4 and 7. The second one is
consistent with Definitions 5 and 9.

Definition 10. A strategy profile µ in G is a limit admissible
perfect* (lap*) equilibrium if it is a limit admissible∗, trembling-
hand perfect equilibrium of G.

Definition 11. A strategy profile µ in G is a limit admissible
perfect (lap) equilibrium if it is a limit admissible, trembling-hand
perfect equilibrium of G.

Remark 3. A related solution concept eliminates the interior of
the set ofweakly dominated strategies and applies trembling-hand
perfection to the resulting reduced form. Formally, given a game
G = (Xi, ui)

N
i=1, and letting Gr = (Yi, ui)

N
i=1 stand for the ‘subgame’

of G that results from eliminating, for each i, the interior of the set
of all weakly dominated strategies in Xi, this variant picks the set
of trembling-hand perfect equilibria in Gr .
Like limit admissible perfection, this specification satisfies (LA).
In finite games, it chooses thp equilibria, but there are finite games
with the property that adding dominated strategies enlarges
the set of trembling-hand perfect equilibria (cf. Myerson, 1978).
In infinite games, however, it need not select thp equilibria or
even Nash equilibria, unlike limit admissible perfection. Thus, for
infinite games, adding weakly dominated strategies may alter the
set of thp equilibria in such a way that some strategy profiles cease
to be thp or even Nash.

This is illustrated in the following example. Define the maps
f : [0, 1] → R and g : [0, 1] → R by

f (x) :=


−1 if x = 0,
0 otherwise,

and

g(x) :=


1 if x ∈ {0, 1},
0 otherwise.

Let (gn) be a sequence of continuous maps gn
: [0, 1] → R with

the following properties:

• (gn) converges pointwise to g; and
• gn(x) < 1 for all x.

Let G = ([0, 1], [0, 1], u1, u2) be a two-player game with

u1(x1, x2) :=

f (x2) if x1 = 1,
0 if (x1, x2) =


0, 1

2


,

x1 − 1 otherwise,

and

u2(x1, x2) :=


g(x1) if x2 = 0,
1 if (x1, x2) =


1, 1

2


,

gn(x1) if x2 =
1
2 +

1
2n and n ∈ N,

0 otherwise.

The sum u1 + u2 is upper semicontinuous, and G satisfies
Condition (A), so G is a member of gdd. Moreover, it is easily seen
that the action 0 isweakly dominated by 1 for player 1, and that any
action x1 ∈ (0, 1) is dominated by any action in (x1, 1) for player
1. In addition, any action in (0, 1

2 ] ∪
 1

2 , 1

\


n

 1
2 +

1
2n


is weakly dominated by 0 for player 2. Consequently, deleting
the interior of the set of weakly dominated strategies yields the
reduced form

Gr =


{1},


0, 1

2


∪


n

 1
2 +

1
2n


, u1, u2


,

which has two Nash equilibria,

1, 1

2


and (1, 0), and it is easy to

see that (1, 0) is thp in Gr (note that 1
2 is weakly dominated by 0

for player 2). However, the strategy profile (1, 0) is not even aNash
equilibrium in G, for

u1
 1
2 , 0


= −

1
2 > −1 = u1(1, 0).

Proving or disproving the existence of lap equilibria (resp. lap∗

equilibria) in gdd seems highly nontrivial.We can furnish results for
other rich collections of games. We first define these collections
and then derive corresponding analogues of Theorems 3–5 for
the refinement specifications considered in this section and in
Section 4.

Given i, recall thatO∗

i denotes the interior of the set of strategies
weakly∗ dominated for player i. Given G = (Xi, ui)

N
i=1, define, for

each i, X∗

i := Xi \ O∗

i .

Condition (A). There exists (µ1, . . . , µN) ∈ M such that for each
i and every ε > 0 there is a Borel measurable map f : Xi → Xi such
that the following is satisfied:
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(a) For each xi ∈ X∗

i and every y−i ∈ X−i, there is a neighborhood
Oy−i of y−i such that ui(f (xi), z−i) > ui(xi, y−i) − ε for all
z−i ∈ Oy−i .

(b) For each y−i ∈ X−i, there is a subset Yi of Xi with µi(Yi) = 1
such that for every xi ∈ Yi, there is a neighborhood Vy−i of y−i
such that ui(f (xi), z−i) < ui(xi, z−i) + ε for all z−i ∈ Vy−i .

Given i, recall that Oi denotes the interior of the set of strategies
weakly dominated for player i. Let Oi be the set of xi ∈ Oi such that
for every σi that weakly dominates xi, if Ui(σi, x−i) > ui(xi, x−i),
there is no neighborhood Vx−i of x−i such that Ui(σi, y−i) >
ui(xi, y−i) for all y−i ∈ Vx−i .

Define M as the set of µ ∈ M such that there exist Q1, . . . ,QN ,
where each Qi is a countable dense subset of Xi, satisfying the
following: for each i and every xi ∈ Qi ∩ Oi, µ−i({φi(xi)}) > 0,
where φi : Qi ∩ Oi → X−i is defined as follows: φi(xi) := y−i,
where y−i is such that, for some ρi ∈ Mi that weakly dominates
xi,Ui(ρi, x−i) ≥ ui(xi, x−i) for all x−i ∈ X−i and Ui(ρi, y−i) >
ui(xi, y−i).

Note that when each Xi is compact and metric (and hence
separable) the set M is nonempty. In fact, if each Xi is separable
there exists, for each i, a countable dense subset Qi of Xi.
Letting ρ(i) = (ρ1(i), . . . , ρN(i)) be a member of M such that
ρ−i(i)({φi(xi)}) > 0 for every xi ∈ Qi ∩ Oi and each i, and defining
µ := ασ + (1−α)

∑
i∈{1,...,N}

1
N ρ(i), where α ∈ (0, 1) and σ ∈ M ,

we see that µ ∈ M .

Remark 4. If Oi = ∅ for each i, thenM = M .

Given G = (Xi, ui)
N
i=1, define, for each i, X•

i := Xi \ Oi.

Condition (A). There exists (µ1, . . . , µN) ∈ M such that for each
i and every ε > 0 there is a Borel measurable map f : Xi → Xi such
that the following is satisfied:

(a) For each xi ∈ X•

i and every y−i ∈ X−i, there is a neighborhood
Oy−i of y−i such that ui(f (xi), z−i) > ui(xi, y−i) − ε for all
z−i ∈ Oy−i .

(b) For each y−i ∈ X−i, there is a subset Yi of Xi with µi(Yi) = 1
such that for every xi ∈ Yi, there is a neighborhood Vy−i of y−i
such that ui(f (xi), z−i) < ui(xi, z−i) + ε for all z−i ∈ Vy−i .

We define the following collections of games:

• gdd: the set of compact, metric games (Xi, ui)
N
i=1 with the

following properties: (1) X∗

i ≠ ∅ for each i; (2) (Xi, ui)
N
i=1

satisfies Condition (A); (3) for each i, if O∗

i ≠ ∅, then
ui(·, x−i) is upper semicontinuous; and (4)

∑N
i=1 ui is upper

semicontinuous.
• gdd: the set of compact, metric games (Xi, ui)

N
i=1 with the

following properties: (1) X•

i ≠ ∅ for each i; (2) (Xi, ui)
N
i=1

satisfies Condition (A); (3) for each i, if Oi ≠ ∅, then
ui(·, x−i) is upper semicontinuous; and (4)

∑N
i=1 ui is upper

semicontinuous.

Given (δ, µ) ∈ [0, 1) × M , define u(δ,µ)

i : X → R by

u(δ,µ)

i (x1, . . . , xN) := Ui((1 − δ)x1 + δµ1, . . . , (1 − δ)xN + δµN).

Given (δ, µ) ∈ [0, 1) × M and G = (Xi, ui)
N
i=1 with X∗

i ≠ ∅

(resp. X•

i ≠ ∅) for each i, let G∗

(δ,µ) := (X∗

i , u(δ,µ)

i )Ni=1 (resp.

G•

(δ,µ) := (X•

i , u(δ,µ)

i )Ni=1), where u(δ,µ)

i denotes the restriction of

u(δ,µ)

i to ×
N
j=1 X

∗

j (resp. ×
N
j=1 X

•

j ). Let G
∗

(δ,µ) (resp. G
•

(δ,µ)) be the
mixed extension of G∗

(δ,µ) (resp. G
•

(δ,µ)).
The following definition is taken from Reny (1999).
Definition 12. The gameG = (Xi, ui)
N
i=1 is payoff secure if for each

ε > 0, x ∈ X , and i, there exists yi ∈ Xi such that ui(yi, y−i) >
ui(x) − ε for every y−i ∈ Ox−i and for some neighborhood Ox−i of
x−i.

The proofs of the following lemmas are similar to the proof of
Lemma 1 in Carbonell-Nicolau (2011b). We omit the details and
refer the reader to Carbonell-Nicolau (2011b).

Lemma 1. Suppose that a compact, metric game G = (Xi, ui)
N
i=1 with

X∗

i ≠ ∅ for each i satisfies Condition(A). Then there existsµ ∈ M such
that G

∗

(δ,µ) is payoff secure for every δ ∈ [0, 1).

Lemma 2. Suppose that a compact, metric game G = (Xi, ui)
N
i=1 with

X•

i ≠ ∅ for each i satisfies Condition(A). Then there existsµ ∈ M such
that G

•

(δ,µ) is payoff secure for every δ ∈ [0, 1).
The following lemmas establish the existence of lap∗ equilibria

(resp. lap equilibria) ingdd (resp. gdd).
Lemma 3. Every member of gdd has a limit admissible perfect∗ equi-
librium.
Proof. Fix G = (Xi, ui)

N
i=1 in gdd. Take a sequence (δn) with

(0, 1) ∋ δn
→ 0. By Lemma 1, there exists µ ∈ M

such that each G
∗

(δn,µ) is payoff secure. This, together with upper
semicontinuity of

∑N
i=1 ui, gives, for each n, a Nash equilibrium

σ n of G
∗

(δn,µ). In fact, upper semicontinuity of
∑N

i=1 ui (which
gives upper semicontinuity of

∑N
i=1 Ui (e.g., Aliprantis and Border,

2006, Theorem 15.5)) and payoff security of G
∗

(δn,µ) imply that
G

∗

(δn,µ) is better-reply secure (Reny, 1999, Proposition 3.2) and
therefore, G

∗

(δn,µ), being a compact, quasiconcave game, possesses
a Nash equilibrium σ n (Reny, 1999, Theorem 3.1). We claim that
σ n is also a Nash equilibrium of the mixed extension of the game
(Xi, u

(δn,µ)

i ). To see this, suppose that σ n is not an equilibrium of
the mixed extension of (Xi, u

(δn,µ)

i ). Then, there exist i and ϱi ∈ Mi

such that

X u(δn,µ)

i d(ϱi, σ
n
−i) >


X u(δn,µ)

i dσ n, so there is a yi ∈ Xi

such that

X u(δn,µ)

i d(yi, σ n
−i) >


X u(δn,µ)

i dσ n. Therefore, since for
any xi ∈ O∗

i there exists an action zi ∈ X∗

i that weakly∗ dominates
xi (Salonen, 1996, Corollary 1), there exists zi ∈ X∗

i such that
X u(δn,µ)

i d(zi, σ n
−i) >


X u(δn,µ)

i dσ n, thereby contradicting that σ n

is a Nash equilibrium of G
∗

(δn,µ).
Now, since σ n is a Nash equilibrium of the mixed extension of

the game (Xi, u
(δn,µ)

i ), (1 − δn)σ n
+ δnµ is a Nash equilibrium

of Gδnµ, and because M is sequentially compact, we may write
(passing to a subsequence if necessary) σ n

→ σ for some σ ∈ M .
This, together with the fact that σ n

i (O∗

i ) = 0 for each i and all n,
gives σi(O∗

i ) = 0. Consequently, σ is a lap∗ equilibrium of G. �

Lemma 4. Every member of gdd has a limit admissible perfect
equilibrium.
Proof. Fix G = (Xi, ui)

N
i=1 in gdd. Take a sequence (δn) with

(0, 1) ∋ δn
→ 0. By Lemma 2, there exists µ ∈ M

such that each G
•

(δn,µ) is payoff secure. This, together with upper
semicontinuity of

∑N
i=1 ui, gives, for each n, a Nash equilibrium

σ n of G
•

(δn,µ). In fact, upper semicontinuity of
∑N

i=1 ui (which
gives upper semicontinuity of

∑N
i=1 Ui (e.g., Aliprantis and Border,

2006, Theorem 15.5)) and payoff security of G
•

(δn,µ) imply that
G

•

(δn,µ) is better-reply secure (Reny, 1999, Proposition 3.2) and
therefore, G

•

(δn,µ), being a compact, quasiconcave game, possesses
a Nash equilibrium σ n (Reny, 1999, Theorem 3.1). We claim that
σ n is also a Nash equilibrium of the mixed extension of the game
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(Xi, u
(δn,µ)

i ). To see this, suppose that σ n is not an equilibrium of
the mixed extension of (Xi, u

(δn,µ)

i ). Then, there exist i and pi ∈ Mi
such that∫

X
u(δn,µ)

i d(pi, σ n
−i) >

∫
X
u(δn,µ)

i dσ n. (4)

If Oi = ∅ it is clear that (4) contradicts the fact that σ n is a Nash
equilibrium of G

•

(δn,µ), so in the sequel we assume that Oi ≠ ∅. If
Oi ≠ ∅, there is no loss of generality in assuming that no member
ofMi weakly dominates pi and that

pi ∈ argmax
νi∈Mi

∫
X
u(δn,µ)

i d(νi, σ
n
−i).

7 (5)

To see that pi may be taken weakly undominated, suppose that
νi ∈ Mi weakly dominates pi. Then, because ui(·, x−i) is upper
semicontinuous for every x−i ∈ X−i (recall that Oi ≠ ∅ and
G ∈ gdd), the map Ui(·, p−i) is upper semicontinuous for every
p−i ∈ M−i (this is shown below). Consequently, by Corollary 1
of Salonen (1996), there exists a strategy ϱi ∈ Mi that weakly
dominates pi and is not weakly dominated by any member of Mi.
For this strategy, we have

ϱi ∈ argmax
νi∈Mi

∫
X
u(δn,µ)

i d(νi, σ
n
−i)

and

X u(δn,µ)

i d(ϱi, σ
n
−i) >


X u(δn,µ)

i dσ n.
If pi(Oi) = 0 it is clear that (4) contradicts the fact that σ n is a

Nash equilibrium of G
•

(δn,µ). If pi has atoms in Oi (i.e., if pi({xi}) > 0
for some xi ∈ Oi) it is easy to construct a p•

i ∈ Mi that weakly
dominates pi, a contradiction. It remains to consider the case when
pi has no atoms in Oi and pi(Oi) > 0.

Suppose that pi has no atoms inOi and pi(Oi) > 0. Then, because
Qi ∩ Oi is dense in Oi, there exists zi ∈ Qi ∩ Oi ∩ supp(pi). Since
zi ∈ Oi, there exists νi ∈ Mi such that Ui(νi, x−i) ≥ ui(zi, x−i) for all
x−i ∈ X−i andUi(νi, y−i) > ui(zi, y−i) for some y−i ∈ X−i. Note that
if zi ∈ Oi \ Oi, there is no loss of generality in assuming that there
exists a neighborhood Vy−i of y−i such that Ui(νi, z−i) > ui(zi, z−i)

for all z−i ∈ Vy−i . Let (ϵk) be a sequence in (0, 1) with ϵk
↘ 0.

Define pki ∈ Mi by

pki (Bi) := pi(Bi \ Nϵk(zi)) + νi(Bi)pi(Nϵk(zi))

and observe that pi satisfies (for every Borel set Bi ⊆ Xi)

pi(Bi) = pi(Bi \ Nϵk(zi)) + νk
i (Bi)pi(Nϵk(zi)),

where νk
i ∈ Mi is defined by νk

i (Bi) :=
pi(Bi∩N

ϵk (zi))
pi(Nϵk (zi))

.8

Recall that Ui(νi, x−i) ≥ ui(zi, x−i) for all x−i ∈ X−i and
Ui(νi, y−i) > ui(zi, y−i). Also recall that if zi ∈ Oi \ Oi, there exists
a neighborhood Vy−i of y−i such that Ui(νi, z−i) > ui(zi, z−i) for
all z−i ∈ Vy−i , and since µ ∈ M , we have µ−i(Vy−i) > 0. Finally,
observe that if zi ∈ Oi, then µ−i({y−i}) > 0. Therefore, we have

Ui(νi, (1 − δn)σ n
−i + δnµ−i) > Ui(zi, (1 − δn)σ n

−i + δnµ−i).

Now, since Ui(·, (1 − δn)σ n
−i + δnµ−i) is upper semicontinuous at

zi, for large enough k we have

Ui(νi, (1 − δn)σ n
−i + δnµ−i) > η > Ui(wi, (1 − δn)σ n

−i + δnµ−i)

7 The set argmaxνi∈Mi


X u(δn,µ)

i d(νi, σ
n
−i) is well-defined because if Oi ≠ ∅ the

map Ui(·, p−i) is upper semicontinuous for every p−i ∈ M−i (this is shown below),
and this implies that the map νi →


X u(δn,µ)

i d(νi, σ
n
−i) defined on Mi is upper

semicontinuous.
8 Observe that because zi ∈ supp(pi) we have pi(Nϵk (zi)) > 0.
for some η ∈ R and all wi ∈ Nϵk(zi), so

Ui(νi, (1 − δn)σ n
−i + δnµ−i) > Ui(ν

k
i , (1 − δn)σ n

−i + δnµ−i).

Consequently, for large enough k we have

Ui(pki , (1 − δn)σ n
−i + δnµ−i)

=

∫
Xi\Nϵk (zi)

Ui(·, (1 − δn)σ n
−i + δnµ−i)dpi

+ pi(Nϵk(zi))Ui(νi, (1 − δn)σ n
−i + δnµ−i)

>

∫
Xi\Nϵk (zi)

Ui(·, (1 − δn)σ n
−i + δnµ−i)dpi

+ pi(Nϵk(zi))Ui(ν
k
i , (1 − δn)σ n

−i + δnµ−i)

= Ui(pi, (1 − δn)σ n
−i + δnµ−i),

thereby contradicting (5).
Now, since σ n is a Nash equilibrium of the mixed extension of

the game (Xi, u
(δn,µ)

i ), (1 − δn)σ n
+ δnµ is a Nash equilibrium of

Gδnµ. Because M is sequentially compact, we may write (passing
to a subsequence if necessary) σ n

→ σ for some σ ∈ M . This,
together with the fact that σ n

i (Oi) = 0 for each i and all n, gives
σi(Oi) = 0. Consequently, σ is a lap equilibrium of G.

It remains to show that the map Ui(·, p−i) is upper semicontin-
uous for every p−i ∈ M−i if ui(·, x−i) is upper semicontinuous on Xi
for every x−i ∈ X−i. Because ui(·, x−i) is upper semicontinuous on
Xi for every x−i ∈ X−i, ui(·, x−i) is upper semicontinuous on Mi for
every x−i ∈ X−i (e.g., Aliprantis and Border, 2006, Theorem 15.5),
and so, given νn

i → νi,

lim sup
n→∞

Ui(ν
n
i , x−i) ≤ Ui(νi, x−i), for all (νi, x−i) ∈ Mi × X−i. (6)

Now take νn
i → νi. For each n, define f ni : X−i → R by f ni (x−i) :=

Ui(ν
n
i , x−i). Given p−i ∈ M−i, we have, by Fatou’s lemma,

lim sup
n→∞

∫
X−i

f ni dp−i ≤

∫
X−i

lim sup
n→∞

f ni dp−i.

This, combined with (6), gives

lim sup
n→∞

Ui(ν
n
i , p−i) ≤ Ui(νi, p−i),

so Ui(·, p−i) is upper semicontinuous on Mi for every p−i ∈

M−i. �

Remark 5. The conditions for existence of lap∗ equilibria (resp. lap
equilibria) provided in Lemma 3 (resp. Lemma 4) apply in various
economic games. For example, the games in Examples 4 and 6 of
Carbonell-Nicolau (2011b) are members ofgdd (resp. gdd).

Limit admissible perfection (resp. limit admissible perfection∗)
satisfies (LA) (resp. (LA∗)) and (P) (every lap equilibrium (resp. lap∗

equilibrium) is thp, and every thp is the limit of Nash equilibria in
Selten perturbations). Furthermore, since trembling-hand perfect
equilibria are admissible (hence admissible∗) in finite games, the
set of lap equilibria (resp. lap∗ equilibria) coincides with the set
of trembling-hand perfect equilibria in finite games (i.e., limit
admissible perfection (resp. limit admissible perfection∗) meets
(R)).9

On the other hand, trembling-hand perfection (and therefore
strong perfection) fails (LA) (resp. (LA∗)) within gdd (resp.gdd). In
9 Also, note that, in gd , thp equilibria are lap (resp. lap∗), and conversely.
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fact, the game in Example 1 belongs to gdd∩gdd,10 and for this game
Oi = O∗

i for each i.
These observations, along with Lemmas 3 and 4, are summa-

rized by the following statements.

Theorem 6. For the family of gamesgdd, we have the following:

• Limit admissible perfection∗ satisfies (LA∗), (P), (R), and (E).
• Strong perfection and trembling-hand perfection satisfy (E), (P),

and (R), and fail (LA∗).
• Weak perfection satisfies (E) and (R), and fails (P) and (LA∗).

Theorem 7. For the family of games gdd, we have the following:

• Limit admissible perfection satisfies (LA), (P), (R), and (E).
• Strong perfection and trembling-hand perfection satisfy (E), (P),

and (R), and fail (LA).
• Weak perfection satisfies (E) and (R), and fails (P) and (LA).

Remark 6. Observe that properties (S), (W), and (N) do not appear
in the statement of Theorems 6 and 7. For the class of gamesgdd (resp. gdd), strong perfection (or trembling-hand perfection)
and weak perfection need not select Nash equilibria. This is a
consequence of the fact thatgdd (resp. gdd) does not sufficiently
constrain the players’ payoff functions in the interior of the set of
weakly∗ dominated (resp. weakly dominated) strategies. There is,
however, an easy fix to this problem: impose Reny’s (1999) better-
reply security of G on the members G ofgdd (resp. gdd).11

We now indicate the difficulties that may arise when studying
certain strengthenings of trembling-hand perfection. The game in
Example 1 has a thp equilibrium µ that is not limit admissible
because, at µ, even though player 1 chooses a strategy, 0, that is
weakly dominated by 1

2 , the action
1
2 outperforms 0 only when the

opponent chooses 0, and there are ‘trembles’ (completely mixed
strategies) of the opponent that assign measure zero to the action
0. Thus, if player 1 expects player 2 to mischoose according to one
such tremble, he finds it optimal to choose the strategy 0, even
though 0 is weakly dominated by 1

2 . But if player 1 entertained
the possibility that player 2’s imperfect choice might follow one
of many possible trembles, some of which put positive mass
on the action 0, then player 1 would never choose the weakly
dominated action, 0. For example, requiring robustness of Nash
equilibria to the players’ choice of any slight tremblewithin a small
neighborhood of completelymixed strategieswould guarantee the
selection of limit admissible strategy profiles.

While it is well-known that strictly perfect equilibria (Okada,
1981) may fail to exist even in finite games, the above discussion
suggests that Kohlberg and Merten’s (1986) set-valued notion of
stability might select only limit admissible equilibrium points.
Even if this were true, we point out that establishing the existence
of strategically stable sets for the classes of games considered in
this paper poses difficulties. Our argument is informal and confines
attention to the collection gdd.

10 For this game, O2 = ∅ (so µ1 in Condition (A) can be freely chosen from M1),
O1 =


0, 1

2


, and, letting Q1 be the set of rational numbers in [0, 1], φ1(x1) = 0 for

each x1 ∈ O∗

1 ∩ Q1 . Hence, for any µ = (µ1, µ2) ∈ M such that µ2({0}) > 0 we
have µ ∈ M . Given that X•

1 =
 1
2 , 1


and X•

2 = {1}, it is easy to verify items (a) and
(b) of Condition (A) for any such µ.
11 Better-reply security of G for the members G of gdd (resp. gdd) is satisfied,
for example, by the members of gdd (resp. gdd) that are uniformly payoff secure
(cf. Monteiro and Page, 2007).
The existence of strategically stable sets in a game G requires
the existence of Nash equilibria in open sets of slight Selten
perturbations of G. Given δ ∈ (0, 1)N , some µ ∈ M must exist
such that the games in {Gδϱ : ϱ ∈ Oµ} possess a Nash equilibrium,
for some neighborhood Oµ of µ. However, we have found a game
G in gdd satisfying the following: given any µ ∈ M and δ ∈ (0, 1)N ,
one can findmany ϱ arbitrarily close toµ such that Gδϱ fails Reny’s
(1999) payoff security and better-reply security. Consequently,
Reny’s (1999) results cannot be used to establish the existence of
Nash equilibria in open sets of Selten perturbations of G.12

6. Concluding remarks

We have studied trembling-hand perfect equilibria in possibly
discontinuous, normal-form games, by comparing the properties
of several infinite-game generalizations of Selten’s (1975) notion of
perfection. The behavior of the various formulations of trembling-
hand perfection in the set gc of compact, metric, continuous games
extends to certain supersets of gc . For larger classes of games,
however, the existing solution concepts may select equilibria in
the interior of the set of weakly dominated strategies. While
this problem might be remedied by using stronger refinement
specifications, for the classes of games considered in this paper
these specifications are likely to fail conditions that are known to
give existence. However, for rich classes of discontinuous games,
the notion of limit admissible perfect equilibrium is not subject to
this problem, and meets other desiderata.
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