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Abstract
Progressive income and commodity tax structures have been examined independently
in terms of their ability to reduce income inequality and bipolarization. Rather than
focusing on income and commodity taxes in isolation, this paper studies mixed tax
systems, which subject both income and consumption to taxation. It provides necessary
and sufficient conditions on the structure of these systems that ensure a reduction
in income inequality and bipolarization for both exogenous and endogenous income
scenarios. Commodity taxation is “superfluous” in the case of exogenous income,
as any post-tax income distribution achievable through a mixed tax system can be
replicated by income taxation alone. In contrast, when income is endogenous, there are
cases where relying solely on income taxation is ineffective, while mixed tax structures
have equalizing and depolarizing potential.

Keywords: income taxation, commodity taxation, mixed taxation, income inequal-
ity, bipolarization.
JEL classifications: D31, D63, D71.

1. Introduction
The analysis of progressive income tax structures and their impact on income inequality
reduction traces back to the seminal works of Jakobsson (1976), Fellman (1976), and
Kakwani (1977). These authors established the equivalence between increasing average tax
rates on income—known as average-rate income tax progressivity—and an income tax
schedule’s consistent ability to reduce income inequality. This foundational concept has
since been extended in several directions (see, e.g., Hemming and Keen, 1983; Eichhorn
et al., 1984; Liu, 1985; Formby et al., 1986; Thon, 1987; Latham, 1988; Thistle, 1988; Moyes,
1988, 1989, 1994; Le Breton et al., 1996; Ebert and Moyes, 2000; Ju and Moreno-Ternero,
2008).1 ,2

‗Valuable comments and suggestions provided by the anonymous referees and the editor are gratefully
acknowledged.
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1Additional foundations for income tax progressivity emerge from the principle of equal sacrifice (Young,
1987, 1988, 1990), as shown in Mitra and Ok (1996, 1997). See also D’Antoni (1999).

2Alternative normative rationales for income redistribution have been proposed, based on concepts of
incentive compatibility (or non-manipulability) and “solidarity” principles. These approaches have been
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While the Jakobsson-Fellman-Kakwani result is framed in terms of endowment eco-
nomies with exogenous income, extensions of their analysis to the case of endogenous
income are provided in Carbonell-Nicolau and Llavador (2018, 2021a). A related study
by Carbonell-Nicolau and Llavador (2021b) adopts an alternative evaluation criterion for
the distributional effects of income tax policies, focusing on their ability to reduce income
bipolarization, as measured by a relative metric proposed in Foster and Wolfson (2010). This
study establishes the general equivalence between inequality and bipolarization-reducing
income tax schedules. Additionally, the effects of commodity taxation—as opposed to
income taxation—on income inequality have been studied in Carbonell-Nicolau (2019).

This paper examines mixed tax systems, which are tax systems that subject both income
and consumption to taxation, and their effectiveness in reducing income inequality and
bipolarization. The analysis begins with the case of exogenous income. Each mixed tax
system establishes a mapping from an initial distribution of endowment incomes to a
corresponding post-tax income distribution. If the latter distribution Lorenz dominates
(in the relative sense) the former distribution for every possible initial distribution, the
underlying tax system is classified as inequality-reducing.

The first main result of the paper (Theorem 1) states that a mixed tax system is inequality-
reducing if and only if net income increases with pre-tax income and the tax system is
jointly average-rate progressive, meaning it exhibits increasing average tax rates on income.
This result is followed by a discussion of its interpretation and implications for the tax
treatment of luxuries and necessities.

The Foster-Wolfson bipolarization order, in its relative form (Foster and Wolfson, 2010;
Chakravarty, 2009, 2015), is a well-accepted measure of an income distribution’s degree of
polarization between two income groups separated by the distribution’s median income.
A mixed tax system is considered bipolarization-reducing if it results in a less bipolarized
post-tax income distribution, as measured by the Foster-Wolfson order, regardless of the
pre-tax income distribution to which the tax system is applied. This alternative criterion
for evaluating mixed tax systems can be characterized in terms of joint average-rate
progressivity: a mixed tax system is bipolarization-reducing if and only if net income
increases with pre-tax income and the tax system is jointly average-rate progressive
(Theorem 2).

The case of endogenous income is examined in Section 2.2. In this scenario, individuals
choose their labor supply and preferred consumption bundles based on their wage rate
and any applicable taxes on consumption and income. A given wage rate distribution
and mixed tax system lead to an income distribution determined by individual labor and
consumption choices.

The definitions of inequality (respectively, bipolarization) reducing tax systems remain
similar to the case of exogenous income. However, in the endogenous case, income distri-
butions from a taxless environment are compared with those resulting from mixed taxation.
Specifically, a mixed tax system is considered inequality (respectively, bipolarization)
reducing if it produces a more equal (respectively, less bipolarized) income distribution,
relative to the taxless distribution, for any distribution of wage rates.

The following characterizations of inequality (respectively, bipolarization) reducing
tax systems are proven for the case of endogenous income. First, a mixed tax system
is inequality-reducing only if net income increases with the wage rate and the income

used to provide axiomatic justifications for linear income taxation, as demonstrated in the works of Ju et al.
(2007); Casajus (2015a,b); Yokote and Casajus (2017).
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tax is marginal-rate progressive (i.e., it exhibits increasing marginal tax rates on income)
(Theorem 4). Second, families of inequality-reducing mixed tax systems can be characterized
by a condition on the wage elasticity of net income (Theorem 5), which is amenable to
interpretation in terms of the tax treatment of luxuries and necessities. Finally, the
equivalence between inequality and bipolarization-reducing tax systems is established in
Theorem 6.

Mixed tax systems have been studied in the literature on optimal taxation, which focuses
on tax policies that maximize welfare in the utilitarian, Benthamite sense. Specifically,
combined tax policies that subject both income and consumption to taxation have been
examined in Atkinson and Stiglitz (1976), which establishes a “redundance theorem”
asserting that (under some assumptions) “the optimal tax system can rely solely on
income taxation.” A comparable result can be demonstrated in our framework for the
case of exogenous income. In particular, if the consumption of inferior goods is not taxed,
any post-tax income distribution derived from an inequality-reducing (respectively, a
bipolarization-reducing) mixed tax system is attainable via pure income taxation. This
finding, however, does not hold in the case of endogenous income: as demonstrated by an
example, there are cases when only mixed tax systems are effective in achieving the goal of
inequality and bipolarization reduction.

2. Distributional properties of mixed taxation
This section develops notions of progressivity for mixed tax systems and characterizes them
through measures of income inequality and bipolarization. Our analysis proceeds in two
stages. First, in Section 2.1, we examine the case where income is exogenous—unresponsive
to income taxation—while allowing consumption to respond to commodity taxation. Then,
in Section 2.2, we extend the analysis to consider endogenous income responses.

2.1. Exogenous income
Individual preferences are represented by a utility function 𝑢 : R𝐾+ → R defined on
commodity bundles 𝒙 = (𝑥1, . . . , 𝑥𝐾) ∈ R𝐾+ , where 𝑥𝑘 denotes the quantity of traded good
𝑘 ∈ {1, . . . , 𝐾}.

The utility function 𝑢 is assumed continuous and nondecreasing, strictly increasing on
R𝐾++, and strictly quasiconcave on R𝐾++.

An income tax schedule is a continuous and nondecreasing map 𝑇 : R+ → R satisfying
the following conditions:

• 𝑇(𝑦) ≤ 𝑦 for each 𝑦 ∈ R+.

• The map 𝑦 ↦→ 𝑦 − 𝑇(𝑦) is nondecreasing (i.e., 𝑇 is order-preserving).

Here, 𝑇(𝑦) > 0 (respectively, 𝑇(𝑦) < 0) represents the tax paid (respectively, a subsidy
received) by an individual whose income is 𝑦.

A commodity tax profile is a vector 𝝉 = (𝜏1, . . . , 𝜏𝐾) of tax rates, one for each traded good.
For each good 𝑘, 𝜏𝑘 > 0 (respectively, 𝜏𝑘 < 0) represents the tax liability (respectively,
subsidy) paid (respectively, received) per unit of good 𝑘 consumed.
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A mixed tax system is a tuple (𝑇, 𝝉), where 𝑇 is an income tax schedule and 𝝉 is a
commodity tax profile.

Given an income tax schedule 𝑇, a commodity tax profile 𝝉 = (𝜏1, . . . , 𝜏𝐾), and a
commodity price vector 𝒑 = (𝑝1, . . . , 𝑝𝐾) such that 𝑝𝑘 > 0 and 𝑝𝑘 + 𝜏𝑘 > 0 for each 𝑘, an
individual whose income is 𝑦 solves the following problem:

max
(𝑥1 ,...,𝑥𝐾)∈R𝐾

+
𝑢(𝑥1, . . . , 𝑥𝐾)

s.t. (𝑝1 + 𝜏1)𝑥1 + · · · + (𝑝𝐾 + 𝜏𝐾)𝑥𝐾 ≤ 𝑦 − 𝑇(𝑦).

The properties of 𝑢 entail that this problem has a unique solution, denoted by

𝑥1(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦)), . . . , 𝑥𝐾(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦)),

where each 𝑥𝑘(𝒑′, 𝑦′) represents the individual’s Marshallian demand function for good
𝑘 corresponding to net price vector 𝒑′ and net income 𝑦′. These demand functions, in
conjunction with the mixed tax system (𝑇, 𝝉), determine net income (income after all tax
payments):

𝑧(𝒑, 𝑇, 𝝉, 𝑦) = 𝑦 − 𝑇(𝑦) −
𝐾∑
𝑘=1

𝜏𝑘𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦)) =
𝐾∑
𝑘=1

𝑝𝑘𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦)). (1)

An income distribution is a vector 𝒚 = (𝑦1, . . . , 𝑦𝑛), where 𝑦𝑖 represents individual 𝑖’s
income level. The population size, 𝑛, takes values in the set of natural numbers. Let
(𝑦[1], . . . , 𝑦[𝑛]) be a rearrangement of the coordinates in 𝒚 such that

𝑦[1] ≤ · · · ≤ 𝑦[𝑛].

Throughout the sequel, we restrict attention to income distributions whose median
income is positive.

In this paper, inequality is measured by means of the relative Lorenz order, defined as
follows. Given two income distributions 𝒚 = (𝑦1, . . . , 𝑦𝑛) and 𝒚′ = (𝑦′1, . . . , 𝑦′𝑛), 𝒚′ is said to
Lorenz dominate 𝒚, denoted by “𝒚′ ≽𝐿 𝒚,” if∑𝑙

𝑖=1 𝑦
′
[𝑖]∑𝑛

𝑖=1 𝑦
′
[𝑖]

≥
∑𝑙
𝑖=1 𝑦[𝑖]∑𝑛
𝑖=1 𝑦[𝑖]

, for all 𝑙 ∈ {1, . . . , 𝑛}.

The interpretation of the dominance relation “𝒚′ ≽𝐿 𝒚” is that “𝒚′ is at least as equal as 𝒚.”
Given a price vector 𝒑 and a pre-tax income distribution (𝑦1, . . . , 𝑦𝑛), a mixed tax system

(𝑇, 𝝉) yields a post-tax income distribution

(𝑧(𝒑, 𝑇, 𝝉, 𝑦1), . . . , 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛)).

Given a price vector 𝒑, a mixed tax system (𝑇, 𝝉) is inequality-reducing if

(𝑧(𝒑, 𝑇, 𝝉, 𝑦1), . . . , 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛)) ≽𝐿 (𝑦1, . . . , 𝑦𝑛)

for every pre-tax income distribution (𝑦1, . . . , 𝑦𝑛) and every population size 𝑛.
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An income tax schedule 𝑇 is inequality-reducing if the mixed tax system (𝑇, 0), where the
commodity tax profile is identically zero, is inequality-reducing. Similarly, a commodity
tax profile 𝝉 is inequality-reducing if the mixed tax system (0, 𝝉), where the income tax
schedule is identically zero, is inequality-reducing.

An income tax schedule is average-rate progressive if, for 𝑦 > 0, the average tax rate
𝑇(𝑦)/𝑦 is nondecreasing in 𝑦.

Given a price vector 𝒑, a commodity tax profile 𝝉 = (𝜏1, . . . , 𝜏𝐾) is average-rate progressive
if, for 𝑦 > 0, the average tax rate

1
𝑦

(
𝐾∑
𝑘=1

𝜏𝑘𝑥𝑘(𝒑 + 𝝉, 𝑦)
)

is nondecreasing in 𝑦.
A mixed tax system (𝑇, 𝝉) is separately average-rate progressive if 𝑇 (respectively, 𝝉) is

average-rate progressive; and jointly average-rate progressive if, for 𝑦 > 0, the average tax rate,

1
𝑦

(
𝑇(𝑦) +

𝐾∑
𝑘=1

𝜏𝑘𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦))
)
,

is nondecreasing in 𝑦.
Joint and separate average-rate progressivity are logically nested in the following

sense. Separate average-rate progressivity implies joint average-rate progressivity, but the
converse is not true.3

Our first main result is a characterization of inequality-reducing mixed tax systems in
terms of jointly progressive mixed taxation.

Theorem 1. Given a price vector 𝒑, a mixed tax system (𝑇, 𝝉) is inequality-reducing if and only if
the net income function 𝑧(𝒑, 𝑇, 𝝉, 𝑦) is nondecreasing in the pre-tax income level 𝑦 and (𝑇, 𝝉) is
jointly average-rate progressive.

The proof of Theorem 1 is relegated to Appendix A.
In general, 𝑧(𝒑, 𝑇, 𝝉, 𝑦) need not be nondecreasing in the pre-tax income level 𝑦. Indeed,

it is easy to see, using the identity in (1), that if good 𝑘 is inferior, and if 𝑝𝑘 is large enough
relative to the (gross) prices of the other goods (𝑝𝑘′, 𝑘′ ≠ 𝑘), then the map 𝑦 ↦→ 𝑧(𝒑, 𝑇, 𝝉, 𝑦)
may well be decreasing in 𝑦. Partial differentiation of the identity in (1) with respect to 𝑦
gives

𝜕𝑧(𝒑, 𝑇, 𝝉, 𝑦)
𝜕𝑦

= (1 − 𝑇′(𝑦))
(
1 −

𝐾∑
𝑘=1

𝜏𝑘 · 𝜕2𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦))
)

= (1 − 𝑇′(𝑦))
𝐾∑
𝑘=1

𝑝𝑘 · 𝜕2𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦)),

where, for every good 𝑘, 𝜕2𝑥𝑘(𝒑′, 𝑦′) denotes the partial derivative of the Marshallian
demand function with respect to its second variable, income, evaluated at the price vector

3See Appendix F for a proof of this assertion.
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𝒑′ and income level 𝑦′.4 If good 𝑘 is inferior, so that 𝜕2𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦)) < 0 for each
𝒑 + 𝝉 and 𝑦 − 𝑇(𝑦), and if 𝑝𝑘 is large enough, relative to the prices of the other goods, then
𝜕𝑧(𝒑,𝑇,𝝉,𝑦)

𝜕𝑦 < 0.5

The following are immediate corollaries of Theorem 1.

• An income tax schedule is inequality-reducing if and only if it is average-rate
progressive. This is the classic Jakobsson-Fellman-Kakwani result (Jakobsson, 1976;
Fellman, 1976; Kakwani, 1977).

• A commodity tax profile is inequality-reducing if and only if it is average-rate
progressive and net income is nondecreasing with pre-tax income.

Inequality-reducing (hence average-rate progressive) commodity tax profiles have been
characterized in terms of the tax treatment of luxury (respectively, necessary) commodities
(Carbonell-Nicolau, 2019).

A luxury (respectively, necessary) commodity is a commodity for which the proportion of
total income spent on it rises (respectively, declines) with income.

Assuming differentiable demand functions, a luxury commodity 𝑘 can be formally
defined in terms of the following condition:

𝜕(𝑝𝑘𝑥𝑘(𝒑, 𝑦)/𝑦)
𝜕𝑦

> 0, for every (𝒑, 𝑦).6 (2)

(Recall that 𝑥𝑘(𝒑, 𝑦) denotes the standard Marshallian demand function for good 𝑘.)
A commodity 𝑘 is a necessity if

𝜕(𝑝𝑘𝑥𝑘(𝒑, 𝑦)/𝑦)
𝜕𝑦

< 0, for every (𝒑, 𝑦). (3)

Conditions (2) and (3) can be expressed as follows:

𝜕𝑥𝑘(𝒑, 𝑦)
𝜕𝑦

>
𝑥𝑘(𝒑, 𝑦)

𝑦
, for every (𝒑, 𝑦), (4)

and
𝜕𝑥𝑘(𝒑, 𝑦)

𝜕𝑦
<
𝑥𝑘(𝒑, 𝑦)

𝑦
, for every (𝒑, 𝑦). (5)

These conditions lend themselves to interpretation. For example, multiplying both sides of
(4) by 𝑝𝑘 , we see that good 𝑘 is a luxury if the marginal propensity to spend on good 𝑘 (i.e.,
the fraction of an extra dollar spent on good 𝑘) exceeds the average propensity to spend on
good 𝑘 (i.e., the current fraction of total income spent on good 𝑘). Condition (5) can be
understood in a similar way.

It is easy to see that luxury goods are necessarily normal goods (in the sense that
their demand increases with income), but the converse does not generally hold. Similarly,
inferior goods are necessities, but necessities need not be inferior.

4The use of this notation is intended to resolve ambiguities between the perturbed variable (income) and
its current level, 𝑦′.

5Note that, in addition, if 𝑘 is an inferior good, then 𝜏𝑘 needs to be small enough relative to the sizes of
those commodity tax rates 𝜏𝑙 for which 𝑙 is a normal good.

6Differentiability is obviously not necessary for the definition of a luxury commodity.
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A reformulation of average-rate progressivity illuminates the link between Theorem 1
and the tax treatment of luxuries and necessities.

To begin, consider commodity tax profiles separately. Assuming differentiability of the
demand functions, a commodity tax profile is average-rate progressive if, for 𝑦 > 0,

𝜕

𝜕𝑦

(
1
𝑦

(
𝐾∑
𝑘=1

𝜏𝑘𝑥𝑘(𝒑 + 𝝉, 𝑦)
))

≥ 0,

which is expressible as

𝐾∑
𝑘=1

(
𝜕2𝑥𝑘(𝒑 + 𝝉, 𝑦) − 𝑥𝑘(𝒑 + 𝝉, 𝑦)

𝑦

)
𝜏𝑘 ≥ 0, (6)

where, for every good 𝑘, 𝜕2𝑥𝑘(𝒑′, 𝑦′) denotes the partial derivative of the Marshallian
demand function with respect to its second variable, income, evaluated at the price vector
𝒑′ and income level 𝑦′.

Recall that a good is a luxury if the bracketed term is positive on its domain and a
necessity if it is negative on its domain. Thus, a commodity tax profile is average-rate
progressive if it taxes luxuries and/or subsidizes necessities.

Similarly, joint average-rate progressivity can be expressed as

𝜕

𝜕𝑦

(
1
𝑦

(
𝑇(𝑦) +

𝐾∑
𝑘=1

𝜏𝑘𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦))
))

≥ 0, 𝑦 > 0.

Under differentiability of 𝑇 and the demand functions 𝑥𝑘(𝒑′, 𝑦′) (𝑘 ∈ {1, . . . , 𝐾}), this
inequality can be written as

𝑇′(𝑦) + (1 − 𝑇′(𝑦))
(
𝐾∑
𝑘=1

𝜏𝑘𝜕2𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦))
)

≥ 𝑇(𝑦)
𝑦

+
𝐾∑
𝑘=1

𝜏𝑘 ·
𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦))

𝑦
, 𝑦 > 0. (7)

The left-hand side represents the total fraction of an extra dollar (at the income level 𝑦)
paid as tax—the sum of the income tax fraction on that extra dollar, 𝑇′(𝑦), plus the fraction
of the extra dollar, net of income taxes, levied as consumption tax,

(1 − 𝑇′(𝑦))
(
𝐾∑
𝑘=1

𝜏𝑘𝜕2𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦))
)
.

The right-hand side of (7) represents the total fraction of every dollar (at the current income
level, 𝑦) paid as tax—the sum of the share of income tax per dollar, 𝑇(𝑦)/𝑦, plus the the
consumption tax share per dollar of income,

𝐾∑
𝑘=1

𝜏𝑘 ·
𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦))

𝑦
.



8

Based on this interpretation of joint average-rate progressivity and Theorem 1, the
inequality-reducing effects of an average-rate progressive income tax schedule, along with
commodity taxes on luxuries and subsidies on necessities, should be intuitively appealing

A fundamentally different metric commonly used to evaluate income distributions
is the Foster-Wolfson bipolarization order (Foster and Wolfson, 2010; Chakravarty, 2009,
2015), a measure of the degree of polarization between two income groups, taking median
income as the demarcation point.

For two income distributions 𝒚 = (𝑦1, . . . , 𝑦𝑛) and 𝒚′ = (𝑦′1, . . . , 𝑦′𝑛) with the same
median income, 𝑚, we write 𝒚′ ≽FW 𝒚 to indicate that 𝒚′ is more bipolarized than 𝒚, if∑

𝑘≤𝑖< 𝑛+1
2

(𝑚 − 𝑦[𝑖]) ≤
∑

𝑘≤𝑖< 𝑛+1
2

(𝑚 − 𝑦′[𝑖]), ∀𝑘 : 1 ≤ 𝑘 <
𝑛 + 1

2 ,

∑
𝑛+1

2 <𝑖≤𝑘
(𝑦[𝑖] − 𝑚) ≤

∑
𝑛+1

2 <𝑖≤𝑘
(𝑦′[𝑖] − 𝑚), ∀𝑘 : 𝑛 + 1

2 < 𝑘 ≤ 𝑛.

This order evaluates pairs of income distributions on the basis of an “average deviation”
between individual income levels and median income, with lower average deviations
corresponding to less bipolarized income distributions.

Assuming that proportional changes in income do not alter the “degree” of bipolar-
ization, ≽FW can be extended to pairs of income distributions with different median
incomes.

Let 𝑚(𝒚) (respectively, 𝑚(𝒚′)) denote the median income of 𝒚 (respectively, 𝒚′), and
suppose that 𝑚(𝒚) > 0 and 𝑚(𝒚′) > 0. Then the transformation

𝒚′′ =
𝑚(𝒚)
𝑚(𝒚′)(𝑦

′
1, . . . , 𝑦

′
𝑛)

of 𝒚′ has the same median as 𝒚. We now introduce the following definition:

𝒚′ ≽FW 𝒚 ⇔ 𝒚′′ ≽FW 𝒚.

Given a price vector 𝒑, a mixed tax system (𝑇, 𝝉) is bipolarization-reducing if

(𝑦1, . . . , 𝑦𝑛) ≽FW (𝑧(𝒑, 𝑇, 𝝉, 𝑦1), . . . , 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛))

for every pre-tax income distribution (𝑦1, . . . , 𝑦𝑛) and every population size 𝑛.
Carbonell-Nicolau and Llavador (2021b) established the equivalence between inequality-

reducing and bipolarization-reducing income tax schedules. We now establish the
equivalence between inequality-reducing and bipolarization-reducing mixed tax systems.

Theorem 2. Given a price vector 𝒑, a mixed tax system (𝑇, 𝝉) is bipolarization-reducing if and
only if the net income function 𝑧(𝒑, 𝑇, 𝝉, 𝑦) is nondecreasing in the pre-tax income level 𝑦 and
(𝑇, 𝝉) is jointly average-rate progressive.

The proof of Theorem 2 is given in Appendix B.
Combining Theorem 1 and Theorem 2 immediately gives the following result.

Theorem 3. Given a price vector 𝒑, a mixed tax system is inequality-reducing if and only if it is
bipolarization-reducing.
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As a special case of Theorem 3, we obtain the following result: given a price vector 𝒑, a
commodity tax profile is inequality-reducing if and only if it is bipolarization-reducing.

We now investigate whether mixed taxation is “redundant” in achieving the goals
of reducing inequality and bipolarization. First, we illustrate that income taxation is
sometimes necessary because there are certain preferences under which commodity
taxation has no equalizing potential.

Consider a two-good example with 𝑢(𝑥1, 𝑥2) = 𝑥1𝑥2. The demand functions are given
by

𝑥1(𝒑, 𝑦) =
𝑦

2𝑝1
and 𝑥2(𝒑, 𝑦) =

𝑦

2𝑝2
,

and so
𝜕𝑥𝑘(𝒑, 𝑦)

𝜕𝑦
=
𝑥𝑘(𝒑, 𝑦)

𝑦
, 𝑘 ∈ {1, 2}.

Thus, both goods are neither luxuries nor necessities. Consequently, commodity taxation is
neutral—it neither increases nor decreases inequality—implying that any strictly equalizing
tax system requires income taxation.

Next, we establish conditions under which commodity taxation becomes “superfluous:”
any post-tax income distribution achievable through a mixed tax system can be replicated
through income taxation alone. This finding parallels the Atkinson-Stiglitz theorem in
optimal taxation, which demonstrates that income taxation suffices for implementing
optimal tax policies when leisure and consumption are separable (Atkinson and Stiglitz,
1976).7

Suppose that (𝑇, 𝝉) is a mixed tax system such that 𝝉 does not tax any inferior good.
Take a price vector 𝒑 and suppose that the net income function 𝑧(𝒑, 𝑇, 𝝉, 𝑦) is nondecreasing
in the pre-tax income level 𝑦. Then there exists an income tax schedule 𝑇∗ satisfying the
following: given an income distribution (𝑦1, . . . , 𝑦𝑛), both (𝑇, 𝝉) and 𝑇∗ give rise to the
same post-tax income distribution:

(𝑧(𝒑, 𝑇, 𝝉, 𝑦1), . . . , 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛)) = (𝑧(𝒑, 𝑇∗, 0, 𝑦1), . . . , 𝑧(𝒑, 𝑇∗, 0, 𝑦𝑛)).

To see this, note that setting

𝑇∗(𝑦) = 𝑇(𝑦) +
𝐾∑
𝑘=1

𝜏𝑘𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦))

gives

𝑧(𝒑, 𝑇, 𝝉, 𝑦) = 𝑦 − 𝑇(𝑦) −
𝐾∑
𝑘=1

𝜏𝑘𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦)) = 𝑧(𝒑, 𝑇∗, 0, 𝑦), for all 𝑦.

7While Atkinson and Stiglitz’s analysis assumes endogenous income, we defer our treatment of income
responses to Section 2.2.
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To see that 𝑇∗ is a proper income tax schedule, note first that, because 𝝉 does not tax inferior
goods, 𝑇∗ is nondecreasing. Moreover, 𝑇∗(𝑦) ≤ 𝑦 for all 𝑦 (since 𝑇(𝑦) ≤ 𝑦 and

𝑦 − 𝑇(𝑦) −
𝐾∑
𝑘=1

𝜏𝑘𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦)) ≥
𝐾∑
𝑘=1

𝑝𝑘𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦)) ≥ 0

for all 𝑦) and, since 𝑧(𝒑, 𝑇, 𝝉, 𝑦) is nondecreasing in 𝑦, the map 𝑦 ↦→ 𝑦−𝑇∗(𝑦) is nondecreas-
ing.

Theorem 2 and Theorem 3, combined with the above observations, yield a stronger
result: when a mixed tax system (𝑇, 𝝉) reduces inequality (or bipolarization), there exists
an equivalent income tax schedule 𝑇∗ that generates identical post-tax income distributions.
This equivalence holds for any initial income distribution and any price vector 𝒑, provided
that: (i) no inferior goods are taxed under 𝝉, and (ii) the net income function 𝑧(𝒑, 𝑇, 𝝉, 𝑦) is
nondecreasing in the pre-tax income level 𝑦.

2.2. Endogenous income
In the case of endogenous income, preferences are described by means of a utility function 𝑢
defined on consumption bundles and labor hours, (𝒙 , 𝑙) ∈ R𝐾+×[0, 𝐿], where 𝒙 = (𝑥1, . . . , 𝑥𝐾)
represents a bundle of 𝐾 commodities, 𝑙 is a measure of working hours, and 𝐿 > 0.8 ,9

In this section, we restrict attention to piecewise linear tax schedules (see the definition
of a tax schedule at the beginning of Section 2.1).

A tax schedule 𝑇 is piecewise linear if R+ can be partitioned into finitely many intervals
𝐼1, . . . , 𝐼𝑀 satisfying the following: for each 𝑚, there exist 𝛽𝑚 ∈ R and 𝑡𝑚 ∈ [0, 1) such that
𝑇(𝑦) = 𝛽𝑚 + 𝑡𝑚𝑦 for all 𝑦 ∈ 𝐼𝑚 .

The set of all piecewise linear tax schedules is denoted by 𝒯.
Individuals differ in their hourly wage 𝑎 > 0. An individual who supplies 𝑙 ∈ [0, 𝐿]

units of labor and faces an income tax schedule 𝑇 earns a net income of 𝑎𝑙 − 𝑇(𝑎𝑙). Given a
price vector 𝒑 = (𝑝1, . . . , 𝑝𝐾) and a mixed tax system (𝑇, 𝝉) = (𝑇, 𝜏1, . . . , 𝜏𝐾) where 𝑇 ∈ 𝒯

and 𝑝𝑘 + 𝜏𝑘 > 0 for each 𝑘, the individual’s optimization problem is:

max
(𝑥1 ,...,𝑥𝐾 ,𝑙)∈R𝐾

+×[0,𝐿]
𝑢(𝑥1, . . . , 𝑥𝐾 , 𝑙)

s.t. (𝑝1 + 𝜏1)𝑥1 + · · · + (𝑝𝐾 + 𝜏𝐾)𝑥𝐾 ≤ 𝑎𝑙 − 𝑇(𝑎𝑙).
(8)

Throughout the sequel, 𝑢 is assumed to satisfy the following conditions:

(i) 𝑢 is continuous.

(ii) 𝑢(·, 𝑙) is nondecreasing and strictly increasing on R𝐾++ for each 𝑙 ∈ [0, 𝐿] and 𝑢(𝒙 , ·) is
strictly decreasing for each 𝒙 ∈ R𝐾++.

8Here, we allow 𝑢 to take the value −∞. The example presented in Appendix G features a utility function
𝑢(𝑥1 , 𝑥2 , 𝑙) such that 𝑢(0, 𝑥2 , 𝑙) = −∞ for all 𝑥2 and 𝑙.

9In this paper, preferences are assumed to be homogeneous across individuals. This assumption is
standard in the literature on optimal income taxation, which builds on the seminal paper of Mirrlees
(1971). Our baseline model is the Mirrlees model, augmented to allow for more than one commodity.
Carbonell-Nicolau (2024) allows for preference heterogeneity but confines attention to income taxation.
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(iii) Given 𝒑, 𝑇 ∈ 𝒯, 𝑎 > 0, and 𝑎𝐿 ≥ 𝑦 > 0, let 𝒙(𝒑, 𝑇, 𝑎, 𝑦) denote a solution to

max
(𝑥1 ,...,𝑥𝐾)∈R𝐾

+
𝑢(𝑥1, . . . , 𝑥𝐾 , 𝑦/𝑎)

s.t. 𝑝1𝑥1 + · · · + 𝑝𝐾𝑥𝐾 ≤ 𝑦 − 𝑇(𝑦).10
(9)

Suppose that 𝒙(𝒑, 𝑇, 𝑎, 𝑦) is continuous in (𝑎, 𝑦) for each 𝒑 and 𝑇.
Choose a commodity 𝑘 and a gross labor income level 𝑦 > 0. The marginal rate of
substitution of 𝑥𝑘 for 𝑦 for an “𝑎-individual” is given by

MRS𝑎
𝑘
(𝒙 , 𝑦) = −(1/𝑎)(𝜕𝑢(𝒙 , 𝑦/𝑎)/𝜕𝑙)

𝜕𝑢(𝒙 , 𝑦/𝑎)/𝜕𝑥𝑘
.

It represents the amount of extra good 𝑘 an individual would require as compensation
for an extra marginal unit of gross labor income.
We assume that (a) MRS𝑎

𝑘
(𝒙(𝒑, 𝑇, 𝑎, 𝑦), 𝑦) is well defined for each 𝑘, 𝒑, 𝑇 ∈ 𝒯, 𝑎 > 0,

and 𝑦 > 0 and continuous in (𝑎, 𝑦) for each 𝒑 and 𝑇; and (b) for each 𝑘, 𝒑, 𝑇 ∈ 𝒯, and
𝑦 > 0,

lim
𝑎↘𝑦/𝐿

MRS𝑎
𝑘
(𝒙(𝒑, 𝑇, 𝑎, 𝑦), 𝑦) = ∞ and lim

𝑎→∞
MRS𝑎

𝑘
(𝒙(𝒑, 𝑇, 𝑎, 𝑦), 𝑦) = 0.

(iv) 𝑢 is quasiconcave and exhibits the following form of “strict quasiconcavity:” given 𝒑,
𝑇 ∈ 𝒯, 𝑎 > 0, 𝑎𝐿 ≥ 𝑦 > 0, 𝑎𝐿 ≥ 𝑦′ > 0, and solutions 𝒙 and 𝒙′ to the problems (9) and

max
(𝑥1 ,...,𝑥𝐾)∈R𝐾

+
𝑢(𝑥1, . . . , 𝑥𝐾 , 𝑦

′/𝑎)

s.t. 𝑝1𝑥1 + · · · + 𝑝𝐾𝑥𝐾 ≤ 𝑦′ − 𝑇(𝑦′),

respectively, the following condition is satisfied:

𝑢(𝛼(𝒙 , 𝑦/𝑎) + (1 − 𝛼)(𝒙′, 𝑦′/𝑎)) > min{𝑢(𝒙 , 𝑦/𝑎), 𝑢(𝒙′, 𝑦′/𝑎)}

for all 𝛼 ∈ (0, 1) whenever 𝑦 ≠ 𝑦′ or 𝒙 ≠ 𝒙′.11

(v) For each 𝒑, 𝑇 ∈ 𝒯, and 𝑎 > 0, there exist 𝒙 ∈ R𝐾++ and 𝑙 > 0 such that

𝑝1𝑥1 + · · · + 𝑝𝐾𝑥𝐾 ≤ 𝑎𝑙 − 𝑇(𝑎𝑙)
10Because 𝑢 is continuous and the feasible set is compact, a solution exists. Under the condition (iv) below,

the solution is unique (see Footnote 11).
11This condition implies that the problem (9) has a unique solution. To see this, suppose that there are two

distinct solutions, 𝒙 and 𝒙′, to (9). Then (iv) implies that

𝑢(𝛼𝒙 + (1 − 𝛼)𝒙′, 𝑦/𝑎) > 𝑢(𝒙 , 𝑦/𝑎) = 𝑢(𝒙′, 𝑦/𝑎) (10)

for 𝛼 ∈ (0, 1). But since

𝑝1𝑥1 + · · · + 𝑝𝐾𝑥𝐾 ≤ 𝑦 − 𝑇(𝑦) and 𝑝1𝑥
′
1 + · · · + 𝑝𝐾𝑥′𝐾 ≤ 𝑦 − 𝑇(𝑦),

it follows that
𝑝1(𝛼𝑥1 + (1 − 𝛼)𝑥′1) + · · · + 𝑝𝐾(𝛼𝑥𝐾 + (1 − 𝛼)𝑥′𝐾) ≤ 𝑦 − 𝑇(𝑦).

This, together with (10), contradicts that 𝒙 and 𝒙′ solve (9).
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and 𝑢(𝒙 , 𝑙) > 𝑢(0, 0).

The condition (iii) states that the compensation (in terms of good 𝑘) required by an
individual for an extra marginal unit of labor income at labor income level 𝑦 and at a utility
maximizing bundle 𝒙(𝒑, 𝑇, 𝑎, 𝑦) (a) tends to infinity as 𝑎𝐿 approaches 𝑦 from above;12 and
(b) tends to zero as 𝑎 diverges to ∞.

The last condition, (v), implies that, under a mixed tax system (𝑇, 𝝉), and given a price
vector 𝒑, an individual whose wage rate is 𝑎 > 0 always consumes a positive amount of at
least one good, i.e., 𝑥𝑢

𝑘
(𝒑, 𝑇, 𝝉, 𝑎) > 0 for at least one 𝑘, implying that 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) > 0.

A solution to (8) is denoted by

(𝑥𝑢1 (𝒑, 𝑇, 𝝉, 𝑎), . . . , 𝑥𝑢𝐾(𝒑, 𝑇, 𝝉, 𝑎), 𝑙𝑢(𝒑, 𝑇, 𝝉, 𝑎)).13 (11)

The notation used in this section makes the dependence of a solution to (8) on the
utility function, 𝑢, explicit. Keeping this dependence in mind will be convenient when
characterizing the inequality-reducing properties of tax schedules in terms of conditions
on 𝑢.

A corresponding net income function is denoted by

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) = 𝑎𝑙𝑢(𝒑, 𝑇, 𝝉, 𝑎) − 𝑇(𝑎𝑙𝑢(𝒑, 𝑇, 𝝉, 𝑎)) −
𝐾∑
𝑘=1

𝜏𝑘𝑥
𝑢
𝑘
(𝒑, 𝑇, 𝝉, 𝑎)

=

𝐾∑
𝑘=1

𝑝𝑘𝑥
𝑢
𝑘
(𝒑, 𝑇, 𝝉, 𝑎). (13)

In the absence of taxes, the solution in (11) is denoted by

(𝑥𝑢1 (𝒑, 0, 0, 𝑎), . . . , 𝑥𝑢𝐾(𝒑, 0, 0, 𝑎), 𝑙𝑢(𝒑, 0, 0, 𝑎)).

We now formulate the last two conditions on the utility function 𝑢:

(vi) Given 𝒑 and (𝑇, 𝝉) with 𝑇 ∈ 𝒯, if 𝑙𝑢(𝒑, 𝑇, 𝝉, ·) has a discontinuity point at some 𝑎 > 0,
so does 𝑧𝑢(𝒑, 𝑇, 𝝉, ·).

(vii) Given 𝑏 ≥ 0 and 𝒑, the map 𝑎 ↦→ 𝑎𝑙𝑢(𝒑, 𝑇, 0, 𝑎) + 𝑏 is nondecreasing, where 𝑇 is
defined by 𝑇(𝑦) = −𝑏 for all 𝑦 ≥ 0.

Condition (vi) says that discontinuities in gross income with respect to 𝑎 translate into
similar discontinuities in net income.14

12Note that 𝑎 ↘ 𝑦/𝐿 implies that 𝑙 ↗ 𝐿.
13The problem (8) has at least one solution. To see this, consider first the following problem:

max
𝑦∈[0,𝑎𝐿]

𝑢(𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑦), 𝑦/𝑎). (12)

Note that if this problem has a solution, 𝑦∗, then

(𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑦∗), 𝑦∗/𝑎)

solves (8). Thus, it suffices to show that (12) has a solution. But (12) has a solution because the objective
function is continuous in 𝑦 and the feasible set is a closed interval.

14By equation (13), condition (vi) holds if there are no inferior goods. More generally, if 𝑙𝑢(𝒑, 𝑇, 𝝉, ·) has a
discontinuity at 𝑎, gross (hence net) labor income is also discontinuous at 𝑎, and so the demands for the 𝐾
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Condition (vii) states that, for any fixed subsidy 𝑏 ≥ 0 and in the absence of commodity
taxation, net income is nondecreasing with 𝑎.15

The set of all utility functions satisfying the conditions (i)-(vi) is denoted by 𝒰.
A wage distribution is a vector (𝑎1, . . . , 𝑎𝑛) ∈ R𝑛++, where 𝑛 is the population size and 𝑎𝑖

represents individual 𝑖’s wage rate.
Given a price vector 𝒑 and a wage distribution (𝑎1, . . . , 𝑎𝑛), a mixed tax system (𝑇, 𝝉)

generates an income distribution

(𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎1), . . . , 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑛)).

In the absence of taxation, i.e., when both 𝑇 and 𝝉 are identically zero, the resulting income
distribution is

(𝑧𝑢(𝒑, 0, 0, 𝑎1), . . . , 𝑧𝑢(𝒑, 0, 0, 𝑎𝑛)).
A mixed tax system (𝑇, 𝝉) is inequality-reducing with respect to 𝒑 and 𝑢, or (𝒑, 𝑢)-ir, if

(𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎1), . . . , 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑛)) ≽𝐿 (𝑧𝑢(𝒑, 0, 0, 𝑎1), . . . , 𝑧𝑢(𝒑, 0, 0, 𝑎𝑛))

for each wage distribution (𝑎1, . . . , 𝑎𝑛), every post-tax income function 𝑧𝑢 , and every
population size 𝑛.

When the underlying 𝒑 and 𝑢 are clear from the context, we sometimes refer to (𝒑, 𝑢)-ir
mixed tax systems simply as inequality-reducing mixed tax systems.

An income tax schedule is marginal-rate progressive if it is convex.
If 𝑇 ∈ 𝒯 is marginal-rate progressive, then the net income function 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) is

uniquely defined.16

commodities will generally exhibit a discontinuity at 𝑎, which will generally translate into a discontinuity in
𝑧𝑢(𝒑, 𝑇, 𝝉, ·).

15An increase in 𝑎 represents an increase in the “price” of leisure, which triggers a substitution effect in
demand toward more labor income (and more goods and services) and away from leisure, and an income
effect, which increases the demand for leisure (if leisure is a normal good). If the income effect does not
outweigh the substitution effect, condition (vii) holds. More generally, even when the income effect dominates,
condition (vii) holds if the reduction in the labor supply is “small” relative to the increase in the wage rate.

16To see this, note first that if the problem

max
𝑦∈[0,𝑎𝐿]

𝑢(𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑦), 𝑦/𝑎) (14)

has a unique solution, then so does the problem (8), implying that the net income function 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎)
is uniquely defined. Indeed, because the function 𝒙(𝒑, 𝑇, 𝑎, 𝑦) is uniquely defined for each (𝒑, 𝑇, 𝑎, 𝑦)
(Footnote 11), if there exist two distinct solutions, (𝒙′, 𝑙′) and (𝒙′′, 𝑙′′), to the problem (8), then 𝑙′ ≠ 𝑙′′

(otherwise, i.e., if 𝑙′ = 𝑙′′, then 𝒙′ = 𝒙′′ = 𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑎𝑙′)) and there exist two distinct solutions, 𝑎𝑙′ and 𝑎𝑙′′,
to (14).

Thus, it suffices to show that (14) has a unique solution whenever 𝑇 is convex. (The problem (14) was
shown to have a solution in Footnote 13.) To see that (14) has a unique solution, suppose that there are two
distinct solutions, 𝑦 and 𝑦′. Then (iv) implies that

𝑢(𝛼(𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑦), 𝑦/𝑎) + (1 − 𝛼)(𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑦′), 𝑦′/𝑎))
= 𝑢(𝛼𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑦) + (1 − 𝛼)𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑦′), (𝛼𝑦 + (1 − 𝛼)𝑦′)/𝑎)

> 𝑢(𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑦), 𝑦/𝑎) = 𝑢(𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑦′), 𝑦′/𝑎) (15)

for 𝛼 ∈ (0, 1). Because 𝑦, 𝑦′ ∈ [0, 𝑎𝐿], we have

𝛼𝑦 + (1 − 𝛼)𝑦′ ∈ [0, 𝑎𝐿].
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Theorem 4. For 𝑇 ∈ 𝒯, a mixed tax system (𝑇, 𝝉) is inequality-reducing with respect to 𝒑 and
𝑢 ∈ 𝒰 only if the net income function 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) is nondecreasing in 𝑎 and 𝑇 is marginal-rate
progressive.

The proof of Theorem 4 is relegated to Appendix C.
For any income tax schedule 𝑇 ∈ 𝒯, we have 𝑇(0) = −𝑏 for some 𝑏 ≥ 0. Here, 𝑏 can

be viewed as a subsidy deducted from any tax liability. If 𝑏 exceeds an individual’s tax
obligations, the individual receives the excess subsidy as a direct payment.

Let 𝒯m-prog be the set of all marginal-rate progressive income tax schedules in 𝒯. Every
income tax schedule 𝑇 in 𝒯m-prog is piecewise linear, and so R+ can be partitioned into
finitely many intervals 𝐼1, . . . , 𝐼𝑀 satisfying the following: for each 𝑚, there exist 𝑏 ∈ R
and 𝑡 ∈ [0, 1) such that 𝑇(𝑦) = −𝑏 + 𝑡𝑦 for all 𝑦 ∈ 𝐼𝑚 . Note that, because 𝑇 is convex, 𝑏 ≥ 0.
Note also that the extension of −𝑏 + 𝑡𝑦 to the entire domain R+ is itself an income tax
schedule in 𝒯m-prog. We call each such linear income tax schedules a linear extension of 𝑇.
Thus, there are 𝑀 many linear extensions of 𝑇 in 𝒯m-prog. More generally, the number of
linear extensions of 𝑇 ∈ 𝒯m-prog is equal to the number of tax brackets in 𝑇, and the set of
all linear extensions of 𝑇 is contained in 𝒯m-prog.

A subset of tax schedules 𝒮 ⊆ 𝒯m-prog is closed under linear extensions if 𝒮 contains the
linear extensions of its members.

We now characterize the set of inequality-reducing mixed tax systems (𝑇, 𝝉), where
𝑇 ∈ 𝒮 ⊆ 𝒯m-prog and 𝒮 is closed under linear extensions, in terms of conditions on the
utility function 𝑢.

Consider the tax schedule 𝑇 ∈ 𝒯 defined by 𝑇(𝑦) = −𝑏 for all 𝑦 ≥ 0 and some 𝑏 ≥ 0.
For this particular tax schedule, we write

𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑦) = 𝒙(𝒑 + 𝝉,−𝑏, 𝑎, 𝑦).

Given a price vector 𝒑 = (𝑝1, . . . , 𝑝𝐾), 𝑏 ≥ 0, a commodity tax profile 𝝉 = (𝜏1, . . . , 𝜏𝐾)
with 𝑝𝑘 + 𝜏𝑘 > 0 for each 𝑘, and 𝑎 > 0, the problem

max
𝑦∈[0,𝑎𝐿]

𝑢(𝒙(𝒑 + 𝝉,−𝑏, 𝑎, 𝑦), 𝑦/𝑎) (16)

has a unique solution, 𝑦𝑢(𝒑,−𝑏, 𝝉, 𝑎), which represents the gross income for an individual
whose wage rate is 𝑎 and who receives a subsidy of size 𝑏 and faces a commodity tax
profile 𝝉.17 When consumption is not taxed, i.e., when 𝝉 = 0, we write 𝑦𝑢(𝒑,−𝑏, 𝝉, 𝑎) =
𝑦𝑢(𝒑,−𝑏, 0, 𝑎).
In addition, because 𝑇 is a convex function,

𝒑 · (𝛼𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑦) + (1 − 𝛼)𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑦′))
= 𝛼(𝒑 · 𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑦)) + (1 − 𝛼)(𝒑 · 𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑦′))
≤ 𝛼(𝑦 − 𝑇(𝑦)) + (1 − 𝛼)(𝑦′ − 𝑇(𝑦′))
= 𝛼𝑦 + (1 − 𝛼)𝑦′ − (𝛼𝑇(𝑦) + (1 − 𝛼)𝑇(𝑦′))
≤ 𝛼𝑦 + (1 − 𝛼)𝑦′ − 𝑇(𝛼𝑦 + (1 − 𝛼)𝑦′);

here, for 𝒙 = (𝑥1 , . . . , 𝑥𝐾) ∈ R𝐾+ ,
𝒑 · 𝒙 = 𝑝1𝑥1 + · · · + 𝑝𝐾𝑥𝐾 .

Consequently, (15) contradicts that 𝑦 and 𝑦′ solve (14).
17For the proof of uniqueness of the solution, refer to Footnote 16.
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The corresponding after-tax income is given by

𝑧𝑢(𝒑,−𝑏, 𝝉, 𝑎) = 𝑦𝑢(𝒑,−𝑏, 𝝉, 𝑎) + 𝑏 −
𝐾∑
𝑘=1

𝜏𝑘𝑥
𝑢
𝑘
(𝒑 + 𝝉, 𝑦𝑢(𝒑,−𝑏, 𝝉, 𝑎) + 𝑏),

where 𝑥𝑢
𝑘
(𝒑′, 𝑦′) denotes the standard (Marshallian) demand function at price vector 𝒑′

and income level 𝑦′. When 𝝉 = 0 and 𝑏 = 0,

𝑧𝑢(𝒑,−𝑏, 𝝉, 𝑎) = 𝑧𝑢(𝒑, 0, 0, 𝑎) = 𝑦𝑢(𝒑, 0, 0, 𝑎)

represents the solution to
max
𝑦∈[0,𝑎𝐿]

𝑢(𝒙(𝒑, 0, 𝑎, 𝑦), 𝑦/𝑎).

Let 𝒮 be a subset of income tax schedules in 𝒯m-prog, and let 𝒮′ be a subset of commodity
tax profiles. The set of all linear extensions of the elements of 𝒮 is denoted by ℒ𝒮.

The linear extensions in ℒ𝒮 take the form −𝑏 + 𝑡𝑦, where 𝑏 ≥ 0 represents the intercept
and 𝑡 ∈ [0, 1) the slope. Let

𝐵(ℒ𝒮) = {𝑏 ≥ 0 : −𝑏 + 𝑡𝑦 ∈ ℒ𝒮 , some 𝑡}

denote the set of all vertical-axis intercepts, and let

𝑅(ℒ𝒮) = {𝑡 ∈ [0, 1) : −𝑏 + 𝑡𝑦 ∈ ℒ𝒮 , some 𝑏}.

denote the set of all slopes (marginal tax rates) of these linear extensions.
The next result offers a characterization of subsets of inequality-reducing mixed tax

systems.

Theorem 5. Suppose that 𝒮 ⊆ 𝒯m-prog is closed under linear extensions. Suppose that 𝒮′ is a
subset of commodity tax profiles. Then the mixed tax systems in 𝒮 ×𝒮

′ are inequality-reducing
with respect to 𝒑 and 𝑢 ∈ 𝒰 if and only if the following two conditions are satisfied:

(i) the net income function 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) is nondecreasing in 𝑎 for each 𝑇 ∈ ℒ𝒮 ∪ {0} and
𝝉 ∈ 𝒮

′;18 and

(ii) the quotient
𝑧𝑢(𝒑,−𝑏, 𝝉, (1 − 𝑡)𝑎)

𝑧𝑢(𝒑, 0, 0, 𝑎)
is nonincreasing in 𝑎 for every (𝑏, 𝑡 , 𝝉) ∈ 𝐵(ℒ𝒮) × 𝑅(ℒ𝒮) ×𝒮

′.

The proof of Theorem 5 is presented in Appendix D.
Let us now take a closer look at condition (ii) in Theorem 5. Assuming differentiability

of 𝑧𝑢 with respect to 𝑎, this condition can be expressed as follows:

𝜕𝑧𝑢(𝒑,−𝑏, 𝝉, (1 − 𝑡)𝑎)
𝜕𝑎

/
𝜕𝑧𝑢(𝒑, 0, 0, 𝑎)

𝜕𝑎
≤ 𝑧𝑢(𝒑,−𝑏, 𝝉, (1 − 𝑡)𝑎)

𝑧𝑢(𝒑, 0, 0, 𝑎) ,

for each 𝑎 > 0 and (𝑏, 𝑡 , 𝝉) ∈ 𝐵(ℒ𝒮) × 𝑅(ℒ𝒮) ×𝒮
′,

18Here 0 denotes the linear tax schedule 𝑇 defined by 𝑇(𝑦) = 0 for all 𝑦.
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which states that the ratio of the marginal effects is less than the ratio of levels. This
condition can be equivalently formulated in terms of elasticities:

𝜁𝑢(𝒑,−𝑏, 𝝉, (1 − 𝑡)𝑎) ≤ 𝜁𝑢(𝒑, 0, 0, 𝑎),
for each 𝑎 > 0 and (𝑏, 𝑡 , 𝝉) ∈ 𝐵(ℒ𝒮) × 𝑅(ℒ𝒮) ×𝒮

′, (17)

where
𝜁𝑢(𝒑′,−𝑏′, 𝝉′, 𝑎′) = 𝜕𝑧𝑢(𝒑′,−𝑏′, 𝝉′, 𝑎′)

𝜕𝑎
· 𝑎′

𝑧𝑢(𝒑′,−𝑏′, 𝝉′, 𝑎′)
represents the wage elasticity of net income at (𝒑′,−𝑏′, 𝝉′, 𝑎′).

The right-hand side of the inequality in (17) is the elasticity of untaxed income at 𝒑 and
𝑎:

𝜁𝑢(𝒑, 0, 0, 𝑎) = 𝜕𝑦𝑢(𝒑, 0, 0, 𝑎)
𝜕𝑎

· 𝑎

𝑦𝑢(𝒑, 0, 0, 𝑎) .

Since
𝜕𝑦𝑢(𝒑, 0, 0, 𝑎)

𝜕𝑎
= 𝑙𝑢(𝒑, 0, 0, 𝑎) + 𝑎 · 𝜕𝑙

𝑢(𝒑, 0, 0, 𝑎)
𝜕𝑎

,

we have
𝜁𝑢(𝒑, 0, 0, 𝑎) = 1 + 𝜖𝑢(𝒑, 0, 0, 𝑎),

where
𝜖𝑢(𝒑′,−𝑏′, 𝝉′, 𝑎′) = 𝜕𝑙𝑢(𝒑′,−𝑏′, 𝝉′, 𝑎′)

𝜕𝑎
· 𝑎′

𝑙𝑢(𝒑′,−𝑏′, 𝝉′, 𝑎′)
represents the wage elasticity of the labor supply at (𝒑′,−𝑏′, 𝝉′, 𝑎′).

The left-hand side of the inequality in (17) is the elasticity of (directly and indirectly)
taxed income at (𝒑,−𝑏, 𝝉, (1 − 𝑡)𝑎), where the income tax consists of a fixed subsidy 𝑏 ≥ 0
and the commodity tax profile is given by 𝝉. This elasticity can be expressed as follows:

𝜁𝑢(𝒑,−𝑏, 𝝉, (1 − 𝑡)𝑎)

= 𝜁𝑢(𝒑 + 𝝉,−𝑏, 0, (1 − 𝑡)𝑎) ·
1 −∑𝐾

𝑘=1 𝜏𝑘 ·
𝜕𝑥𝑢

𝑘
(𝒑+𝝉,𝑦𝑢(𝒑,−𝑏,𝝉,(1−𝑡)𝑎)+𝑏)

𝜕𝑦

1 −∑𝐾
𝑘=1 𝜏𝑘 ·

𝑥𝑢
𝑘
(𝒑+𝝉,𝑦𝑢(𝒑,−𝑏,𝝉,(1−𝑡)𝑎)+𝑏)
𝑦𝑢(𝒑,−𝑏,𝝉,(1−𝑡)𝑎)+𝑏

.19 (18)

19Routine calculations give

𝜁𝑢(𝒑,−𝑏, 𝝉, 𝑎) =
(
𝜕𝑦𝑢(𝒑,−𝑏, 𝝉, 𝑎) + 𝑏

𝜕𝑎
· 𝑎

𝑦𝑢(𝒑,−𝑏, 𝝉, 𝑎) + 𝑏

)
·

1 −∑𝐾
𝑘=1 𝜏𝑘 ·

𝜕𝑥𝑢
𝑘
(𝒑+𝝉,𝑦𝑢 (𝒑,−𝑏,𝝉,𝑎)+𝑏)

𝜕𝑦

1 −∑𝐾
𝑘=1 𝜏𝑘 ·

𝑥𝑢
𝑘
(𝒑+𝝉,𝑦𝑢 (𝒑,−𝑏,𝝉,𝑎)+𝑏)
𝑦𝑢 (𝒑,−𝑏,𝝉,𝑎)+𝑏

,

where
𝜕𝑦𝑢(𝒑,−𝑏, 𝝉, 𝑎) + 𝑏

𝜕𝑎
· 𝑎

𝑦𝑢(𝒑,−𝑏, 𝝉, 𝑎) + 𝑏
is the wage elasticity of income (net of income taxes, but gross of consumption taxes) at (𝒑,−𝑏, 𝝉, 𝑎). Since

𝑧𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) = 𝑦𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) + 𝑏,

and since
𝑦𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) = 𝑦𝑢(𝒑,−𝑏, 𝝉, 𝑎)
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The equality in (18) relates two distinct elasticities: the wage elasticity of net income
versus the wage elasticity of income gross of consumption taxes but net of income taxes
and subsidies. Consumption taxes affect net income through two channels:

First, by distorting relative prices, consumption taxes—in combination with the subsidy
𝑏—influence individual labor supply decisions and thus labor income. This mechanism is
captured by the elasticity term on the right-hand side of (18).

Second, consumption taxes determine an individual’s tax liability through their interac-
tion with marginal and average consumption propensities. This effect is reflected in the
ratio term on the right-hand side of (18).

Note that
𝐾∑
𝑘=1

𝜏𝑘 ·
𝜕𝑥𝑢

𝑘
(𝒑 + 𝝉, 𝑦𝑢(𝒑,−𝑏, 𝝉, (1 − 𝑡)𝑎) + 𝑏)

𝜕𝑦

represents the marginal consumption tax rate: the fraction of an additional dollar of income
paid in consumption taxes. Consequently,

1 −
𝐾∑
𝑘=1

𝜏𝑘 ·
𝜕𝑥𝑢

𝑘
(𝒑 + 𝝉, 𝑦𝑢(𝒑,−𝑏, 𝝉, (1 − 𝑡)𝑎) + 𝑏)

𝜕𝑦

represents the marginal disposable income rate: the fraction of an additional dollar
available for goods and services after consumption taxes.

Similarly,

1 −
𝐾∑
𝑘=1

𝜏𝑘 ·
𝑥𝑢
𝑘
(𝒑 + 𝝉, 𝑦𝑢(𝒑,−𝑏, 𝝉, (1 − 𝑡)𝑎) + 𝑏)
𝑦𝑢(𝒑,−𝑏, 𝝉, (1 − 𝑡)𝑎) + 𝑏

represents the average propensity to consume goods and services: the fraction of total
income remaining after consumption taxes.

For a luxury good 𝑘, we have

𝜕𝑥𝑢
𝑘
(𝒑 + 𝝉, 𝑦𝑢(𝒑,−𝑏, 𝝉, (1 − 𝑡)𝑎) + 𝑏)

𝜕𝑦
>
𝑥𝑢
𝑘
(𝒑 + 𝝉, 𝑦𝑢(𝒑,−𝑏, 𝝉, (1 − 𝑡)𝑎) + 𝑏)
𝑦𝑢(𝒑,−𝑏, 𝝉, (1 − 𝑡)𝑎) + 𝑏 .

Thus, taxing luxury goods ensures that the ratio of the fraction of an extra dollar spent on
goods and services to the average fraction of every dollar spent on goods and services,

1 −∑𝐾
𝑘=1 𝜏𝑘 ·

𝜕𝑥𝑢
𝑘
(𝒑+𝝉,𝑦𝑢(𝒑,−𝑏,𝝉,(1−𝑡)𝑎)+𝑏)

𝜕𝑦

1 −∑𝐾
𝑘=1 𝜏𝑘 ·

𝑥𝑢
𝑘
(𝒑+𝝉,𝑦𝑢(𝒑,−𝑏,𝝉,(1−𝑡)𝑎)+𝑏)
𝑦𝑢(𝒑,−𝑏,𝝉,(1−𝑡)𝑎)+𝑏

,

is less than one, which helps reduce the wage elasticity of net income, 𝜁𝑢(𝒑,−𝑏, 𝝉, (1 − 𝑡)𝑎)
(see (18)), and therefore relaxes the constraints in (17).20

(as inspection of the problem (16) reveals), we have

𝜁𝑢(𝒑,−𝑏, 𝝉, 𝑎) = 𝜁𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) ·
1 −∑𝐾

𝑘=1 𝜏𝑘 ·
𝜕𝑥𝑢

𝑘
(𝒑+𝝉,𝑦𝑢 (𝒑,−𝑏,𝝉,𝑎)+𝑏)

𝜕𝑦

1 −∑𝐾
𝑘=1 𝜏𝑘 ·

𝑥𝑢
𝑘
(𝒑+𝝉,𝑦𝑢 (𝒑,−𝑏,𝝉,𝑎)+𝑏)
𝑦𝑢 (𝒑,−𝑏,𝝉,𝑎)+𝑏

.

Equation (18) follows immediately from this expression.
20A similar argument can be made if necessities are subsidized.
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Luxury good taxation relaxes the constraint in (17), but its ultimate impact on the
wage elasticity of net income involves three interacting forces: (i) the combination of
income subsidies 𝑏 and proportional tax rates 𝑡; (ii) labor supply responses to consumption
tax-induced price distortions; and (iii) the direct effect of consumption taxation on marginal
and average propensities to consume goods and services. These forces can act in opposing
directions, making the net effect theoretically ambiguous.

We now turn to the equivalence between inequality-reducing and bipolarization-
reducing mixed tax systems in the case of endogenous income.

Recall that, given a price vector 𝒑 and a wage distribution (𝑎1, . . . , 𝑎𝑛), a mixed tax
system (𝑇, 𝝉) gives rise to an income distribution

(𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎1), . . . , 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑛)).

In the absence of taxation, the resulting income distribution is

(𝑧𝑢(𝒑, 0, 0, 𝑎1), . . . , 𝑧𝑢(𝒑, 0, 0, 𝑎𝑛)).

A mixed tax system (𝑇, 𝝉) is bipolarization-reducing with respect to 𝒑 and 𝑢, or (𝒑, 𝑢)-bpr, if

(𝑧𝑢(𝒑, 0, 0, 𝑎1), . . . , 𝑧𝑢(𝒑, 0, 0, 𝑎𝑛)) ≽FW (𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎1), . . . , 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑛))

for each wage distribution (𝑎1, . . . , 𝑎𝑛), every post-tax income function 𝑧𝑢 , and every
population size 𝑛.

Theorem 6. For 𝑇 ∈ 𝒯, a mixed tax system (𝑇, 𝝉) is inequality-reducing with respect to 𝒑 and
𝑢 ∈ 𝒰 if and only if it is bipolarization-reducing with respect to 𝒑 and 𝑢.

The proof of Theorem 6 is given in Appendix E.
We conclude this section by examining the joint effect of direct and indirect taxation on

inequality and bipolarization, comparing it to the impact of direct taxation alone.
Unlike the case of exogenous income, commodity taxation is not generally “superfluous”

here. In fact, a mixed tax system may reduce inequality in situations where income taxation
alone fails to promote economic equality. We provide a detailed, albeit technical, example
illustrating this point in Appendix G, but we’ll briefly highlight its main features here.

As demonstrated in Appendix G, there exist quasilinear preferences for which no
income tax schedule (except for a pure subsidy) reduces inequality or bipolarization.
Theorem 5 outlines necessary and sufficient conditions for a mixed tax system to be
inequality-reducing, which can be applied to pure direct taxation as well. Appendix G
shows that condition (ii) in Theorem 5 is violated in the case of pure income taxation (other
than a pure subsidy). Equivalently, condition (17) fails when 𝝉 = 0. Under pure direct
taxation, there is no relative price distortion between goods and services, causing the ratio
on the right-hand side of (18) to vanish.

In contrast, a tax on luxury goods, combined with a pure income subsidy, relaxes
condition (17) (via the ratio on the right-hand side of (18)). This combination can produce
an inequality and bipolarization-reducing mixed tax system, provided the income subsidy
is sufficiently large.
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3. Concluding remarks
We have studied mixed tax systems, i.e., tax systems subjecting both income and con-
sumption to taxation, and their ability to reduce income inequality and bipolarization.
We have identified necessary and sufficient conditions on the structure of mixed tax
systems ensuring a reduction in income inequality and bipolarization, in both the cases of
exogenous and endogenous income.

Commodity taxation is shown to be “redundant” for exogenous income, which means
that any post-tax income distribution generated by a mixed tax system is attainable by
means of a pure income tax. In contrast, there are instances where relying solely on income
taxation does not yield more equal or less bipolarized endogenous income distributions,
while mixed tax structures possess universal equitable and depolarizing effects.

We conclude with three comments.
First, it is worth reiterating the problems associated with studying welfare inequality

and bipolarization-reducing tax systems as opposed to taxation aimed at reducing income
inequality and bipolarization. These problems stem from the fact that Lorenz (respect-
ively, Foster-Wolfson) dominance is not generally invariant to order-preserving utility
transformations.

Second, the monotonicity of net income in pre-tax income or in wages is essential
for characterizing inequality-reducing mixed tax systems, as shown in Theorem 1 and
Theorem 5. Our analysis suggests that this condition may fail for high-priced inferior
goods, as discussed following Theorem 1. A systematic investigation of how pricing and
tax policies for inferior goods affect this monotonicity condition is left for future research.

Finally, while the present analysis treats exogenous and endogenous income separately,
a natural extension—despite the challenges it may pose—would allow for heterogeneous
sources of income at the individual level (e.g., “capital” income vs. labor income).

A. Proof of Theorem 1
The proof of Theorem 1 is based on the following result, which is well-known in the
literature.

Lemma 1. Suppose that 𝒚′ = (𝑦′1, . . . , 𝑦′𝑛) and 𝒚 = (𝑦1, . . . , 𝑦𝑛) are two income distributions with

𝑦1 ≤ · · · ≤ 𝑦𝑛 and 𝑦′1 ≤ · · · ≤ 𝑦′𝑛 .

If 𝑦𝜄 is the first positive income level in 𝒚, then

𝑦′𝜄
𝑦𝜄

≥ · · · ≥ 𝑦′𝑛
𝑦𝑛

⇒ 𝒚′ ≽𝐿 𝒚.

Proof. The case when 𝜄 = 1 is proven in Marshall et al. (1967, Theorem 2.4).
Suppose that 𝜄 > 1.21 We must show that∑𝑙

𝑖=1 𝑦
′
𝑖∑𝑛

𝑖=1 𝑦
′
𝑖

≥
∑𝑙
𝑖=1 𝑦𝑖∑𝑛
𝑖=1 𝑦𝑖

, for all 𝑙 ∈ {1, . . . , 𝑛}.

21The proof of this case can be found in the proof of Proposition 3.1 in Le Breton et al. (1996).
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For fixed 𝑙, the inequality is equivalent to(
𝑛∑

𝑖=𝑙+1
𝑦𝑖

) (
𝑙∑
𝑖=1

𝑦′𝑖

)
−

(
𝑙∑
𝑖=1

𝑦𝑖

) (
𝑛∑

𝑖=𝑙+1
𝑦′𝑖

)
≥ 0. (19)

This is clearly true if 𝑙 ∈ {1, . . . , 𝜄 − 1}, since, in this case,
∑𝑙
𝑖=1 𝑦𝑖 = 0.

For 𝑙 ≥ 𝜄, (19) can be expressed as(
𝑛∑

𝑖=𝑙+1
𝑦𝑖

) (
𝜄−1∑
𝑖=1

𝑦′𝑖 +
𝑙∑
𝑖=𝜄

𝑦′𝑖

)
−

(
𝑙∑
𝑖=1

𝑦𝑖

) (
𝑛∑

𝑖=𝑙+1
𝑦′𝑖

)
≥ 0. (20)

For the sub-distributions

(𝑦′𝜄 , . . . , 𝑦′𝑛) and (𝑦𝜄 , . . . , 𝑦𝑛),

we know that (𝑦′𝜄 , . . . , 𝑦′𝑛) ≽𝐿 (𝑦𝜄 , . . . , 𝑦𝑛), and so∑𝑙
𝑖=𝜄 𝑦

′
𝑖∑𝑛

𝑖=𝜄 𝑦
′
𝑖

≥
∑𝑙
𝑖=𝜄 𝑦𝑖∑𝑛
𝑖=𝜄 𝑦𝑖

,

whence (
𝑛∑

𝑖=𝑙+1
𝑦𝑖

) (
𝑙∑
𝑖=𝜄

𝑦′𝑖

)
−

(
𝑙∑
𝑖=𝜄

𝑦𝑖

) (
𝑛∑

𝑖=𝑙+1
𝑦′𝑖

)
≥ 0,

implying that (20) holds, as we sought. ■

Using Lemma 1, Theorem 1 can be proven as follows.

Theorem 1. Given a price vector 𝒑, a mixed tax system (𝑇, 𝝉) is inequality-reducing if and only if
the net income function 𝑧(𝒑, 𝑇, 𝝉, 𝑦) is nondecreasing in the pre-tax income level 𝑦 and (𝑇, 𝝉) is
jointly average-rate progressive.

Proof. Suppose that the mixed tax system (𝑇, 𝝉) is inequality-reducing. We must show that
𝑧(𝒑, 𝑇, 𝝉, 𝑦) is nondecreasing in 𝑦 and

1
𝑦

(
𝑇(𝑦) +

𝐾∑
𝑘=1

𝜏𝑘𝑥𝑘(𝒑, 𝑇, 𝝉, 𝑦)
)
≤ 1
𝑦′

(
𝑇(𝑦′) +

𝐾∑
𝑘=1

𝜏𝑘𝑥𝑘(𝒑, 𝑇, 𝝉, 𝑦′)
)

for 𝑦′ > 𝑦 > 0. (21)

To begin, we assume that

𝑧(𝒑, 𝑇, 𝝉, 𝑦′) < 𝑧(𝒑, 𝑇, 𝝉, 𝑦), for some 𝑦′ > 𝑦 ≥ 0,

and derive a contradiction. Note that 𝑦 > 0 (otherwise 𝑧(𝒑, 𝑇, 𝝉, 𝑦) = 0) and, for large
enough 𝑛,

𝑦

(𝑛 − 1)𝑦 + 𝑦′ >
𝑧(𝒑, 𝑇, 𝝉, 𝑦′)

(𝑛 − 1)𝑧(𝒑, 𝑇, 𝝉, 𝑦) + 𝑧(𝒑, 𝑇, 𝝉, 𝑦′) .

Consequently, for the income distributions

𝒚∗ = (𝑦∗1, . . . , 𝑦∗𝑛) = (𝑦, . . . , 𝑦, 𝑦′)
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and
𝒛∗ = (𝑧∗1, . . . , 𝑧∗𝑛) = (𝑧(𝒑, 𝑇, 𝝉, 𝑦), . . . , 𝑧(𝒑, 𝑇, 𝝉, 𝑦), 𝑧(𝒑, 𝑇, 𝝉, 𝑦′)),

we have 𝒛∗ %𝐿 𝒚∗, contradicting that (𝑇, 𝝉) is inequality-reducing.
It remains to prove (21). Fix 𝑦′ > 𝑦 > 0. Define the distribution 𝒚′′ = (𝑦′′1 , . . . , 𝑦′′𝑛 ) by

𝑦′′1 = 𝑦 and 𝑦′′
𝑖
= 𝑦′ for 𝑖 ≠ 1. Since (𝑇, 𝝉) is inequality-reducing, we have

(𝑧(𝒑, 𝑇, 𝝉, 𝑦′′1 ), . . . , 𝑧(𝒑, 𝑇, 𝝉, 𝑦′′𝑛 )) ≽𝐿 (𝑦′′1 , . . . , 𝑦′′𝑛 ), (22)

implying that
𝑧(𝒑, 𝑇, 𝝉, 𝑦′′1 )∑𝑛
𝑖=1 𝑧(𝒑, 𝑇, 𝝉, 𝑦′′𝑖 )

≥
𝑦′′1∑𝑛
𝑖=1 𝑦

′′
𝑖

,

i.e.,
𝑧(𝒑, 𝑇, 𝝉, 𝑦)

𝑧(𝒑, 𝑇, 𝝉, 𝑦) + (𝑛 − 1)𝑧(𝒑, 𝑇, 𝝉, 𝑦′) ≥
𝑦

𝑦 + (𝑛 − 1)𝑦′ . (23)

Equation (22) also implies ∑𝑛−1
𝑖=1 𝑧(𝒑, 𝑇, 𝝉, 𝑦′′𝑖 )∑𝑛
𝑖=1 𝑧(𝒑, 𝑇, 𝝉, 𝑦′′𝑖 )

≥
∑𝑛−1
𝑖=1 𝑦

′′
𝑖∑𝑛

𝑖=1 𝑦
′′
𝑖

,

i.e.,
𝑧(𝒑, 𝑇, 𝝉, 𝑦) + (𝑛 − 2)𝑧(𝒑, 𝑇, 𝝉, 𝑦′)
𝑧(𝒑, 𝑇, 𝝉, 𝑦) + (𝑛 − 1)𝑧(𝒑, 𝑇, 𝝉, 𝑦′) ≥

𝑦 + (𝑛 − 2)𝑦′
𝑦 + (𝑛 − 1)𝑦′ ,

whence
1 − 𝑧(𝒑, 𝑇, 𝝉, 𝑦) + (𝑛 − 2)𝑧(𝒑, 𝑇, 𝝉, 𝑦′)

𝑧(𝒑, 𝑇, 𝝉, 𝑦) + (𝑛 − 1)𝑧(𝒑, 𝑇, 𝝉, 𝑦′) ≤ 1 − 𝑦 + (𝑛 − 2)𝑦′
𝑦 + (𝑛 − 1)𝑦′ ,

or
𝑧(𝒑, 𝑇, 𝝉, 𝑦′)

𝑧(𝒑, 𝑇, 𝝉, 𝑦) + (𝑛 − 1)𝑧(𝒑, 𝑇, 𝝉, 𝑦′) ≤
𝑦′

𝑦 + (𝑛 − 1)𝑦′ .

Combining this inequality with (23) yields

𝑧(𝒑, 𝑇, 𝝉, 𝑦)
𝑦

≥ 𝑧(𝒑, 𝑇, 𝝉, 𝑦) + (𝑛 − 1)𝑧(𝒑, 𝑇, 𝝉, 𝑦′)
𝑦 + (𝑛 − 1)𝑦′ ≥ 𝑧(𝒑, 𝑇, 𝝉, 𝑦′)

𝑦′
,

or
1
𝑦

(
𝑇(𝑦) +

𝐾∑
𝑘=1

𝜏𝑘𝑥𝑘(𝒑, 𝑇, 𝝉, 𝑦)
)
≤ 1
𝑦′

(
𝑇(𝑦′) +

𝐾∑
𝑘=1

𝜏𝑘𝑥𝑘(𝒑, 𝑇, 𝝉, 𝑦′)
)
,

as we sought.
Conversely, suppose that the mixed tax system (𝑇, 𝝉) is jointly average-rate progressive

and 𝑧(𝒑, 𝑇, 𝝉, 𝑦) is nondecreasing in 𝑦. Fix any income distribution 𝒚 = (𝑦1, . . . , 𝑦𝑛).
Without loss of generality, suppose that

𝑦1 ≤ · · · ≤ 𝑦𝑛 .
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Let 𝑦𝜄 be the first positive coordinate in 𝒚. Then

1
𝑦𝜄

(
𝑇(𝑦𝜄) +

𝐾∑
𝑘=1

𝜏𝑘𝑥𝑘(𝒑, 𝑇, 𝝉, 𝑦𝜄)
)
≤ · · · ≤ 1

𝑦𝑛

(
𝑇(𝑦𝑛) +

𝐾∑
𝑘=1

𝜏𝑘𝑥𝑘(𝒑, 𝑇, 𝝉, 𝑦𝑛)
)
.

Equivalently,

1
𝑦𝜄

(
𝑦𝜄 − 𝑇(𝑦𝜄) −

𝐾∑
𝑘=1

𝜏𝑘𝑥𝑘(𝒑, 𝑇, 𝝉, 𝑦𝜄)
)
≥ · · · ≥ 1

𝑦𝑛

(
𝑦𝑛 − 𝑇(𝑦𝑛) −

𝐾∑
𝑘=1

𝜏𝑘𝑥𝑘(𝒑, 𝑇, 𝝉, 𝑦𝑛)
)
,

or
𝑧(𝒑, 𝑇, 𝝉, 𝑦𝜄)

𝑦𝜄
≥ · · · ≥ 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛)

𝑦𝑛
.

By Lemma 1, it follows that

(𝑧(𝒑, 𝑇, 𝝉, 𝑦1), . . . , 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛)) ≽𝐿 (𝑦1, . . . , 𝑦𝑛).

Since 𝒚 was arbitrary, (𝑇, 𝝉) is inequality-reducing. ■

B. Proof of Theorem 2
Theorem 2. Given a price vector 𝒑, a mixed tax system (𝑇, 𝝉) is bipolarization-reducing if and
only if the net income function 𝑧(𝒑, 𝑇, 𝝉, 𝑦) is nondecreasing in the pre-tax income level 𝑦 and
(𝑇, 𝝉) is jointly average-rate progressive.

Proof. Choose a bipolarization-reducing mixed tax system (𝑇, 𝝉). First, we show that
𝑧(𝒑, 𝑇, 𝝉, 𝑦) is nondecreasing in 𝑦. Proceeding by contradiction, suppose that

𝑧(𝒑, 𝑇, 𝝉, 𝑦′) < 𝑧(𝒑, 𝑇, 𝝉, 𝑦), for some 𝑦′ > 𝑦 ≥ 0.

Note that 𝑦 > 0 (otherwise 𝑧(𝒑, 𝑇, 𝝉, 𝑦) = 0). Consider the income distributions

𝒚∗ = (𝑦∗1, . . . , 𝑦∗𝑛) = (𝑦, . . . , 𝑦, 𝑦′)

and
𝒛∗ = (𝑧∗1, . . . , 𝑧∗𝑛) = (𝑧(𝒑, 𝑇, 𝝉, 𝑦), . . . , 𝑧(𝒑, 𝑇, 𝝉, 𝑦), 𝑧(𝒑, 𝑇, 𝝉, 𝑦′)).

For 𝑛 > 2, we have 𝑚(𝒚∗) = 𝑦 and 𝑚(𝒛∗) = 𝑧(𝒑, 𝑇, 𝝉, 𝑦). Therefore,

1
𝑚(𝒚∗)

∑
1≤𝑖< 𝑛+1

2

(𝑚(𝒚∗) − 𝑦∗[𝑖]) = 0 <
𝑧(𝒑, 𝑇, 𝝉, 𝑦) − 𝑧(𝒑, 𝑇, 𝝉, 𝑦′)

𝑚(𝒛∗)

=
1

𝑚(𝒛∗)
∑

1≤𝑖< 𝑛+1
2

(𝑚(𝒛∗) − 𝑧∗[𝑖]),

and so 𝑚(𝒛∗)
𝑚(𝒚∗)𝒚

∗ %FW 𝒛∗, whence 𝒚∗ %FW 𝒛∗, contradicting that (𝑇, 𝝉) is bipolarization-
reducing.
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It remains to show that (𝑇, 𝝉) is jointly average-rate progressive. Suppose that (𝑇, 𝜏) is
not jointly average-rate progressive. Then there exist 0 < 𝑦 < 𝑦′ such that

1
𝑦

(
𝑇(𝑦) +

𝐾∑
𝑘=1

𝜏𝑘𝑥𝑘(𝒑, 𝑇, 𝝉, 𝑦)
)
>

1
𝑦′

(
𝑇(𝑦′) +

𝐾∑
𝑘=1

𝜏𝑘𝑥𝑘(𝒑, 𝑇, 𝝉, 𝑦′)
)
,

or
𝑧(𝒑, 𝑇, 𝝉, 𝑦)

𝑦
<
𝑧(𝒑, 𝑇, 𝝉, 𝑦′)

𝑦′
. (24)

Suppose first that 𝑛 is odd. Take an income distribution 𝒚 = (𝑦1, . . . , 𝑦𝑛) with

𝑦1 ≤ · · · ≤ 𝑦𝑛 ,

𝑦𝑚−1 = 𝑦, and 𝑦𝑚 = 𝑦′, where 𝑚 = (𝑛 + 1)/2, so that 𝑦𝑚 is the median income in 𝒚. Then

𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑚) − 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑚−1)
𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑚)

= 1 − 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑚−1)
𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑚)

= 1 − 𝑧(𝒑, 𝑇, 𝝉, 𝑦)
𝑧(𝒑, 𝑇, 𝝉, 𝑦′)

> 1 − 𝑦

𝑦′

=
𝑦𝑚 − 𝑦𝑚−1

𝑦𝑚
,

where the inequality uses (24). Consequently,

𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑚)
𝑦𝑚

(𝑦1, . . . , 𝑦𝑛) %FW (𝑧(𝒑, 𝑇, 𝝉, 𝑦1), . . . , 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛)),

whence
(𝑦1, . . . , 𝑦𝑛) %FW (𝑧(𝒑, 𝑇, 𝝉, 𝑦1), . . . , 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛)),

a contradiction.
If 𝑛 is even, set 𝑦𝑛/2 = 𝑦 and 𝑦(𝑛/2)+1 = 𝑦′ and note that

𝑚 = 𝑚(𝑧(𝒑, 𝑇, 𝝉, 𝑦1), . . . , 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛)) =
𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛/2) + 𝑧(𝒑, 𝑇, 𝝉, 𝑦(𝑛/2)+1)

2

and
𝑚′ = 𝑚(𝒚) =

𝑦𝑛/2 + 𝑦(𝑛/2)+1

2 .
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Hence,

𝑚 − 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛/2)
𝑚

= 1 −
𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛/2)

𝑚

= 1 − 𝑧(𝒑, 𝑇, 𝝉, 𝑦)
𝑧(𝒑,𝑇,𝝉,𝑦)+𝑧(𝒑,𝑇,𝝉,𝑦′)

2

= 1 − 2 1

1 + 𝑧(𝒑,𝑇,𝝉,𝑦′)
𝑧(𝒑,𝑇,𝝉,𝑦)

> 1 − 2 1
1 + 𝑦′

𝑦

=
𝑚′ − 𝑦
𝑚′ ,

where the inequality uses (24). Consequently,

(𝑦1, . . . , 𝑦𝑛) %FW (𝑧(𝒑, 𝑇, 𝝉, 𝑦1), . . . , 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛)),

a contradiction.
Conversely, suppose that the mixed tax system (𝑇, 𝝉) is jointly average-rate progressive

and 𝑧(𝒑, 𝑇, 𝝉, 𝑦) is nondecreasing in 𝑦. Choose an income distribution 𝒚 = (𝑦1, . . . , 𝑦𝑛)
with

𝑦1 ≤ · · · ≤ 𝑦𝑛 .

Suppose first that 𝑛 is odd. Let 𝑦𝑚 represent the median income in 𝒚. Because (𝑇, 𝝉) is
jointly average-rate progressive, we have

𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑖)
𝑦𝑖

≥ 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑚)
𝑦𝑚

≥
𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑗)

𝑦 𝑗
, for 𝑖 < 𝑚 and 𝑗 > 𝑚.

Therefore,

𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑚) − 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑖)
𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑚)

= 1 − 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑖)
𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑚)

≤ 1 − 𝑦𝑖

𝑦𝑚
=
𝑦𝑚 − 𝑦𝑖
𝑦𝑚

, for 𝑖 < 𝑚,

𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑖) − 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑚)
𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑚)

=
𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑖)
𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑚)

− 1 ≤ 𝑦𝑖

𝑦𝑚
− 1 =

𝑦𝑖 − 𝑦𝑚
𝑦𝑚

, for 𝑖 > 𝑚.

Consequently,

𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑚)
𝑦𝑚

(𝑦1, . . . , 𝑦𝑛) ≽FW (𝑧(𝒑, 𝑇, 𝝉, 𝑦1), . . . , 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛)),

whence
(𝑦1, . . . , 𝑦𝑛) ≽FW (𝑧(𝒑, 𝑇, 𝝉, 𝑦1), . . . , 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛)).

Since 𝒚 was arbitrary, (𝑇, 𝝉) is bipolarization-reducing.
Now suppose that 𝑛 is even. Then the median incomes for 𝒚 and

(𝑧(𝒑, 𝑇, 𝝉, 𝑦1), . . . , 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛))
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are given by

𝑚 =
𝑦𝑛/2 + 𝑦(𝑛/2)+1

2 and 𝑚′ =
𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛/2) + 𝑧(𝒑, 𝑇, 𝝉, 𝑦(𝑛/2)+1)

2 ,

respectively, and so

𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑖)
𝑦𝑖

≥
𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛/2)

𝑦𝑛/2
≥ 𝑚′

𝑚
≥
𝑧(𝒑, 𝑇, 𝝉, 𝑦(𝑛/2)+1)

𝑦(𝑛/2)+1

≥
𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑗)

𝑦 𝑗
, for 𝑖 ≤ 𝑛/2 and 𝑗 ≥ (𝑛/2) + 1,

where the second and third inequalities hold because

𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛/2)
𝑦𝑛/2

≥ 𝑚′

𝑚
⇔

𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛/2)
𝑦𝑛/2

≥
𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛/2) + 𝑧(𝒑, 𝑇, 𝝉, 𝑦(𝑛/2)+1)

𝑦𝑛/2 + 𝑦(𝑛/2)+1

⇔
𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛/2)

𝑦𝑛/2
≥
𝑧(𝒑, 𝑇, 𝝉, 𝑦(𝑛/2)+1)

𝑦(𝑛/2)+1

and

𝑚′

𝑚
≥
𝑧(𝒑, 𝑇, 𝝉, 𝑦(𝑛/2)+1)

𝑦(𝑛/2)+1
⇔

𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛/2) + 𝑧(𝒑, 𝑇, 𝝉, 𝑦(𝑛/2)+1)
𝑦𝑛/2 + 𝑦(𝑛/2)+1

≥
𝑧(𝒑, 𝑇, 𝝉, 𝑦(𝑛/2)+1)

𝑦(𝑛/2)+1

⇔
𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛/2)

𝑦𝑛/2
≥
𝑧(𝒑, 𝑇, 𝝉, 𝑦(𝑛/2)+1)

𝑦(𝑛/2)+1
.

Therefore,

𝑚′ − 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑖)
𝑚′ = 1 − 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑖)

𝑚′ ≤ 1 − 𝑦𝑖

𝑚
=
𝑚 − 𝑦𝑖
𝑚

, for 𝑖 ≤ 𝑛/2,

𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑖) − 𝑚′

𝑚′ =
𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑖)

𝑚′ − 1 ≤ 𝑦𝑖

𝑚
− 1 =

𝑦𝑖 − 𝑚
𝑚

, for 𝑖 ≥ (𝑛/2) + 1.

Consequently,
(𝑦1, . . . , 𝑦𝑛) ≽FW (𝑧(𝒑, 𝑇, 𝝉, 𝑦1), . . . , 𝑧(𝒑, 𝑇, 𝝉, 𝑦𝑛)).

Since 𝒚 was arbitrary, (𝑇, 𝝉) is bipolarization-reducing. ■

C. Proof of Theorem 4
The following lemma will be used in the proof of Theorem 4.

Lemma 2. Given 𝑢 ∈ 𝒰, 𝒑, and a mixed tax system (𝑇, 𝝉), suppose that 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) is
nondecreasing in 𝑎. Then (𝑇, 𝝉) is inequality-reducing if and only if

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎)
𝑧𝑢(𝒑, 0, 0, 𝑎) ≥ 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎′)

𝑧𝑢(𝒑, 0, 0, 𝑎′) , whenever 𝑎′ > 𝑎 > 0. (25)

Proof. The sufficiency part of the statement follows from condition (vii) and Lemma 1.
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To see that (25) holds whenever (𝑇, 𝝉) is inequality-reducing, suppose that

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎)
𝑧𝑢(𝒑, 0, 0, 𝑎) <

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎′)
𝑧𝑢(𝒑, 0, 0, 𝑎′) , for some 𝑎′ > 𝑎 > 0.22

Then, for the wage distribution

(𝑎∗1, . . . , 𝑎∗𝑛) = (𝑎, 𝑎′ . . . , 𝑎′),

we have
𝑧𝑢(𝒑, 0, 0, 𝑎∗1)
𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎∗1)

>
𝑧𝑢(𝒑, 0, 0, 𝑎∗2)
𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎∗2)

= · · · = 𝑧𝑢(𝒑, 0, 0, 𝑎∗𝑛)
𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎∗𝑛)

. (26)

Therefore, Lemma 1 gives

(𝑧𝑢(𝒑, 0, 0, 𝑎∗1), . . . , 𝑧𝑢(𝒑, 0, 0, 𝑎∗𝑛)) ≽𝐿 (𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎∗1), . . . , 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎∗𝑛)). (27)

If
(𝑧𝑢(𝒑, 0, 0, 𝑎∗1), . . . , 𝑧𝑢(𝒑, 0, 0, 𝑎∗𝑛)) ≻𝐿 (𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎∗1), . . . , 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎∗𝑛)), (28)

then (𝑇, 𝝉) is not inequality-reducing and the proof is complete.
To see that (28) holds, note that, if

𝑧𝑢(𝒑, 0, 0, 𝑎∗1)∑
𝑖 𝑧

𝑢(𝒑, 0, 0, 𝑎∗
𝑖
) >

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎∗1)∑
𝑖 𝑧

𝑢(𝒑, 𝑇, 𝝉, 𝑎∗
𝑖
) ,

then, by (27), we see that (28) holds. If, on the other hand,

𝑧𝑢(𝒑, 0, 0, 𝑎∗1)∑
𝑖 𝑧

𝑢(𝒑, 0, 0, 𝑎∗
𝑖
) =

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎∗1)∑
𝑖 𝑧

𝑢(𝒑, 𝑇, 𝝉, 𝑎∗
𝑖
) ,

then the inequality in (26) implies that

𝑧𝑢(𝒑, 0, 0, 𝑎∗2)∑
𝑖 𝑧

𝑢(𝒑, 0, 0, 𝑎∗
𝑖
) <

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎∗2)∑
𝑖 𝑧

𝑢(𝒑, 𝑇, 𝝉, 𝑎∗
𝑖
) ,

whence
𝑧𝑢(𝒑, 0, 0, 𝑎∗1) + 𝑧𝑢(𝒑, 0, 0, 𝑎∗2)∑

𝑖 𝑧
𝑢(𝒑, 0, 0, 𝑎∗

𝑖
) <

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎∗1) + 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎∗2)∑
𝑖 𝑧

𝑢(𝒑, 𝑇, 𝝉, 𝑎∗
𝑖
) ,

which contradicts (27). ■

Theorem 4. For 𝑇 ∈ 𝒯, a mixed tax system (𝑇, 𝝉) is inequality-reducing with respect to 𝒑 and
𝑢 ∈ 𝒰 only if the net income function 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) is nondecreasing in 𝑎 and 𝑇 is marginal-rate
progressive.

Proof. Choose 𝒑, a mixed tax system (𝑇, 𝝉) with 𝑇 ∈ 𝒯, and 𝑢 ∈ 𝒰. Suppose that

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎′) < 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎), for 𝑎′ > 𝑎 > 0.

By condition (vii), the map 𝑎 ↦→ 𝑧𝑢(𝒑, 0, 0, 𝑎) = 𝑎𝑙𝑢(𝒑, 0, 0, 𝑎) is nondecreasing.
22This part of the argument follows part of the proof of Proposition 3.1 in Le Breton et al. (1996).
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For the income distributions

𝒛 = (𝑧1, . . . , 𝑧𝑛) = (𝑧𝑢(𝒑, 0, 0, 𝑎), . . . , 𝑧𝑢(𝒑, 0, 0, 𝑎), 𝑧𝑢(𝒑, 0, 0, 𝑎′))

and
𝒛′ = (𝑧′1, . . . , 𝑧′𝑛) = (𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎), . . . , 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎), 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎′)),

we have, for large enough 𝑛,

𝑧𝑢(𝒑, 0, 0, 𝑎)
(𝑛 − 1)𝑧𝑢(𝒑, 0, 0, 𝑎) + 𝑧𝑢(𝒑, 0, 0, 𝑎′) >

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎′)
𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎′) + (𝑛 − 1)𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) ,

implying that 𝒛′ %𝐿 𝒛, and so (𝑇, 𝝉) is not inequality-reducing.
We now assume that (𝑇, 𝝉) is inequality-reducing and𝑇 is not marginal-rate progressive,

and derive a contradiction. By the previous argument, we know that 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) is
nondecreasing in 𝑎.

Since 𝑇 ∈ 𝒯, we can partition R+ into finitely many intervals 𝐼1, . . . , 𝐼𝐽 such that 𝑇 is
linear on 𝐼 𝑗 for each 𝑗. Because 𝑇 is nonconvex, there exist two contiguous intervals,

𝐼 𝑗 = [𝑦, 𝑦∗] and 𝐼 𝑗′ = [𝑦∗, 𝑦]

with 𝑦 < 𝑦∗ < 𝑦 such that 𝑇 is concave on 𝐼 𝑗 ∪ 𝐼 𝑗′. Therefore, the restriction of the map

𝑦 ∈ R+ ↦→ 𝑓 (𝑦)

from pre-tax income 𝑦 to post-tax income 𝑓 (𝑦) = 𝑦 −𝑇(𝑦) to the set 𝐼 𝑗 ∪ 𝐼 𝑗′ can be expressed
as follows:

𝑓 (𝑦) =
{
𝛼 + 𝛽𝑦 if 𝑦 ∈ 𝐼 𝑗 ,
𝛼′ + 𝛽′𝑦 if 𝑦 ∈ 𝐼 𝑗′ ,

where 𝛼, 𝛼′ ∈ R, 𝛼 > 𝛼′, and 𝛽′ > 𝛽 > 0. Note that 𝑓 (𝑦) > 0 if 𝑦 > 0 (since marginal tax
rates are less than unity).

Recall that the marginal rate of substitution of 𝑥𝑘 for 𝑦 for an ‘𝑎-individual’ is given by

MRS𝑎
𝑘
(𝒙 , 𝑦) = −(1/𝑎)(𝜕𝑢(𝒙 , 𝑦/𝑎)/𝜕𝑙)

𝜕𝑢(𝒙 , 𝑦/𝑎)/𝜕𝑥𝑘
.

It represents the amount of extra good 𝑘 an individual should receive as compensation for
an extra marginal unit of gross labor income. Note that 𝑦 ≤ 𝑎𝐿.

Recall that
(𝑥𝑢1 (𝒑, 𝑇, 𝝉, 𝑎), . . . , 𝑥𝑢𝐾(𝒑, 𝑇, 𝝉, 𝑎), 𝑙𝑢(𝒑, 𝑇, 𝝉, 𝑎))

represents a solution to the problem

max
(𝑥1 ,...,𝑥𝐾 ,𝑙)∈R𝐾

+×[0,𝐿]
𝑢(𝑥1, . . . , 𝑥𝐾 , 𝑙)

s.t. (𝑝1 + 𝜏1)𝑥1 + · · · + (𝑝𝐾 + 𝜏𝐾)𝑥𝐾 ≤ 𝑎𝑙 − 𝑇(𝑎𝑙).

An individual whose wage is 𝑎 ≥ 𝑦/𝐿 and whose labor supply is 𝑙 = 𝑦/𝑎 earns gross
(respectively, net) labor income 𝑦 (respectively, 𝑓 (𝑦)).
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Let 𝒙(𝑎, 𝑦) solve

max
(𝑥1 ,...,𝑥𝐾)∈R𝐾

+
𝑢(𝑥1, . . . , 𝑥𝐾 , 𝑦/𝑎)

s.t. (𝑝1 + 𝜏1)𝑥1 + · · · + (𝑝𝐾 + 𝜏𝐾)𝑥𝐾 ≤ 𝑓 (𝑦).

By the condition (iii),
lim
𝑎↘𝑦/𝐿

MRS𝑎
𝑘
(𝒙(𝑎, 𝑦), 𝑦) = ∞.

Therefore (since the indifference curves for the utility function

(𝒙 , 𝑦) ∈ R𝐾+ × [0, 𝑎𝐿] ↦→ 𝑢(𝒙 , 𝑦/𝑎)

are convex by the quasiconcavity of 𝑢), there exists 𝑎 > 0 such that 𝑎𝑙𝑢(𝒑, 𝑇, 𝝉, 𝑎) ≤ 𝑦 < 𝑦∗

for all 𝑎 ≤ 𝑎.
An individual whose wage is 𝑎 ≥ 𝑦/𝐿 and whose labor supply is 𝑙 = 𝑦/𝑎 earns gross

(respectively, net) labor income 𝑦 (respectively, 𝑓 (𝑦)).
Because

lim
𝑎→∞

MRS𝑎
𝑘
(𝒙(𝑎, 𝑦), 𝑦) = 0,

there exists 𝑎 > 0 such that 𝑎𝑙𝑢(𝒑, 𝑇, 𝝉, 𝑎) ≥ 𝑦 > 𝑦∗ for all 𝑎 ≥ 𝑎.
Let

𝑎∗ = inf{𝑎 > 0 : 𝑎𝑙𝑢(𝒑, 𝑇, 𝝉, 𝑎) > 𝑦∗}.
Then 𝑎𝑙𝑢(𝒑, 𝑇, 𝝉, 𝑎) > 𝑦∗ for all 𝑎 > 𝑎∗ and 𝑎𝑙𝑢(𝒑, 𝑇, 𝝉, 𝑎) ≤ 𝑦∗ for all 𝑎 < 𝑎∗.

We claim that
sup{𝑎𝑙𝑢(𝒑, 𝑇, 𝝉, 𝑎) : 𝑎 < 𝑎∗} < 𝑦∗. (29)

To see this, note that sup{𝑎𝑙𝑢(𝒑, 𝑇, 𝝉, 𝑎) : 𝑎 < 𝑎∗} = 𝑦∗ implies that there are sequences (𝑎𝑛)
and (𝑦𝑛) such that 𝑎𝑛 ↗ 𝑎∗, each 𝑦𝑛 is a solution to

max
𝑦∈[0,𝑎𝑛𝐿]

𝑢(𝒙(𝑎𝑛 , 𝑦), 𝑦/𝑎𝑛), (30)

and 𝑦𝑛 ↗ 𝑦∗. A necessary condition for 𝑦𝑛 to solve (30) is

MRS𝑎𝑛
𝑘
(𝒙(𝑎𝑛 , 𝑦𝑛), 𝑦𝑛) =

𝛽

𝑝𝑘 + 𝜏𝑘
> 0. (31)

Because 𝑎𝑛 → 𝑎∗, 𝑦𝑛 → 𝑦∗, and MRS𝑎
𝑘
(𝒙(𝑎, 𝑦), 𝑦) is continuous in (𝑎, 𝑦), we have

MRS𝑎𝑛
𝑘
(𝒙(𝑎𝑛 , 𝑦𝑛), 𝑦𝑛) → MRS𝑎∗

𝑘
(𝒙(𝑎∗, 𝑦∗), 𝑦∗).

Consequently, (31) gives

MRS𝑎∗
𝑘
(𝒙(𝑎∗, 𝑦∗), 𝑦∗) = 𝛽

𝑝𝑘 + 𝜏𝑘
.

Hence,

(𝑝𝑘 + 𝜏𝑘)MRS𝑎∗
𝑘
(𝒙(𝑎∗, 𝑦∗), 𝑦∗) = 𝛽 < 𝛽′ =

𝑑𝑓 (𝑦∗)
𝑑𝑦

,
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and so there exists 𝑦̂ ∈ 𝐼 𝑗′ such that

𝑢(𝒙(𝑎∗, 𝑦∗), 𝑦∗/𝑎∗) < 𝑢(𝒙(𝑎∗, 𝑦̂), 𝑦̂/𝑎∗).

Consequently, since the map

(𝑎, 𝑦) ∈ R2
++ ↦→ 𝑢(𝒙(𝑎, 𝑦), 𝑦/𝑎)

is continuous and 𝑎𝑛 → 𝑎∗ and 𝑦𝑛 → 𝑦∗,

𝑢(𝒙(𝑎𝑛 , 𝑦𝑛), 𝑦𝑛/𝑎𝑛) → 𝑢(𝒙(𝑎∗, 𝑦∗), 𝑦∗/𝑎∗) < 𝑢(𝒙(𝑎∗, 𝑦̂), 𝑦̂/𝑎∗).

Since 𝑢(𝒙(𝑎∗, 𝑦∗), 𝑦∗/𝑎∗) < 𝑢(𝒙(𝑎∗, 𝑦̂), 𝑦̂/𝑎∗), we may choose 𝜀 > 0 such that

𝑢(𝒙(𝑎∗, 𝑦∗), 𝑦∗/𝑎∗) + 2𝜀 < 𝑢(𝒙(𝑎∗, 𝑦̂), 𝑦̂/𝑎∗).

Since 𝑢(𝒙(𝑎𝑛 , 𝑦𝑛), 𝑦𝑛/𝑎𝑛) → 𝑢(𝒙(𝑎∗, 𝑦∗), 𝑦∗/𝑎∗), there exists 𝑁 such that

𝑢(𝒙(𝑎𝑛 , 𝑦𝑛), 𝑦𝑛/𝑎𝑛) < 𝑢(𝒙(𝑎∗, 𝑦∗), 𝑦∗/𝑎∗) + 𝜀, for all 𝑛 ≥ 𝑁.

Moreover, since 𝑎𝑛 → 𝑎∗, there exists 𝑀 such that

𝑢(𝒙(𝑎∗, 𝑦̂), 𝑦̂/𝑎∗) − 𝜀 < 𝑢(𝒙(𝑎𝑛 , 𝑦̂), 𝑦̂/𝑎𝑛), for all 𝑛 ≥ 𝑀.

Consequently, for 𝑛 ≥ max{𝑀, 𝑁},

𝑢(𝒙(𝑎𝑛 , 𝑦𝑛), 𝑦𝑛/𝑎𝑛) < 𝑢(𝒙(𝑎𝑛 , 𝑦̂), 𝑦̂/𝑎𝑛),

contradicting that 𝑦𝑛 solves (30).
Hence, (29) holds. Therefore, because 𝑎𝑙𝑢(𝒑, 𝑇, 𝝉, 𝑎) > 𝑦∗ for all 𝑎 > 𝑎∗ and 𝑎𝑙𝑢(𝒑, 𝑇, 𝝉, 𝑎) ≤

𝑦∗ for all 𝑎 < 𝑎∗, we see that there exist 0 < 𝑦 < 𝑦′ such that

𝑎𝑙𝑢(𝒑, 𝑇, 𝝉, 𝑎) ≤ 𝑦 for 𝑎 < 𝑎∗,

𝑎𝑙𝑢(𝒑, 𝑇, 𝝉, 𝑎) ≥ 𝑦′ for 𝑎 > 𝑎∗.

Thus, 𝑙𝑢(𝒑, 𝑇, 𝝉, ·) has a discontinuity at 𝑎∗, and so, by the condition (vi), 𝑧𝑢(𝒑, 𝑇, 𝝉, ·) has
a corresponding discontinuity at 𝑎∗. Hence, because 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) is nondecreasing in 𝑎,
there exist 𝑧 < 𝑧′ such that

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) ≤ 𝑧 for 𝑎 < 𝑎∗, (32)
𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) ≥ 𝑧′ for 𝑎 > 𝑎∗. (33)

Next, we show that the map 𝑧𝑢(𝒑, 0, 0, ·) is continuous. Note that 𝑧𝑢(𝒑, 0, 0, 𝑎) solves

max
𝑦∈[0,𝑎𝐿]

𝑢(𝒙(𝒑, 0, 𝑎, 𝑦), 𝑦/𝑎).

By the Maximum Theorem, the correspondence

𝑎 > 0 ⇒ arg max
𝑦∈[0,𝑎𝐿]

𝑢(𝒙(𝒑, 0, 𝑎, 𝑦), 𝑦/𝑎)



30

is upper hemicontinuous. We will show that this correspondence is, in fact, single-valued,
implying that it is a continuous function, i.e., the map 𝑧𝑢(𝒑, 0, 0, ·) is continuous.

Suppose that there exist 𝑎 > 0 and distinct 𝑦′ > 0 and 𝑦′′ > 0 in

arg max
𝑦∈[0,𝑎𝐿]

𝑢(𝒙(𝒑, 0, 𝑎, 𝑦), 𝑦/𝑎).23

Fix 𝛼 ∈ (0, 1). By the condition (iv),

𝑢(𝛼(𝒙(𝒑, 0, 𝑎, 𝑦′), 𝑦′/𝑎) + (1 − 𝛼)(𝒙(𝒑, 0, 𝑎, 𝑦′′), 𝑦′′/𝑎))
= 𝑢(𝛼𝒙(𝒑, 0, 𝑎, 𝑦′) + (1 − 𝛼)𝒙(𝒑, 0, 𝑎, 𝑦′′), (𝛼𝑦′ + (1 − 𝛼)𝑦′′)/𝑎)

> min{𝑢(𝒙(𝒑, 0, 𝑎, 𝑦′), 𝑦′/𝑎), 𝑢(𝒙(𝒑, 0, 𝑎, 𝑦′′), 𝑦′′/𝑎)}. (34)

Because 𝑦′, 𝑦′′ ∈ [0, 𝑎𝐿], we have

𝛼𝑦′ + (1 − 𝛼)𝑦′′ ∈ [0, 𝑎𝐿].

In addition,

𝒑 · (𝛼𝒙(𝒑, 0, 𝑎, 𝑦′) + (1 − 𝛼)𝒙(𝒑, 0, 𝑎, 𝑦′′)) = 𝛼(𝒑 · 𝒙(𝒑, 0, 𝑎, 𝑦′)) + (1 − 𝛼)(𝒑 · 𝒙(𝒑, 0, 𝑎, 𝑦′′))
≤ 𝛼𝑦′ + (1 − 𝛼)𝑦′′.24

Therefore, (34) contradicts that 𝑦′ and 𝑦′′ are members of arg max𝑦∈[0,𝑎𝐿] 𝑢(𝒙(𝒑, 0, 𝑎, 𝑦), 𝑦/𝑎).
Given (32)-(33) and the continuity of the map 𝑧𝑢(𝒑, 0, 0, ·), we see that, for 0 < 𝑎 < 𝑎∗ < 𝑎′

with 𝑎 and 𝑎′ close enough to 𝑎∗, we have

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎)
𝑧𝑢(𝒑, 0, 0, 𝑎) <

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎′)
𝑧𝑢(𝒑, 0, 0, 𝑎′) .

By Lemma 2, (𝑇, 𝝉) is not inequality-reducing, a contradiction. ■

D. Proof of Theorem 5
The proof of Theorem 5 is based on the following lemma.

Lemma 3. Suppose that 𝒮 ⊆ 𝒯m-prog is closed under linear extensions. Suppose that 𝒮′ is a subset
of commodity tax profiles. Then the mixed tax systems in 𝒮 × 𝒮

′ are inequality-reducing with
respect to 𝒑 and 𝑢 ∈ 𝒰 if and only if the following two conditions are satisfied:

(i) the net income function 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) is nondecreasing in 𝑎 for each 𝑇 ∈ ℒ𝒮 ∪ {0} and
𝝉 ∈ 𝒮

′; and

(ii) the members of ℒ𝒮 ×𝒮
′ are inequality-reducing.

23Recall that the condition (v) guarantees that 𝑦′ > 0 and 𝑦′′ > 0.
24Here, for 𝒙 = (𝑥1 , . . . , 𝑥𝐾) ∈ R𝐾+ ,

𝒑 · 𝒙 = 𝑝1𝑥1 + · · · + 𝑝𝐾𝑥𝐾 .
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Proof. Suppose that the mixed tax systems in 𝒮 ×𝒮
′ are inequality-reducing with respect

to 𝒑 and 𝑢 ∈ 𝒰. Then the members of ℒ𝒮 ×𝒮
′ are inequality-reducing (since ℒ𝒮 ⊆ 𝒮) and,

by Theorem 4, the net income function 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) is nondecreasing in 𝑎 for each 𝑇 ∈ ℒ𝒮

and 𝝉 ∈ 𝒮
′.

Now assume (i)-(ii). Fix (𝑇, 𝝉) ∈ 𝒮×𝒮
′. We must show that (𝑇, 𝝉) is inequality-reducing

with respect to 𝒑 and 𝑢. By Lemma 2, it suffices to show that 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) is nondecreasing
in 𝑎 and

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎)
𝑧𝑢(𝒑, 0, 0, 𝑎) ≥ 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎′)

𝑧𝑢(𝒑, 0, 0, 𝑎′) , whenever 𝑎′ > 𝑎 > 0.

Because 𝑇 is piecewise linear in 𝒯m-prog, there exist

0 < 𝑒1 < · · · < 𝑒𝑀 < ∞

and intervals
𝐼1 = [0, 𝑒1], . . . , 𝐼𝑀 = [𝑒𝑀−1, 𝑒𝑀], 𝐼𝑀+1 = [𝑒𝑀 ,∞)

satisfying the following: for each 𝑚, there exist 𝑏𝑚 ≥ 0 and 𝑡𝑚 ∈ [0, 1) such that 𝑇(𝑦) =
−𝑏𝑚 + 𝑡𝑚𝑦 for all 𝑦 ∈ 𝐼𝑚 . Moreover,

𝑏1 < · · · < 𝑏𝑀+1 and 𝑡1 < · · · < 𝑡𝑀+1.

For 𝑚 ∈ {1, . . . , 𝑀 + 1}, let 𝑇𝑚(𝑦) = −𝑏𝑚 + 𝑡𝑚𝑦. Suppose that 𝑦𝑚(𝑎) and 𝑦(𝑎) denote the
solutions to

max
𝑦∈[0,𝑎𝐿]

𝑢(𝒙(𝒑 + 𝝉, 𝑇𝑚 , 𝑎, 𝑦), 𝑦/𝑎)

and
max
𝑦∈[0,𝑎𝐿]

𝑢(𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑦), 𝑦/𝑎),

respectively.25

By the Maximum Theorem, the function 𝑦𝑚(𝑎) is continuous.
Next, we show that there exists 𝑎1 > 0 such that 𝑦1(𝑎1) = 𝑒1. To see this, note that there

exists a small enough 𝛼 > 0 such that 𝑦1(𝛼) < 𝑒1. Moreover, because

lim
𝑎→∞

MRS𝑎
𝑘
(𝒙(𝒑 + 𝝉, 𝑇1, 𝑎, 𝑒1), 𝑒1) = 0

for each 𝑘, there exists a large enough 𝛽 > 0 such that 𝑦1(𝛽) > 𝑒1. Consequently, the
Intermediate Value Theorem gives 𝑎1 > 0 such that 𝑦1(𝑎1) = 𝑒1.

Similarly, we can show the following:

∃𝑎1 > 0 : 𝑦1(𝑎1) = 𝑒1,

∃𝑎2 > 0, 𝑎2 > 0 : 𝑦2(𝑎2) = 𝑒1 and 𝑦2(𝑎2) = 𝑒2,

...

∃𝑎𝑀 > 0, 𝑎𝑀 > 0 : 𝑦𝑀(𝑎𝑀) = 𝑒𝑀−1 and 𝑦𝑀(𝑎𝑀) = 𝑒𝑀 ,

∃𝑎𝑀+1 > 0 : 𝑦𝑀+1(𝑎𝑀+1) = 𝑒𝑀 .

(35)

25These problems have a unique solution. See Footnote 16.
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Moreover,
𝑎1 ≤ 𝑎2 ≤ 𝑎2 ≤ · · · ≤ 𝑎𝑀 ≤ 𝑎𝑀 ≤ 𝑎𝑀+1. (36)

We prove this in two steps.
First, we show that

𝑎𝑚 ≤ 𝑎𝑚 , 𝑚 ∈ {2, . . . , 𝑀}. (37)

Note that, for 𝑚 ∈ {1, . . . , 𝑀 + 1}, the map

𝑎 ↦→ 𝑙𝑢(𝒑 + 𝝉, 𝑇𝑚 , 0, 𝑎)

is nondecreasing. Indeed, for 𝑎′ > 𝑎 > 0, we have

𝑎𝑙𝑢(𝒑 + 𝝉, 𝑇𝑚 , 0, 𝑎) = 𝑎𝑙𝑢(𝒑 + 𝝉,−𝑏𝑚 , 0, (1 − 𝑡𝑚)𝑎)
≤ 𝑎𝑙𝑢(𝒑 + 𝝉,−𝑏𝑚 , 0, (1 − 𝑡𝑚)𝑎′) = 𝑎𝑙𝑢(𝒑 + 𝝉, 𝑇𝑚 , 0, 𝑎′),

where the inequality follows from condition (vii). Hence, the map 𝑎 ↦→ 𝑦𝑚(𝑎) is non-
decreasing. Consequently, for 𝑚 ∈ {2, . . . , 𝑀}, since

𝑦𝑚(𝑎𝑚) = 𝑒𝑚−1 < 𝑒𝑚 = 𝑦𝑚(𝑎𝑚),

we see that 𝑎𝑚 ≤ 𝑎𝑚 . This establishes (37).
It remains to show that

𝑎𝑚 ≤ 𝑎𝑚+1, 𝑚 ∈ {1, . . . , 𝑀}.

We only show that 𝑎1 ≤ 𝑎2, since the other inequalities can be handled similarly. Proceeding
by contradiction, suppose that 𝑎1 > 𝑎2. Since 𝑦2(𝑎2) = 𝑒1, for every 𝑘 we have

(𝑝𝑘 + 𝜏𝑘)MRS𝑎2
𝑘
(𝒙(𝒑 + 𝝉, 𝑇2, 𝑎2, 𝑒1), 𝑒1) = 1 − 𝑡2.

Now since 𝒙(𝒑 + 𝝉, 𝑇2, 𝑎2, 𝑒1) solves

max
(𝑥1 ,...,𝑥𝐾)∈R𝐾

+
𝑢(𝑥1, . . . , 𝑥𝐾 , 𝑒1/𝑎2)

s.t. 𝑝1𝑥1 + · · · + 𝑝𝐾𝑥𝐾 ≤ 𝑒1 − 𝑇2(𝑒1),

and since 𝑇1(𝑒1) = 𝑇2(𝑒1), we have

𝒙(𝒑 + 𝝉, 𝑇2, 𝑎2, 𝑒1) = 𝒙(𝒑 + 𝝉, 𝑇1, 𝑎2, 𝑒1),

and so
(𝑝𝑘 + 𝜏𝑘)MRS𝑎2

𝑘
(𝒙(𝒑 + 𝝉, 𝑇1, 𝑎2, 𝑒1), 𝑒1) = 1 − 𝑡2 < 1 − 𝑡1,

implying that 𝑦1(𝑎2) > 𝑒1, a contradiction, since 𝑦1(𝑎) is nondecreasing and 𝑦1(𝑎1) = 𝑒1.
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We have seen that (35) and (36) hold. Note that

𝑦(𝑎) =



𝑦1(𝑎) if 𝑎 ∈ (0, 𝑎1],
𝑦2(𝑎) if 𝑎 ∈ [𝑎2, 𝑎2],
...

...

𝑦𝑀(𝑎) if 𝑎 ∈ [𝑎𝑀 , 𝑎𝑀],
𝑦𝑀+1(𝑎) if 𝑎 ≥ 𝑎𝑀+1.

(38)

Moreover, for 𝑎 ∈ [𝑎1, 𝑎2] we have 𝑦(𝑎) = 𝑒1. To see this, fix 𝑎 ∈ [𝑎1, 𝑎2]. For each 𝑘 we have

(𝑝𝑘 + 𝜏𝑘)MRS𝑎
𝑘
(𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑒1), 𝑒1) ∈ [1 − 𝑡2, 1 − 𝑡1], (39)

implying that 𝑦(𝑎) = 𝑒1. Prior to verifying the inclusion in (39), we argue that 𝑦(𝑎) = 𝑒1 is a
consequence of (39).

Under (39), an increase in labor income, 𝑑𝑦, starting at (𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑒1), 𝑒1), requires at
least

MRS𝑎
𝑘
(𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑒1), 𝑒1)𝑑𝑦 ≥ 1 − 𝑡2

𝑝𝑘 + 𝜏𝑘
𝑑𝑦

extra units of good 𝑘 to keep utility constant, since the indifference curves for the utility
function

(𝒙 , 𝑦) ↦→ 𝑢(𝒙 , 𝑦/𝑎)
are convex (by quasiconcavity of 𝑢). But increasing labor income by 𝑑𝑦 only brings about
an extra (net) labor income of at most (1 − 𝑡2)𝑑𝑦 (recall that

1 − 𝑡1 > · · · > 1 − 𝑡𝑀+1),

which can afford at most 1−𝑡2
𝑝𝑘+𝜏𝑘 𝑑𝑦 extra units of good 𝑘. Thus, an increase in labor income

is not welfare improving. A similar argument can be made for a reduction (rather than an
increase) in labor income, taking the bundle (𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑒1), 𝑒1) as the initial point.

To see that (39) holds, we assume that

(𝑝𝑘 + 𝜏𝑘)MRS𝑎
𝑘
(𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑒1), 𝑒1) < 1 − 𝑡2 (40)

and derive a contradiction (the case when

(𝑝𝑘 + 𝜏𝑘)MRS𝑎
𝑘
(𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑒1), 𝑒1) > 1 − 𝑡1

can be handled similarly). Since

𝒙(𝒑 + 𝝉, 𝑇, 𝑎, 𝑒1) = 𝒙(𝒑 + 𝝉, 𝑇2, 𝑎, 𝑒1),

(40) implies that
(𝑝𝑘 + 𝜏𝑘)MRS𝑎

𝑘
(𝒙(𝒑 + 𝝉, 𝑇2, 𝑎, 𝑒1), 𝑒1) < 1 − 𝑡2,

whence 𝑦2(𝑎) > 𝑒1, a contradiction, since 𝑦2(𝑎) is nondecreasing, 𝑎 ≤ 𝑎2, and 𝑦2(𝑎2) = 𝑒1.
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We have seen that 𝑦(𝑎) = 𝑒1 whenever 𝑎 ∈ [𝑎1, 𝑎2]. Similarly, we can show that

𝑦(𝑎) =

𝑒1 if 𝑎 ∈ [𝑎1, 𝑎2],
...

...

𝑒𝑀 if 𝑎 ∈ [𝑎𝑀 , 𝑎𝑀+1].
(41)

We are now ready to show that to show that 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) is nondecreasing in 𝑎 and

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎)
𝑧𝑢(𝒑, 0, 0, 𝑎) ≥ 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎′)

𝑧𝑢(𝒑, 0, 0, 𝑎′) , whenever 𝑎′ > 𝑎 > 0.

Choose 𝑎′ > 𝑎 > 0. Suppose that 𝑎 ∈ (0, 𝑎1) and 𝑎′ > 𝑎𝑀+1 (the other cases can be
handled similarly). Then

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎′) = 𝑧𝑢(𝒑, 𝑇𝑀+1, 𝝉, 𝑎
′) (by (38))

≥ 𝑧𝑢(𝒑, 𝑇𝑀+1, 𝝉, 𝑎𝑀+1) (by (i))
= 𝑧𝑢(𝒑, 𝑇𝑀 , 𝝉, 𝑎𝑀) (by (38) and (41))
≥ 𝑧𝑢(𝒑, 𝑇𝑀 , 𝝉, 𝑎𝑀) (by (i))
...

≥ 𝑧𝑢(𝒑, 𝑇2, 𝝉, 𝑎2)
= 𝑧𝑢(𝒑, 𝑇1, 𝝉, 𝑎1) (by (38) and (41))
≥ 𝑧𝑢(𝒑, 𝑇1, 𝝉, 𝑎) (by (i)).

Moreover,

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎′)
𝑧𝑢(𝒑, 0, 0, 𝑎′) =

𝑧𝑢(𝒑, 𝑇𝑀+1, 𝝉, 𝑎′)
𝑧𝑢(𝒑, 0, 0, 𝑎′) (by (38))

≤
𝑧𝑢(𝒑, 𝑇𝑀+1, 𝝉, 𝑎𝑀+1)
𝑧𝑢(𝒑, 0, 0, 𝑎𝑀+1)

(by (ii) and Lemma 2)

=
𝑧𝑢(𝒑, 𝑇𝑀 , 𝝉, 𝑎𝑀)
𝑧𝑢(𝒑, 0, 0, 𝑎𝑀+1)

(by (38) and (41))

≤ 𝑧𝑢(𝒑, 𝑇𝑀 , 𝝉, 𝑎𝑀)
𝑧𝑢(𝒑, 0, 0, 𝑎𝑀) (by (i))

...

≤
𝑧𝑢(𝒑, 𝑇2, 𝝉, 𝑎2)
𝑧𝑢(𝒑, 0, 0, 𝑎2)

=
𝑧𝑢(𝒑, 𝑇1, 𝝉, 𝑎1)
𝑧𝑢(𝒑, 0, 0, 𝑎2)

(by (38) and (41))

≤ 𝑧𝑢(𝒑, 𝑇1, 𝝉, 𝑎1)
𝑧𝑢(𝒑, 0, 0, 𝑎1))

(by (i))

≤ 𝑧𝑢(𝒑, 𝑇1, 𝝉, 𝑎)
𝑧𝑢(𝒑, 0, 0, 𝑎)) (by (ii) and Lemma 2).
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This completes the proof. ■

Theorem 5. Suppose that 𝒮 ⊆ 𝒯m-prog is closed under linear extensions. Suppose that 𝒮′ is a
subset of commodity tax profiles. Then the mixed tax systems in 𝒮 ×𝒮

′ are inequality-reducing
with respect to 𝒑 and 𝑢 ∈ 𝒰 if and only if the following two conditions are satisfied:

(i) the net income function 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) is nondecreasing in 𝑎 for each 𝑇 ∈ ℒ𝒮 ∪ {0} and
𝝉 ∈ 𝒮

′;26 and

(ii) the quotient
𝑧𝑢(𝒑,−𝑏, 𝝉, (1 − 𝑡)𝑎)

𝑧𝑢(𝒑, 0, 0, 𝑎)
is nonincreasing in 𝑎 for every (𝑏, 𝑡 , 𝝉) ∈ 𝐵(ℒ𝒮) × 𝑅(ℒ𝒮) ×𝒮

′.

Proof. By Lemma 3, the mixed tax systems in 𝒮 ×𝒮
′ are inequality-reducing with respect

to 𝒑 and 𝑢 ∈ 𝒰 if and only if the following two conditions are satisfied:

• the net income function 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) is nondecreasing in 𝑎 for each 𝑇 ∈ ℒ𝒮 ∪ {0}
and 𝝉 ∈ 𝒮

′; and

• the members of ℒ𝒮 ×𝒮
′ are inequality-reducing.

Given the first bullet point and using Lemma 2, the second bullet point is expressible as
follows:

𝑧𝑢(𝒑,−𝑏 + 𝑡𝑦, 𝝉, 𝑎)
𝑧𝑢(𝒑, 0, 0, 𝑎)

is nonincreasing in 𝑎 every (𝑏, 𝑡 , 𝝉) ∈ 𝐵(ℒ𝒮) × 𝑅(ℒ𝒮) ×𝒮
′. Since

𝑧𝑢(𝒑,−𝑏 + 𝑡𝑦, 𝝉, 𝑎) = (1 − 𝑡)𝑎𝑙𝑢(𝒑,−𝑏 + 𝑡𝑦, 𝝉, 𝑎) + 𝑏 −
𝐾∑
𝑘=1

𝜏𝑘𝑥
𝑢
𝑘
(𝒑,−𝑏 + 𝑡𝑦, 𝝉, 𝑎)

and
(𝑥𝑢1 (𝒑,−𝑏 + 𝑡𝑦, 𝝉, 𝑎), . . . , 𝑥𝑢𝐾(𝒑,−𝑏 + 𝑡𝑦, 𝝉, 𝑎), 𝑙𝑢(𝒑,−𝑏 + 𝑡𝑦, 𝝉, 𝑎))

solves

max
(𝑥1 ,...,𝑥𝐾 ,𝑙)∈R𝐾

+×[0,𝐿]
𝑢(𝑥1, . . . , 𝑥𝐾 , 𝑙)

s.t. (𝑝1 + 𝜏1)𝑥1 + · · · + (𝑝𝐾 + 𝜏𝐾)𝑥𝐾 ≤ 𝑏 + (1 − 𝑡)𝑎𝑙,

it follows that 𝑧𝑢(𝒑,−𝑏 + 𝑡𝑦, 𝝉, 𝑎) can also be expressed as 𝑧𝑢(𝒑,−𝑏, 𝝉, (1 − 𝑡)𝑎). Therefore,
the second bullet point can be written as follows:

𝑧𝑢(𝒑,−𝑏, 𝝉, (1 − 𝑡)𝑎)
𝑧𝑢(𝒑, 0, 0, 𝑎)

is nonincreasing in 𝑎 every (𝑏, 𝑡 , 𝝉) ∈ 𝐵(ℒ𝒮) × 𝑅(ℒ𝒮) ×𝒮
′. ■

26Here 0 denotes the linear tax schedule 𝑇 defined by 𝑇(𝑦) = 0 for all 𝑦.
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E. Proof of Theorem 6
First, we state and prove the following intermediate result.

Lemma 4. For 𝑇 ∈ 𝒯, suppose that (𝑇, 𝝉) is bipolarization-reducing with respect to 𝒑 and 𝑢 ∈ 𝒰.
Then, the net income function 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) is nondecreasing in 𝑎.

Proof. Suppose that 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) is not nondecreasing in 𝑎. Then, there exist 𝑎′ > 𝑎 > 0
such that

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎′) < 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎).
Consider the income distributions

𝒛∗ = (𝑧∗1, . . . , 𝑧∗𝑛) = (𝑧𝑢(𝒑, 0, 0, 𝑎), . . . , 𝑧𝑢(𝒑, 0, 0, 𝑎), 𝑧𝑢(𝒑, 0, 0, 𝑎′))

and
𝒛∗∗ = (𝑧∗∗1 , . . . , 𝑧∗∗𝑛 ) = (𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎), . . . , 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎), 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎′)).

For 𝑛 > 2, we have 𝑚(𝒛∗) = 𝑧𝑢(𝒑, 0, 0, 𝑎) and 𝑚(𝒛∗∗) = 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎). Therefore, since

𝑧𝑢(𝒑, 0, 0, 𝑎) ≤ · · · ≤ 𝑧𝑢(𝒑, 0, 0, 𝑎) ≤ 𝑧𝑢(𝒑, 0, 0, 𝑎′),

where the last inequality follows from the condition (vii), we have

1
𝑚(𝒛∗)

∑
1≤𝑖< 𝑛+1

2

(𝑚(𝒛∗) − 𝑧∗[𝑖]) = 0 <
𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) − 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎′)

𝑚(𝒛∗∗)

=
1

𝑚(𝒛∗∗)
∑

1≤𝑖< 𝑛+1
2

(𝑚(𝒛∗∗) − 𝑧∗∗[𝑖]),

and so 𝑚(𝒛∗∗)
𝑚(𝒛∗) 𝒛

∗ %FW 𝒛∗∗, whence 𝒛∗ %FW 𝒛∗∗. ■

Next, we prove Theorem 6.

Theorem 6. For 𝑇 ∈ 𝒯, a mixed tax system (𝑇, 𝝉) is inequality-reducing with respect to 𝒑 and
𝑢 ∈ 𝒰 if and only if it is bipolarization-reducing with respect to 𝒑 and 𝑢.

Proof. For 𝑇 ∈ 𝒯, suppose that a mixed tax system (𝑇, 𝝉) is inequality-reducing with
respect to 𝒑 and 𝑢 ∈ 𝒰. Fix a wage distribution (𝑎1, . . . , 𝑎𝑛), an income function 𝑧𝑢 , and a
population size 𝑛. We must show that

(𝑧𝑢(𝒑, 0, 0, 𝑎1), . . . , 𝑧𝑢(𝒑, 0, 0, 𝑎𝑛)) ≽FW (𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎1), . . . , 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑛)). (42)

By Theorem 4, the net income function 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) is nondecreasing in 𝑎. By the
condition (vii), the net income function 𝑧𝑢(𝒑, 0, 0, 𝑎) is nondecreasing in 𝑎.

We prove (42) when 𝑛 is odd (the case when 𝑛 is even can be handled similarly). Choose
a wage distribution (𝑎1, . . . , 𝑎𝑛) with

𝑎1 ≤ · · · ≤ 𝑎𝑛 .

Let 𝑚 = (𝑛 + 1)/2, so that 𝑎𝑚 is the median wage. Because (𝑇, 𝝉) is inequality-reducing
with respect to 𝒑 and 𝑢 ∈ 𝒰, and since the net income function 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) (respectively,
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𝑧𝑢(𝒑, 0, 0, 𝑎)) is nondecreasing in 𝑎, Lemma 2 implies that

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑖)
𝑧𝑢(𝒑, 0, 0, 𝑎𝑖)

≥ 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑚)
𝑧𝑢(𝒑, 0, 0, 𝑎𝑚)

≥
𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎 𝑗)
𝑧𝑢(𝒑, 0, 0, 𝑎 𝑗)

, for 𝑖 < 𝑚 and 𝑗 > 𝑚.

Hence,

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑚) − 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑖)
𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑚)

= 1 − 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑖)
𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑚)

≤ 1 − 𝑧𝑢(𝒑, 0, 0, 𝑎𝑖)
𝑧𝑢(𝒑, 0, 0, 𝑎𝑚)

=
𝑧𝑢(𝒑, 0, 0, 𝑎𝑚) − 𝑧𝑢(𝒑, 0, 0, 𝑎𝑖)

𝑧𝑢(𝒑, 0, 0, 𝑎𝑚)
, for 𝑖 < 𝑚,

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑖) − 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑚)
𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑚)

=
𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑖)
𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑚)

− 1

≤ 𝑧𝑢(𝒑, 0, 0, 𝑎𝑖)
𝑧𝑢(𝒑, 0, 0, 𝑎𝑚)

− 1 =
𝑧𝑢(𝒑, 0, 0, 𝑎𝑖) − 𝑧𝑢(𝒑, 0, 0, 𝑎𝑚)

𝑧𝑢(𝒑, 0, 0, 𝑎𝑚)
, for 𝑖 > 𝑚.

Consequently,

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑚)
𝑧𝑢(𝒑, 0, 0, 𝑎𝑚)

(𝑧𝑢(𝒑, 0, 0, 𝑎1), . . . , 𝑧𝑢(𝒑, 0, 0, 𝑎𝑛)) ≽FW (𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎1), . . . , 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑛)),

implying (42).
Conversely, suppose that (𝑇, 𝝉) is bipolarization-reducing with respect to 𝒑 and 𝑢. Fix

a wage distribution (𝑎1, . . . , 𝑎𝑛), an income function 𝑧𝑢 , and a population size 𝑛. We must
show that

(𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎1), . . . , 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑛)) ≽𝐿 (𝑧𝑢(𝒑, 0, 0, 𝑎1), . . . , 𝑧𝑢(𝒑, 0, 0, 𝑎𝑛)). (43)

By Lemma 4, the net income function 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) is nondecreasing in 𝑎. By the
condition (vii), the net income function 𝑧𝑢(𝒑, 0, 0, 𝑎) is nondecreasing in 𝑎.

We only prove (43) when 𝑛 is odd (the case when 𝑛 is even can be proven similarly).
Proceeding by contradiction, suppose that (43) is false. Then Lemma 2 implies that there
exist 𝑎′ > 𝑎 > 0 such that

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎)
𝑧𝑢(𝒑, 0, 0, 𝑎) <

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎′)
𝑧𝑢(𝒑, 0, 0, 𝑎′) . (44)

Pick a wage distribution (𝑎1, . . . , 𝑎𝑛) with

𝑎1 ≤ · · · ≤ 𝑎𝑛
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such that the median wage, 𝑎𝑚 , where 𝑚 = (𝑛 + 1)/2, is equal to 𝑎′, and 𝑎𝑚−1 = 𝑎. Then

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑚) − 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑚−1)
𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑚)

= 1 − 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑚−1)
𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑚)

= 1 − 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎)
𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎′)

> 1 − 𝑧𝑢(𝒑, 0, 0, 𝑎)
𝑧𝑢(𝒑, 0, 0, 𝑎′)

=
𝑧𝑢(𝒑, 0, 0, 𝑎𝑚) − 𝑧𝑢(𝒑, 0, 0, 𝑎𝑚−1)

𝑧𝑢(𝒑, 0, 0, 𝑎𝑚)
,

where the inequality follows from (44). Consequently,

𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑚)
𝑧𝑢(𝒑, 0, 0, 𝑎𝑚)

(𝑧𝑢(𝒑, 0, 0, 𝑎1), . . . , 𝑧𝑢(𝒑, 0, 0, 𝑎𝑛)) %FW (𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎1), . . . , 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑛)),

whence

(𝑧𝑢(𝒑, 0, 0, 𝑎1), . . . , 𝑧𝑢(𝒑, 0, 0, 𝑎𝑛)) %FW (𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎1), . . . , 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎𝑛)),

a contradiction. ■

F. Joint and separate average-rate progressivity
In this section, we show that separate average-rate progressivity implies joint average-rate
progressivity, but the converse is not true.

For an example of a jointly average-rate progressive tax system that is not separately
average-rate progressive, consider the utility function

𝑢(𝑥1, 𝑥2) = 2
√
𝑥1 + 𝑥2,

whose associated (Marshallian) demand functions are given by

𝑥1(𝑝1, 𝑝2, 𝑦) =
{
(𝑝2/𝑝1)2 if 𝑦 ≥ 𝑝2

2/𝑝1,

𝑦/𝑝1 if 𝑦 < 𝑝2
2/𝑝1,

and 𝑥2(𝑝1, 𝑝2, 𝑦) =
{
𝑦

𝑝2
− 𝑝2

𝑝1
if 𝑦 ≥ 𝑝2

2/𝑝1,

0 if 𝑦 < 𝑝2
2/𝑝1.

Let (𝑇, 𝝉) be a mixed tax system such that 𝝉 = (0, 𝜏2) and

𝑇(𝑦) =
{
𝛽′𝑦 if (1 − 𝛽′)𝑦 < (𝑝2 + 𝜏2)2/𝑝1,
(𝑝2+𝜏2)2
(1−𝛽′)𝑝1

(𝛽′ − 𝛽) + 𝛽𝑦 if (1 − 𝛽′)𝑦 ≥ (𝑝2 + 𝜏2)2/𝑝1,

where 1 > 𝛽′ > 𝛽 > 0.
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Because 𝑇 is concave, (𝑇, 𝝉) fails to be separately average-rate progressive, and yet (𝑇, 𝝉)
is jointly average-rate progressive if 𝜏2(1 − 𝛽′) ≥ 𝑝2(𝛽′ − 𝛽). To see this, note that

1
𝑦
(𝑇(𝑦) + 𝜏2𝑥2(𝒑, 𝑇, 𝝉, 𝑦))

=

{
𝛽′ if (1 − 𝛽′)𝑦 < (𝑝2 + 𝜏2)2/𝑝1,

𝛽 + 𝜏2(1−𝛽)
𝑝2+𝜏2

+ 𝑝2+𝜏2
(1−𝛽′)𝑝1𝑦

(𝑝2(𝛽′ − 𝛽) − 𝜏2(1 − 𝛽′)) if (1 − 𝛽′)𝑦 ≥ (𝑝2 + 𝜏2)2/𝑝1.

Hence, 1
𝑦 (𝑇(𝑦) + 𝜏2𝑥2(𝒑, 𝑇, 𝝉, 𝑦)) is nondecreasing in 𝑦 if 𝜏2(1 − 𝛽′) ≥ 𝑝2(𝛽′ − 𝛽).

We now show that separate average-rate progressivity implies joint average-rate
progressivity.

Suppose that (𝑇, 𝝉) is separately average-rate progressive. Recall that, under differ-
entiability of 𝑇 and the demand functions 𝑥𝑘(𝒑′, 𝑦′) (𝑘 ∈ {1, . . . , 𝐾}), joint average-rate
progressivity is expressible as

𝑇′(𝑦) + (1 − 𝑇′(𝑦))
(
𝐾∑
𝑘=1

𝜏𝑘𝜕2𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦))
)

≥ 𝑇(𝑦)
𝑦

+
𝐾∑
𝑘=1

𝜏𝑘 ·
𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦))

𝑦
, 𝑦 > 0. (45)

Recall from (6) that 𝝉 taxes luxuries and/or subsidizes necessities (since 𝝉 is average-rate
progressive). Since luxury goods are normal and inferior goods are necessities, it follows
that the bracketed summation on the left-hand side of expression (45) is nonnegative.
Consequently, it suffices to show that

𝑇′(𝑦) ≥ 𝑇(𝑦)
𝑦

+
𝐾∑
𝑘=1

𝜏𝑘 ·
𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦))

𝑦
, 𝑦 > 0,

i.e.,

𝑇′(𝑦) − 𝑇(𝑦)
𝑦

≥
𝐾∑
𝑘=1

𝜏𝑘 ·
𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦))

𝑦
, 𝑦 > 0. (46)

Note that the left-hand side of (46) is greater than or equal to one, since 𝑇 is average-rate
progressive. Therefore,

1 ≥
𝐾∑
𝑘=1

𝜏𝑘 ·
𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦))

𝑦
, 𝑦 > 0,

is a sufficient condition for (46) to hold. But the last inequality is true, since

𝐾∑
𝑘=1

𝜏𝑘 ·
𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦))

𝑦



40

is the fraction of every dollar of income paid as consumption tax at 𝑦 > 0. Formally, we
have

𝑦 −
𝐾∑
𝑘=1

𝜏𝑘 · 𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦)) ≥ 𝑦 − 𝑇(𝑦) −
𝐾∑
𝑘=1

𝜏𝑘 · 𝑥𝑘(𝒑 + 𝝉, 𝑦 − 𝑇(𝑦)) = 𝑧(𝒑, 𝑇, 𝝉, 𝑦) ≥ 0.

G. On mixed vs. pure direct taxation
Unlike in the exogenous case, commodity taxation is not generally “superfluous” when
income is endogenous, as noted at the conclusion of Section 2.2. In fact, a mixed tax system
may prove inequality-reducing in situations where income taxation alone fails to have any
equalizing effect.

To illustrate this point, suppose that there are two goods (i.e., 𝐾 = 2) and consider the
following utility function:

𝑢(𝑥1, 𝑥2, 𝑙) = − 1
𝑥1

+ 𝑥2 −
1

1 − 𝑙 , (47)

where 𝑙 ∈ [0, 1].
For this utility function, we have

𝑥𝑢1 (𝒑, 𝑦) =

𝑦

𝑝1
if 𝑦 <

√
𝑝1𝑝2,√

𝑝2
𝑝1

if 𝑦 ≥ √
𝑝1𝑝2,

𝑥𝑢2 (𝒑, 𝑦) =
{

0 if 𝑦 <
√
𝑝1𝑝2,

𝑦−√
𝑝1𝑝2
𝑝2

if 𝑦 ≥ √
𝑝1𝑝2,

(48)

𝒙(𝒑, 𝑇, 𝑎, 𝑦) =
(
min

{√
𝑝2

𝑝1
,
𝑦 − 𝑇(𝑦)
𝑝1

}
,max

{
0,
𝑦 − 𝑇(𝑦) − √

𝑝1𝑝2

𝑝2

})
,
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𝑦𝑢(𝒑,−𝑏, 0, 𝑎) + 𝑏 =



𝑏 if 𝑏 ≥ √
𝑝1𝑝2, 𝑎 < 𝑝2,

𝑎

(
1 −

√
𝑝2
𝑎

)
+ 𝑏 if 𝑏 ≥ √

𝑝1𝑝2, 𝑎 ≥ 𝑝2,

𝑏 if 𝑏 <
√
𝑝1𝑝2, 𝑎(

√
𝑎𝑝1−𝑏)

𝑎+√
𝑎𝑝1

+ 𝑏 <
√
𝑝1𝑝2,

𝑏 >
√
𝑎𝑝1,

𝑎( √𝑎𝑝1−𝑏)
𝑎+√

𝑎𝑝1
+ 𝑏 if 𝑏 <

√
𝑝1𝑝2, 𝑎(

√
𝑎𝑝1−𝑏)

𝑎+√
𝑎𝑝1

+ 𝑏 <
√
𝑝1𝑝2,

𝑏 ≤ √
𝑎𝑝1,

√
𝑝1𝑝2 if 𝑏 <

√
𝑝1𝑝2, 𝑎(

√
𝑎𝑝1−𝑏)

𝑎+√
𝑎𝑝1

+ 𝑏 ≥ √
𝑝1𝑝2,

𝑏 ≤ √
𝑎𝑝1, 𝑎 < 𝑝2,

√
𝑝1𝑝2 if 𝑏 <

√
𝑝1𝑝2, 𝑎(

√
𝑎𝑝1−𝑏)

𝑎+√
𝑎𝑝1

+ 𝑏 ≥ √
𝑝1𝑝2,

𝑏 ≤ √
𝑎𝑝1, 𝑎 ≥ 𝑝2,

𝑎

(
1 −

√
𝑝2
𝑎

)
+ 𝑏 <

√
𝑝1𝑝2,

𝑎

(
1 −

√
𝑝2
𝑎

)
+ 𝑏 if 𝑏 <

√
𝑝1𝑝2, 𝑎(

√
𝑎𝑝1−𝑏)

𝑎+√
𝑎𝑝1

+ 𝑏 ≥ √
𝑝1𝑝2,

𝑏 ≤ √
𝑎𝑝1, 𝑎 ≥ 𝑝2,

𝑎

(
1 −

√
𝑝2
𝑎

)
+ 𝑏 ≥ √

𝑝1𝑝2,

(49)

and

𝜁𝑢(𝒑,−𝑏, 0, 𝑎) =



0 if 𝑏 ≥ √
𝑝1𝑝2, 𝑎 < 𝑝2,

𝑎−√
𝑎𝑝2+ 1

2

√
𝑎
𝑝2

𝑎−√
𝑎𝑝2+𝑏 if 𝑏 ≥ √

𝑝1𝑝2, 𝑎 ≥ 𝑝2,

0 if 𝑏 <
√
𝑝1𝑝2, 𝑎(

√
𝑎𝑝1−𝑏)

𝑎+√
𝑎𝑝1

+ 𝑏 <
√
𝑝1𝑝2,

𝑏 >
√
𝑎𝑝1,

𝑎( √𝑎𝑝1−𝑏+ 𝑎+𝑏
2 )

(𝑎+√
𝑎𝑝1)(𝑎+𝑏) if 𝑏 <

√
𝑝1𝑝2, 𝑎(

√
𝑎𝑝1−𝑏)

𝑎+√
𝑎𝑝1

+ 𝑏 <
√
𝑝1𝑝2,

𝑏 ≤ √
𝑎𝑝1,

0 if 𝑏 <
√
𝑝1𝑝2, 𝑎(

√
𝑎𝑝1−𝑏)

𝑎+√
𝑎𝑝1

+ 𝑏 ≥ √
𝑝1𝑝2,

𝑏 ≤ √
𝑎𝑝1, 𝑎 < 𝑝2,

0 if 𝑏 <
√
𝑝1𝑝2, 𝑎(

√
𝑎𝑝1−𝑏)

𝑎+√
𝑎𝑝1

+ 𝑏 ≥ √
𝑝1𝑝2,

𝑏 ≤ √
𝑎𝑝1, 𝑎 ≥ 𝑝2,

𝑎

(
1 −

√
𝑝2
𝑎

)
+ 𝑏 <

√
𝑝1𝑝2,

𝑎−√
𝑎𝑝2+ 1

2

√
𝑎
𝑝2

𝑎−√
𝑎𝑝2+𝑏 if 𝑏 <

√
𝑝1𝑝2, 𝑎(

√
𝑎𝑝1−𝑏)

𝑎+√
𝑎𝑝1

+ 𝑏 ≥ √
𝑝1𝑝2,

𝑏 ≤ √
𝑎𝑝1, 𝑎 ≥ 𝑝2,

𝑎

(
1 −

√
𝑝2
𝑎

)
+ 𝑏 ≥ √

𝑝1𝑝2.

(50)

It is straightforward to verify that 𝑢 satisfies conditions (i)-(vii).27

27Condition (vi) holds because no good is inferior (see Footnote 14). Condition (vii) holds because
𝑦𝑢(𝒑,−𝑏, 0, 𝑎) + 𝑏 is nondecreasing in 𝑎.
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Since

𝜕𝑥𝑢1 (𝒑, 𝑦)
𝜕𝑦

=

{
1
𝑝1

if 𝑦 <
√
𝑝1𝑝2,

0 if 𝑦 ≥ √
𝑝1𝑝2,

and
𝑥𝑢1 (𝒑, 𝑦)

𝑦
=


1
𝑝1

if 𝑦 <
√
𝑝1𝑝2,√

1
𝑦

𝑝2
𝑝1

if 𝑦 ≥ √
𝑝1𝑝2,

and

𝜕𝑥𝑢2 (𝒑, 𝑦)
𝜕𝑦

=

{
0 if 𝑦 <

√
𝑝1𝑝2,

1
𝑝2

if 𝑦 ≥ √
𝑝1𝑝2,

and
𝑥𝑢2 (𝒑, 𝑦)

𝑦
=

{
0 if 𝑦 <

√
𝑝1𝑝2,

1
𝑝2

− 1
𝑦

√
𝑝1
𝑝2

if 𝑦 ≥ √
𝑝1𝑝2,

good 1 is a necessity and good 2 is a luxury.
In the special case when 𝒮

′ = {𝝉 = 0} (no commodity taxes), Theorem 5 (together
with (17)) implies that the following is a necessary condition for a subset 𝒮 ⊆ 𝒯m-prog to be
inequality-reducing with respect to 𝒑 and 𝑢:

𝜁𝑢(𝒑,−𝑏, 0, (1 − 𝑡)𝑎) ≤ 𝜁𝑢(𝒑, 0, 0, 𝑎), for each 𝑎 > 0 and (𝑏, 𝑡) ∈ 𝐵(ℒ𝒮) × 𝑅(ℒ𝒮).

We will show that, for any (𝑏, 𝑡) ∈ 𝐵(ℒ𝒮) × 𝑅(ℒ𝒮) with 𝑡 > 0, there exists 𝑎 > 0 such
that

𝜁𝑢(𝒑,−𝑏, 0, (1 − 𝑡)𝑎) > 𝜁𝑢(𝒑, 0, 0, 𝑎), (51)

implying that no income tax schedule other than a pure subsidy, 𝑇(𝑦) = −𝑏, is inequality-
reducing.

Choose (𝑏, 𝑡) ∈ 𝐵(ℒ𝒮) × 𝑅(ℒ𝒮). Using (50), we see that, for any sufficiently large 𝑎, (51)
can be written as

(1 − 𝑡)𝑎 −
√
(1 − 𝑡)𝑎𝑝2 + 1

2

√
(1−𝑡)𝑎
𝑝2

(1 − 𝑡)𝑎 −
√
(1 − 𝑡)𝑎𝑝2 + 𝑏

>
𝑎 − √

𝑎𝑝2 + 1
2

√
𝑎
𝑝2

𝑎 − √
𝑎𝑝2

.

Arranging terms yields

𝑎

2

√
𝑎

𝑝2
(
√

1 − 𝑡 − (1 − 𝑡)) > 𝑏(𝑎 − √
𝑎𝑝2) +

𝑏

2

√
𝑎

𝑝2
. (52)

Since
√

1 − 𝑡 − (1 − 𝑡) > 0, we see that there is a large enough 𝑎 such that (52) holds.28

Thus, for the utility function in (47), there is no inequality-reducing income tax schedule
other than a pure subsidy. We now show that there are mixed tax systems that are
inequality-reducing.

28The inequality
(𝛼𝑎3/2)/(2√𝑝2)
𝑏𝑎 + 𝑏𝑎1/2

2√𝑝2

> 1, (53)

where 𝛼 =
√

1 − 𝑡 − (1 − 𝑡), is sufficient for (52) to hold. Since

lim
𝑎→∞

(𝛼𝑎3/2)/(2√𝑝2)
𝑏𝑎 + 𝑏𝑎1/2

2√𝑝2

= lim
𝑎→∞

( 3𝛼
2 𝑎

1/2)/(2√𝑝2)

𝑏 + (𝑏/2)𝑎−1/2

2√𝑝2

= ∞

(by l’Hôpital’s rule), it follows that (53) holds for large enough 𝑎.
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Consider a mixed tax system (𝑇, 𝝉) such that 𝑇(𝑦) = −𝑏, for 𝑏 ≥ 0, and 𝝉 = (𝜏1, 𝜏2) =
(0, 𝜏2), where 𝜏2 > 0, i.e., the commodity tax profile taxes the luxury good.

Using (17), (18), and Theorem 5, we see that (𝑇, 𝝉) is inequality-reducing with respect
to 𝒑 and 𝑢 if and only if the following two conditions are satisfied:

• the net income function 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) is nondecreasing in 𝑎 for 𝑇 = 0 and 𝑇 = −𝑏; and

• the inequality

𝜁𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) ·
1 − 𝜏2 ·

𝜕𝑥𝑢2 (𝒑+𝝉,𝑦𝑢(𝒑+𝝉,−𝑏,0,𝑎)+𝑏)
𝜕𝑦

1 − 𝜏2 ·
𝑥𝑢2 (𝒑+𝝉,𝑦𝑢(𝒑+𝝉,−𝑏,0,𝑎)+𝑏)

𝑦𝑢(𝒑+𝝉,−𝑏,0,𝑎)+𝑏

≤ 𝜁𝑢(𝒑, 0, 0, 𝑎) (54)

holds for each 𝑎 > 0.

We will show that, given 𝒑 and 𝜏2 > 0, there exists 𝑏 ≥ 0 such that these two conditions
are satisfied if 𝑏 ≥ 𝑏, implying that any mixed tax system (𝑇, 𝝉) such that 𝑇(𝑦) = −𝑏, for
𝑏 ≥ 𝑏, and 𝝉 = (𝜏1, 𝜏2) = (0, 𝜏2), is inequality-reducing with respect to 𝒑 and 𝑢.

To see that the net income function 𝑧𝑢(𝒑, 𝑇, 𝝉, 𝑎) is nondecreasing in 𝑎 for 𝑇 = 0 and
𝑇 = −𝑏, note first that

𝑧𝑢(𝒑,−𝑏, 𝝉, 𝑎) = 𝑦𝑢(𝒑,−𝑏, 𝝉, 𝑎) + 𝑏 − 𝜏2𝑥
𝑢
2 (𝒑 + 𝝉, 𝑦𝑢(𝒑,−𝑏, 𝝉, 𝑎) + 𝑏)

= 𝑦𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) + 𝑏 − 𝜏2𝑥
𝑢
2 (𝒑 + 𝝉, 𝑦𝑢(𝒑 + 𝝉,−𝑏, 𝑎) + 𝑏).

It suffices to show that 𝑧𝑢(𝒑,−𝑏, 𝝉, 𝑎) is nondecreasing in 𝑎 for any 𝑏 ≥ 0. Note that, by (48),

𝑧𝑢(𝒑,−𝑏, 𝝉, 𝑎)

=


𝑦𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) + 𝑏 if 𝑦𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) + 𝑏 <

√
𝑝1(𝑝2 + 𝜏2),

(𝑦𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) + 𝑏)(1 − 𝜏2
𝑝2+𝜏2

)
+𝜏2

√
𝑝1

𝑝2+𝜏2
if 𝑦𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) + 𝑏 ≥

√
𝑝1(𝑝2 + 𝜏2).

Consequently, it suffices to show that 𝑦𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) + 𝑏 is nondecreasing in 𝑎 for any
𝑏 ≥ 0. This can be verified using (49).29

29Note that both 𝑎(1 −
√
𝑝2/𝑎) + 𝑏 and 𝑎( √𝑎𝑝1−𝑏)

𝑎+√
𝑎𝑝1

+ 𝑏 are nondecreasing in 𝑎. To see that 𝑎( √𝑎𝑝1−𝑏)
𝑎+√

𝑎𝑝1
+ 𝑏 is

nondecreasing in 𝑎, note that

𝜕

(
𝑎( √𝑎𝑝1 − 𝑏)
𝑎 + √

𝑎𝑝1

) /
𝜕𝑎 =

( √𝑎𝑝1 − 𝑏 + 1
2
√
𝑎𝑝1)(𝑎 +

√
𝑎𝑝1) − 𝑎(

√
𝑎𝑝1 − 𝑏)

(
1 + 𝑝1

2√𝑎𝑝1

)
(𝑎 + √

𝑎𝑝1)2
.

This expression is nonnegative if and only if

1
2
√
𝑎𝑝1(

√
𝑎𝑝1 − 𝑏 + 𝑎 +

√
𝑎𝑝1) ≥ 0.

The last inequality holds if √
𝑎𝑝1 − 𝑏 ≥ 0.
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The equation (54) can be expressed as

𝜁𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) ≤ 𝜁𝑢(𝒑, 0, 0, 𝑎) if 𝑦𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) + 𝑏 ≤
√
𝑝1(𝑝2 + 𝜏2),

𝜁𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) ·
1− 𝜏2

𝑝2+𝜏2

1− 𝜏2
𝑝2+𝜏2

(
1−

√
𝑝1(𝑝2+𝜏2)

𝑦𝑢 (𝒑+𝝉,−𝑏,0,𝑎)+𝑏

)
≤ 𝜁𝑢(𝒑, 0, 0, 𝑎) if 𝑦𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) + 𝑏 >

√
𝑝1(𝑝2 + 𝜏2).

Since
1 − 𝜏2

𝑝2+𝜏2

1 − 𝜏2
𝑝2+𝜏2

(
1 −

√
𝑝1(𝑝2+𝜏2)

𝑦𝑢(𝒑+𝝉,−𝑏,0,𝑎)+𝑏

) ≤ 1

whenever 𝑦𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) + 𝑏 >
√
𝑝1(𝑝2 + 𝜏2), it suffices to show that there exists 𝑏 ≥ 0

such that
𝜁𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) ≤ 𝜁𝑢(𝒑, 0, 0, 𝑎), for 𝑎 > 0 and 𝑏 ≥ 𝑏. (55)

Let

𝑏 = max
{

𝑝2

1 + 2𝑝2
, 𝑎∗ +

√
𝑎∗√

𝑝2 + 𝜏2
+

√
𝑝1

𝑝2 + 𝜏2
,
√
𝑝1(𝑝2 + 𝜏2)

}
, (56)

where 𝑎∗ > 0 is implicitly defined by the following equation:

𝑎∗ =
√
𝑎∗𝑝2 +

√
𝑝1𝑝2. (57)

Note that
𝑏 ≥ 𝑝2

1 + 2𝑝2
≥

2√𝑎𝑝2 − 𝑎
1 + 2𝑝2

, for all 𝑎 > 0. (58)

This inequality will be used later.
Using (50), 𝜁𝑢(𝒑, 0, 0, 𝑎) can be expressed as follows:

𝜁𝑢(𝒑, 0, 0, 𝑎) =


√
𝑎𝑝1+ 𝑎

2
𝑎+√

𝑎𝑝1
if 𝑎 <

√
𝑎𝑝2 +

√
𝑝1𝑝2,

0 if 𝑎 ≥ √
𝑎𝑝2 +

√
𝑝1𝑝2, 𝑎 < 𝑝2,

𝑎−√
𝑎𝑝2+ 1

2

√
𝑎
𝑝2

𝑎−√
𝑎𝑝2

if 𝑎 ≥ √
𝑎𝑝2 +

√
𝑝1𝑝2, 𝑎 ≥ 𝑝2.

(59)
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Using (50), (59), and the inequalities 𝑏 ≥ 𝑏 ≥
√
𝑝1(𝑝2 + 𝜏2) (from (56)), 𝜁𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) −

𝜁𝑢(𝒑, 0, 0, 𝑎) can be expressed as follows:

𝜁𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) − 𝜁𝑢(𝒑, 0, 0, 𝑎) =



−
√
𝑎𝑝1+ 𝑎

2
𝑎+√

𝑎𝑝1
if 𝑎 < 𝑝2 + 𝜏2,

𝑎 <
√
𝑎𝑝2 +

√
𝑝1𝑝2,

𝑎−
√
𝑎(𝑝2+𝜏2)+ 1

2

√
𝑎

𝑝2+𝜏2

𝑎−
√
𝑎(𝑝2+𝜏2)+𝑏

−
√
𝑎𝑝1+ 𝑎

2
𝑎+√

𝑎𝑝1
if 𝑎 ≥ 𝑝2 + 𝜏2,

𝑎 <
√
𝑎𝑝2 +

√
𝑝1𝑝2,

0 if 𝑎 < 𝑝2,

𝑎 ≥ √
𝑎𝑝2 +

√
𝑝1𝑝2,

0 −
𝑎−√

𝑎𝑝2+ 1
2

√
𝑎
𝑝2

𝑎−√
𝑎𝑝2

if 𝑎 < 𝑝2 + 𝜏2, 𝑎 ≥ 𝑝2,

𝑎 ≥ √
𝑎𝑝2 +

√
𝑝1𝑝2,

𝑎−
√
𝑎(𝑝2+𝜏2)+ 1

2

√
𝑎

𝑝2+𝜏2

𝑎−
√
𝑎(𝑝2+𝜏2)+𝑏

−
𝑎−√

𝑎𝑝2+ 1
2

√
𝑎
𝑝2

𝑎−√
𝑎𝑝2

if 𝑎 ≥ 𝑝2 + 𝜏2,

𝑎 ≥ √
𝑎𝑝2 +

√
𝑝1𝑝2,

To establish (55), consider the following cases for the expression

𝜁𝑢(𝒑 + 𝝉,−𝑏, 0, 𝑎) − 𝜁𝑢(𝒑, 0, 0, 𝑎)

given above.
In the second case, we have

𝑎 −
√
𝑎(𝑝2 + 𝜏2) + 1

2

√
𝑎

𝑝2+𝜏2

𝑎 −
√
𝑎(𝑝2 + 𝜏2) + 𝑏

≤
√
𝑎𝑝1 + 𝑎

2
𝑎 + √

𝑎𝑝1
(60)

if and only if

𝑎 +
√
𝑎

(
1√

𝑝2 + 𝜏2
− √

𝑝2 + 𝜏2

)
+

√
𝑝1

𝑝2 + 𝜏2
≤

2𝑏√𝑝1√
𝑎

+ 𝑏.

A sufficient condition for this inequality to hold is

𝑎 +
√
𝑎√

𝑝2 + 𝜏2
+

√
𝑝1

𝑝2 + 𝜏2
≤ 𝑏,

which holds for every 0 < 𝑎 <
√
𝑎𝑝2 +

√
𝑝1𝑝2 if

𝑎∗ +
√
𝑎∗√

𝑝2 + 𝜏2
+

√
𝑝1

𝑝2 + 𝜏2
≤ 𝑏,

where, recall, 𝑎∗ is defined by the equation (57). Since this inequality is true (see (56)), it
follows that (60) holds, and so (55) holds.
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In the fifth case, we have

𝑎 −
√
𝑎(𝑝2 + 𝜏2) + 1

2

√
𝑎

𝑝2+𝜏2

𝑎 −
√
𝑎(𝑝2 + 𝜏2) + 𝑏

≤
𝑎 − √

𝑎𝑝2 + 1
2

√
𝑎
𝑝2

𝑎 − √
𝑎𝑝2

(61)

for 𝑏 ≥ 𝑏. To see this, note first that

𝑎 − √
𝑎𝑝2 + 1

2

√
𝑎
𝑝2

𝑎 − √
𝑎𝑝2 + 𝑏

≤
𝑎 − √

𝑎𝑝2 + 1
2

√
𝑎
𝑝2

𝑎 − √
𝑎𝑝2

,

since 𝑏 ≥ 0. Moreover, because

𝜕

𝜕𝑝2

©­­«
𝑎 − √

𝑎𝑝2 + 1
2

√
𝑎
𝑝2

𝑎 − √
𝑎𝑝2 + 𝑏

ª®®¬ ≤ 0

is equivalent to

𝑏 ≥
2√𝑎𝑝2 − 𝑎

1 + 2𝑝2
,

and since this inequality holds for 𝑏 ≥ 𝑏 by virtue of (58), it follows that (61) holds for
𝑏 ≥ 𝑏. Thus, in the fifth case, (55) holds.

We conclude that, given 𝒑 and 𝜏2 > 0, there exists 𝑏 ≥ 0 such that any mixed tax system
(𝑇, 𝝉) such that 𝑇(𝑦) = −𝑏, for 𝑏 ≥ 𝑏, and 𝝉 = (𝜏1, 𝜏2) = (0, 𝜏2), is inequality-reducing with
respect to 𝒑 and 𝑢. By contrast, no income tax schedule (other than a pure subsidy) is
inequality-reducing.
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