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Abstract
This paper extends Selten’s (Int J Game Theory 4:25–55, 1975) notion of perfec-
tion to normal-form games of incomplete information and provides conditions on the
primitives of a game that ensure the existence of a perfect Bayes–Nash equilibrium.
The existence results, which allow for arbitrary (compact, metric) type and/or action
spaces and payoff discontinuities, are illustrated in the context of all-pay auctions and
Cournot games with incomplete information and cost discontinuities.

Keywords Infinite game of incomplete information · Perfect Bayes–Nash
equilibrium · Payoff security

JEL Classification C72

1 Introduction

The notion of perfect equilibrium was introduced by Selten (1975). For normal-form
games with complete information, Selten’s (1975) perfect equilibrium refines the
Nash equilibrium concept by requiring that equilibrium strategies be immune to slight
trembles in the execution of the players’ actions. The standard definition of perfect
equilibrium for normal-form games with finite action spaces (see, e.g., van Damme
2002) can be extended to normal-form games with infinitely many actions, and these
extensions have been studied by several authors (see, e.g., Al-Najjar 1995; Simon
and Stinchcombe 1995; Carbonell-Nicolau 2011a, b, c, 2014b; Carbonell-Nicolau and
McLean 2013, 2014, 2015; Scalzo 2014; Bajoori et al. 2013). For applications of the
notion of perfection as an equilibrium selection criterion in complete-information
games, see, e.g., Bagnoli and Lipman (1989), Broecker (1990), Pitchik and Schotter
(1988), and Allen (1988).
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1592 O. Carbonell-Nicolau

This paper considers an extension of the notion of perfection to normal-form games
of incomplete information, also called Bayesian games, that refines the standard
Bayes–Nash equilibrium concept. Roughly, a Bayes–Nash equilibrium is perfect if
there are nearby Bayes–Nash equilibria in slightly perturbed Bayesian games in which
each type of each player makes slight mistakes in the execution of her strategies. Con-
ditions on the primitives of a Bayesian game are furnished under which a Bayesian
game with infinitely many types and/or actions (henceforth infinite Bayesian games),
and possibly with payoff discontinuities in type and action profiles, possesses a perfect
Bayes–Nash equilibrium.1

While there is a substantial literature on the existence of Bayes–Nash equilibria in
infinite Bayesian games,2 there is very little work dealing with refinements. Jackson
et al. (2002) employ the notion of perfection to eliminate “undesirable” Nash equi-
libria in one of their applications to second-price auction games. A stronger notion
of perfection than the one studied here has been considered in Bajoori et al. (2016),
where the refinement is applied to a particular class of second-price auctions. Bajoori
et al. (2016) also obtain an existence result for Bayesian games with countable type
spaces and finite action spaces. The results developed here allow for arbitrary (com-
pact, metric) type and/or action spaces and payoff discontinuities.

Methodologically, the analysis builds on the work in Carbonell-Nicolau and
McLean (2018), which obtains conditions on the primitives of a Bayesian game ensur-
ing that the corresponding “behavioral normal-form game” (i.e., the normal form
defined in terms of behavioral strategies) satisfies the Reny (1999) criteria for exis-
tence of aNash equilibrium.While these conditions are sufficient to establish existence
of Nash equilibria in Bayesian games, they are generally not strong enough to ensure
that the Reny (1999) existence result can be applied to slight Selten perturbations (of a
Bayesian game’s behavioral normal-form) in which the players “tremble” by playing
a completely mixed strategy with positive, yet low, probability.3 Because the perfec-
tion refinement requires existence of Nash equilibria in Selten perturbations, stronger
conditions than those in Carbonell-Nicolau and McLean (2018) are needed here to
establish existence of perfect Bayes–Nash equilibria via Reny’s (1999) conditions.

Themain condition developed in this paper is termed strong uniform payoff security.
This property, which strengthens the uniform payoff security condition in Carbonell-
Nicolau and McLean (2018) and collapses to Condition (A) in Carbonell-Nicolau

1 The refinement of Bayes–Nash equilibrium for normal-form Bayesian games considered in this paper
should not be confused with the so-called perfect Bayesian equilibrium concept for dynamic games of
incomplete information (with finitely many types and actions) (see, e.g., Fudenberg and Tirole (1991,
Chapter 8)), which extends the notion of subgame perfection to extensive-form games with incomplete
information.
2 See, e.g., Milgrom and Weber (1985); Balder (1988); Carbonell-Nicolau and McLean (2018, 2019,
2020); He and Yannelis (2016); Yannelis and Rustichini (1991); Hellman and Levy (2017); Athey (2001);
McAdams (2003); Reny (2011). Prokopovych and Yannelis (2019) and He and Sun (2019) study certain
robustness properties of (pure-strategy) Bayes–Nash equilibria. These properties are similar in spirit—
insofar as they involve continuity of equilibrium points with respect to slight perturbations of a Bayesian
game—but different in nature from the ones considered in this paper.
3 A proof of this assertion can be found in Carbonell-Nicolau (2011b, Example 3, p. 243), which features
a complete-information game satisfying the conditions in Carbonell-Nicolau and McLean (2018), which
guarantee that the game’s “behavioral normal-form” (i.e., in this case, its mixed extension) satisfies the
Reny (1999) conditions, while the game’s Selten perturbations do not satisfy them.
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Perfect equilibria in games of incomplete information 1593

(2011a, b) in the special case of complete-information games, implies that the Selten
perturbations of a Bayesian game satisfy Reny’s (1999) payoff security.

Strong uniform payoff security, together with the standard upper semicontinuity of
the sum of the game’s payoff functions in the players’ pure strategies, yields existence
of perfect Bayes–Nash equilibria (via the Reny 1999 existence criteria) (Theorem 1).
Verifying the strong uniform payoff security condition in applications can be relatively
straightforward, as illustrated in the context of all-pay auctions, in Sect. 4.1.

The strong uniform payoff security condition can be decomposed into two inde-
pendent properties, which are easily verified in certain applications, such as Cournot
games with incomplete information and cost discontinuities. A second existence result
(Theorem 2) is presented in terms of these two conditions and illustrated in the context
of Cournot competition.

2 Preliminaries

Throughout the paper, the following definitions will be adopted. If A is a topological
space, then B(A) will denote the σ -algebra of the Borel subsets of A. If A is a σ -
algebra of subsets of A, then�(A,A )will represent the set of probabilitymeasures on
(A,A ), andCb(A)will denote the set of all bounded continuous real-valued functions
on A.

Definition 1 Let A be a topological space and let A be a σ -alebra of subsets of A
containingB(A). Thew-topology on�(A,A ) is defined as the coarsest topology for
which all the functionals in

{
μ ∈ �(A,A ) �→

∫
A

f (a)μ(da) ∈ R : f ∈ Cb(A)

}

are continuous.

We will refer to convergence of measures in �(A,A ) with respect to the w-
topology as weak convergence of measures and we will write μn −→

w
μ to indicate

that the sequence of measures (μn) converges weakly to μ.
When A = B(A), we write �(A) for �(A,B(A)). In this case, the members of

�(A) are Borel probability measures, and the topology from Definition 1, defined on
�(A), coincides with that studied in Varadarajan (1965).

If A is a complete, separable metric space, the w-topology on �(A) is metrizable,
and the Prokhorov metric defines a compatible metric (Prokhorov 1956, Theorem
1.11).

2.1 Games and strategies

Definition 2 A normal-formgame (or simply a game) is a collectionG = (Zi , gi )
N
i=1,

where N is a finite number of players, Zi is a nonempty set of actions for player i ,
and gi : Z → R represents player i’s payoff function, defined on the set of action
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1594 O. Carbonell-Nicolau

profiles Z := ×N
i=1Zi . The game G is called a metric game (resp. a compact game)

if each Zi is a metric (resp. compact) space. A compact metric game G = (Zi , gi )
N
i=1

is called a Borel game if each gi is bounded and (B(Z),B(R))-measurable.

Throughout the sequel, given N sets Z1, . . . , Z N , we adhere to the following stan-
dard notation: for i ∈ {1, . . . , N }, Z−i := × j �=i Z j ; given i , the set ×N

j=1Z j is

sometimes denoted as Zi × Z−i , and a member z of ×N
j=1Z j is sometimes repre-

sented as z = (zi , z−i ) ∈ Zi × Z−i .
The following definition of a Bayesian game is standard in the literature.

Definition 3 A Bayesian game is a collection

� = (Ti , Xi , ui , p)N
i=1 ,

where

• {1, . . . , N } is a finite set of players;
• Ti is a nonempty, compact, metric space of types for player i ;
• Xi is a nonempty, compact, metric space of actions for player i ;
• ui is a real-valued map on T × X , where T := ×N

i=1Ti and X := ×N
i=1Xi ; it

represents player i’s payoff function, and it is assumed bounded and (B(T ×
X),B(R))-measurable; and

• p is a probability measure on (T ,B(T )) (a member of �(T )) describing the
players’ common priors over type profiles.

For each i ∈ {1, . . . , N }, let pi be the marginal probability measure induced by p
on Ti , i.e., the probability measure in �(Ti ) defined by

pi (S) := p(S × T−i ), for every S ∈ B(Ti ). (1)

Definition 4 Let� = (Ti , Xi , ui , p)N
i=1 be aBayesian game.A distributional strategy

for player i in � is a probability measure σi in �(Ti × Xi ) such that

σi (A × Xi ) = pi (A), for all A ∈ B(Ti ).

Let Di represent the set of distributional strategies for player i , and define D :=
×N

i=1Di .
Given σi ∈ Di , the map ti ∈ Ti �→ σi (·|ti ) ∈ �(Xi ) will denote a corresponding

version of the regular conditional probability measure on Xi .

Definition 5 A distributional strategy σi ∈ Di is strictly positive if for each ti ∈ Ti ,
σi (V |ti ) > 0 for every nonempty open set V in Xi .

The set of all strictly positive distributional strategies in Di is denoted by D̂i , and
the Cartesian product ×N

j=1D̂ j is denoted by D̂ . Each Di will be endowed with the
relative w-topology (Definition 1) on �(Ti × Xi ), and D will be endowed with the
corresponding product topology.
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Perfect equilibria in games of incomplete information 1595

Given a Bayesian game � = (Ti , Xi , ui , p)N
i=1, the normal form of � is defined as

G� := (Di , Ui )
N
i=1 , (2)

where Ui : D → R is given by

Ui (σ1, . . . , σN ) :=
∫

T

∫
X N

· · ·
∫

X1

ui (t, x)σ1(dx1|t1) · · · σN (dxN |tN )p(dt).

As is standard in the literature (see Milgrom and Weber 1985; Balder 1988, and
Carbonell-Nicolau and McLean 2018) a Bayes–Nash equilibrium of � (Definition 6
below) is defined as a Nash equilibrium of the normal-form game (Definition 2) G� .

Also standard in the literature is the following assumption on the joint information
of the players in �, described by the common prior p: p is absolutely continuous
with respect to p1 ⊗ · · · ⊗ pN (recall the definition of the marginals pi in (1)). This
condition, called absolutely continuous information in Milgrom and Weber (1985),
allows one to express the payoffs Ui in the normal form G� of � as follows:

Ui (σ1, . . . , σN ) =
∫

TN ×X N

· · ·
∫

T1×X1

[ui (t, x)g(t)]σ1(d(t1, x1)) · · · σN (d(tN , xN )), (3)

where g is a density of p with respect to p1 ⊗ · · · ⊗ pN .4 This fact will be used
repeatedly in this paper.

Next, we define a Selten perturbation of the normal form G� , a variant of G� in
which, with certain probability αi , each player i “trembles” by playing a completely
mixed strategy μi .

Given α = (α1, . . . , αN ) ∈ [0, 1)N and μ = (μ1, . . . , μN ) ∈ D̂ , define the
normal-form game

G
(α,μ)
� := (Di , U (α,μ)

i )N
i=1, (4)

where U (α,μ)
i : D → R is defined by

U (α,μ)
i (σ1, . . . , σN ) := Ui ((1 − α1)σ1 + α1μ1, . . . , (1 − αN )σN + αN μN ).

Selten perturbations of the form G
(α,μ)
� (see (4)) are instrumental in the definition

of a perfect Bayes–Nash equilibrium (Definition 7 below).

2.2 Equilibrium

The following definition of a Bayes–Nash equilibrium of a Bayesian game is standard
in the literature.

4 Without the absolutely continuous information condition, Bayes–Nash equilibria need not exist (see
Simon 2003; Hellman 2014; Hellman and Levy 2017). There are, however, certain classes of Bayesian
games for which this condition is not needed for existence (see Athey 2001; McAdams 2003; Reny 2011;
Yannelis and Rustichini 1991; Hellman and Levy 2017; Carbonell-Nicolau and McLean 2020).
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1596 O. Carbonell-Nicolau

Definition 6 A Bayes–Nash equilibrium of a Bayesian game � = (Ti , Xi , ui , p)N
i=1

is a Nash equilibrium of the gameG� defined in (2), i. e., a profile (σ1, . . . , σN ) ∈ D
such that for each i ,

Ui (σi , σ−i ) ≥ Ui (νi , σ−i ), for all νi ∈ Di .

This paper introduces the following refinement of Definition 6.

Definition 7 ABayes–Nash equilibrium σ of a Bayesian game� = (Ti , Xi , ui , p)N
i=1

is perfect if there exist sequences (αn), (μn), and (σ n) such that the following holds:

• For each n, αn ∈ (0, 1)N , μn ∈ D̂ , and σ n is a Nash equilibrium of the game
G

(αn ,μn)
� defined in (4).

• αn → 0 and σ n −→
w

σ .

Thus, a Bayes–Nash equilibrium σ of a Bayesian game � is perfect if for nearby
Selten perturbations of G� one can find Nash equilibria close to σ .

In the special case of complete information games (i.e., when type spaces are sin-
gletons), this definition collapses to the notion of perfection considered in Al-Najjar
(1995), Carbonell-Nicolau (2011a, b, c, 2014b), Carbonell-Nicolau and McLean
(2013, 2014, 2015), and the strong notion of perfection defined in Simon and Stinch-
combe (1995).

Bajoori et al. (2016) consider a stronger notion of perfection whereby, roughly
speaking, the convergence condition ‘σ n −→

w
σ ’ in the second bullet point is replaced

by pointwise convergence of a version of the regular conditional probability measures.
They obtain an existence result for Bayesian games with countable type spaces and
finite action spaces, and present an application to a class of second-price auctions. The
results developed here allow for arbitrary (compact, metric) type and/or action spaces
and payoff discontinuities.5

3 Existence of perfect equilibrium

This section contains the main existence results for the refinement in Definition 7.
The aim of the paper is to obtain conditions on the objects in a Bayesian game � =
(Ti , Xi , ui , p)N

i=1 (Definition 3) that guarantee the existence of a perfect Bayes–Nash
equilibrium.

The notion of strong uniform payoff security (Definition 9 below) plays a central
role in the results of this paper. This condition has the flavor of the so-called payoff
security condition, which was used in Reny (1999) to prove results on the existence
of Nash equilibrium in discontinuous normal-form games.

Definition 8 (Reny 1999). A metric game (Zi , gi )
N
i=1 is payoff secure if for each

ε > 0, z ∈ ×N
i=1Zi , and i , there exist a yi ∈ Zi and a neighborhood Vz−i of z−i such

that gi (yi , y−i ) > gi (z) − ε for every y−i ∈ Vz−i .

5 It should be pointed out that the existence results obtained here do not apply to the class of second-price
auctions considered in Bajoori et al. (2016). Existence for this class is established, in Bajoori et al. (2016),
by direct construction of a perfect Bayes–Nash equilibrium.
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Perfect equilibria in games of incomplete information 1597

Payoff security of a game does not generally imply that the game’s mixed exten-
sion is itself payoff secure. Monteiro and Page (2007) introduced a strengthening of
payoff security, termed uniform payoff security, which does ensure that a normal-form
game has a payoff secure mixed extension. In a similar fashion, Carbonell-Nicolau
and McLean (2018) introduced a notion of uniform payoff security, defined on the
primitives of a Bayesian game, which coincides with the Monteiro-Page condition in
the special case of complete information games (i.e., when type spaces are singletons),
and which ensures that the normal form of a Bayesian game (recall (2)) is itself payoff
secure. Carbonell-Nicolau and McLean’s (2018) uniform payoff security condition,
however, is generally too weak to guarantee the payoff security of the game’s Selten
perturbations, as defined in (4).

This paper proposes the following strengthening of Carbonell-Nicolau and
McLean’s (2018) condition, which is also an extension of Condition (A) in Carbonell-
Nicolau (2011a, b) to the class of Bayesian games. This condition is strong enough to
ensure that the Selten perturbations of a Bayesian game are payoff secure.

Definition 9 The Bayesian game (Ti , Xi , ui , p)N
i=1 satisfies strong uniform payoff

security if there exists μ = (μ1, . . . , μN ) ∈ D̂ such that for each i and ε > 0 there
is a sequence ( f k) of (B(Ti × Xi ),B(Xi ))-measurable maps f k : Ti × Xi → Xi

satisfying the following:

(a) For each k and (t, x) ∈ T × X , there exists a neighborhood Vx−i of x−i such that

ui (t, ( f k(ti , xi ), y−i )) > ui (t, x) − ε, for all y−i ∈ Vx−i .

(b) For each (t, x−i ) ∈ T × X−i , there is a subset Yi of Xi with μi (Yi |ti ) = 1
satisfying the following: for each xi ∈ Yi , there exists K such that for all k ≥ K ,
there is a neighborhood V ′

x−i
of x−i such that

ui (t, ( f k(ti , xi ), y−i )) < ui (t, (xi , y−i )) + ε, for all y−i ∈ V ′
x−i

.

Intuitively, the sequence ofmaps ( f k) in Definition 9must satisfy the following two
conditions. First, for each type ti and each action xi of player i , the action f k(ti , xi )

from player i’s action space Xi secures a payoff “virtually” as large as ui (t, x), for
every (t−i , x−i ) ∈ T−i × X−i , even when the action f k(ti , xi ) is played against a
perturbed action profile y−i for the rest of the players that is sufficiently close to x−i .
Second, for each type profile t ∈ T and every action profile x−i ∈ X−i for all the
players except i , there exists a “large” subset Yi of i’s action space Xi , where Yi

may depend on (t, x−i ), such that each action xi in Yi (but not those actions outside
of Yi ) eventually (i.e., for large enough k) secures “virtually” the same payoff as
f k(ti , xi ) against any action profile for the rest of the players, y−i , in a sufficiently
small neighborhood of x−i (where the neighborhood of x−i can be chosen as a function
of xi and k).

The application in Sect. 4.1 illustrates how the fact that the set Yi can be chosen to
vary with (t, x−i ) and the neighborhood of x−i can be chosen as a function of xi and
k confers meaningful flexibility to the strong uniform payoff security condition.
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1598 O. Carbonell-Nicolau

A continuous Bayesian game (i.e., a game (Ti , Xi , ui , p)N
i=1 such that ui (t, ·) is

continuous on X for each t ∈ T and each i) is easily seen to satisfy strong uniform
payoff security. In fact, it is straightforward to verify that, for continuous Bayesian
games, the constant sequence ( f k) defined by f k(ti , xi ) := xi , for each (ti , xi ) ∈
Ti × Xi and each k, satisfies items (a) and (b) in Definition 9.

While item (a) in Definition 9 gives Carbonell-Nicolau and McLean’s (2018) uni-
form payoff security condition and suffices for the normal form of a Bayesian game
to be payoff secure, the extra condition, item (b), is needed to ensure that the game’s
Selten perturbations are also payoff secure.6 Formally, we have the following lemma.

Lemma 1 Suppose that the Bayesian game � = (Ti , Xi , ui , p)N
i=1 satisfies strong

uniform payoff security. If p is absolutely continuous with respect to p1 ⊗ · · · ⊗ pN ,
then there exists μ ∈ D̂ such that the game G

(α,μ)
� defined in (4) is payoff secure for

each α ∈ [0, 1)N .

Lemma 1, combined with the following lemma, is instrumental in the proofs of the
main results.

Lemma 2 Given a Bayesian game (Ti , Xi , ui , p)N
i=1, suppose that for each t ∈ T ,

the map
∑N

i=1 ui (t, ·) : X → R is upper semicontinuous. Suppose further that p is
absolutely continuous with respect to p1⊗· · ·⊗ pN . Then the map

∑N
i=1 Ui (·) : D →

R is upper semicontinuous.

If one takes the preceding two lemmas for granted, the proof of our first main
existence result (Theorem 1 below) is relatively straightforward. In order to preserve
the flow of the exposition, Theorem 1 is stated and proven next, while the proofs of
the more technical Lemma 1 and Lemma 2 are relegated to Sect. 5.

Theorem 1 Suppose that the Bayesian game � = (Ti , Xi , ui , p)N
i=1 satisfies strong

uniform payoff security and that for each t ∈ T , the map
∑N

i=1 ui (t, ·) : X → R is
upper semicontinuous. If p is absolutely continuous with respect to p1 ⊗ · · · ⊗ pN ,
then � possesses a perfect Bayes–Nash equilibrium.

Proof For each n ∈ N, let αn := ( 1
n , . . . , 1

n

)
. By Lemma 1, there exists μ ∈ D̂ such

that for each n, the game G(αn ,μ)
� is payoff secure. In addition, Lemma 2 implies that

the map
∑N

i=1 Ui (·) : D → R is upper semicontinuous, implying that for each n

the map
∑N

i=1 U (αn ,μ)
i (·) : D → R is upper semicontinuous. Consequently, since

each Di is a compact (see Milgrom and Weber (1985, p. 626)), convex subset of a
topological vector space, and since the game G

(αn ,μ)
� is quasiconcave for each n, it

follows from Proposition 3.2 and Theorem 3.1 of Reny (1999) that the game G(αn ,μ)
�

has a Nash equilibrum σ n for each n.7 Now, since the sequence (σ n) lies in D and

6 Indeed, it has been shown in Carbonell-Nicolau (2011b, Example 3) that, in complete information games,
uniform payoff security need not imply payoff security of a game’s Selten perturbations.
7 A normal-form game (Zi , gi )

N
i=1 is quasiconcave if each Zi is a convex subset of a topological vector

space and, for each i and z−i ∈ Z−i , gi (·, z−i ) is quasiconcave on Zi .
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Perfect equilibria in games of incomplete information 1599

sinceD is sequentially compact, onemaywrite (passing to a subsequence if necessary)
σ n −→

w
σ for some σ ∈ D . It follows that σ is a perfect profile.

It remains to show that σ is a Bayes–Nash equilibrium of �. We shall assume
that σ is not a Bayes–Nash equilibrium of � and derive a contradiction. Because
σ n −→

w
σ and since eachUi is bounded,we have (passing to a subsequence if necessary)

(σ n, (U1(σ
n), . . . , UN (σ n))) → (σ, (β1, . . . , βN )) for some (β1, . . . , βN ) ∈ RN . If

σ is not a Nash equilibrium of the game G� defined in (2), then, since G� satisfies
better-reply security as defined in Reny (1999) (by Lemma 1, Lemma 2, and by Propo-
sition 3.2 in Reny (1999)),8 it follows that there exist i , σ ∗

i ∈ Di , a neighborhood Vσ−i

of σ−i , and ζ > 0 such that

Ui (σ
∗
i , σ ′−i ) ≥ βi + ζ, for all σ ′−i ∈ Vσ−i .

Therefore, since Ui (σ
n) → βi , there exist ζ ′ > 0 and n such that

Ui (σ
∗
i , σ n

−i ) > Ui (σ
n) + ζ ′, for all n ≥ n.

Consequently, using (3), we see that there exists a large enough n′ such that

Ui ((1 − αn
i )σ ∗

i + αn
i μi , ((1 − αn

j )σ
n
j + αn

j μ j ) j �=i ) > Ui ((1 − αn
1 )σ

n
1

+ αn
1μ1, . . . , (1 − αn

N )σ n
N + αn

N μN )

for all n ≥ n′, contradicting that σ n is a Nash equilibrium of G(αn ,μ)
� for each n. 
�

Theorem 1 is illustrated, in Sect. 4, in the context of all-pay auctions.
In the remainder of this section, we furnish a variant of Theorem 1 in which uniform

payoff security (as formulated in Definition 9) is replaced by two conditions that do
not require an explicit construction of the (B(Ti × Xi ),B(Xi ))-measurable maps f k .

The formulation of the first condition requires some preliminaries.
Given a Bayesian game (Ti , Xi , ui , p)N

i=1, let Ai be the set of all accumulation
points of Xi (i.e., the set of all points xi ∈ Xi such that (Vxi \ {xi }) ∩ Xi �= ∅ for
every neighborhood Vxi of xi ). Since Xi is compact and metric, it can be written as a
disjoint union Ai ∪ Ki , where Ai is closed and dense in itself (i.e., with no isolated
points) and Ki is a countable subset of Xi whose members are isolated points (i.e.,

8 Given a metric game G = (Zi , gi )
N
i=1, let Gr(G) represent the graph of the game’s vector payoff

function, i.e.,

Gr(G) :=
{
(z, a) ∈ Z × RN : a = g(z) = (g1(z), . . . , gN (z))

}
.

The closure of Gr(G) in Z × RN is denoted by cl(Gr(G)).
The game G is said to be better-reply secure if, for every (z, a) ∈ cl(Gr(G)) such that z is not a Nash
equilibrium of G, there exist a player j , β ∈ R, z∗

j ∈ Z j , and a neighborhood Vz− j of z− j such that

g j (z
∗
j , y− j ) ≥ β > a j , for all y− j ∈ Vz− j .
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1600 O. Carbonell-Nicolau

for each xi ∈ Ki , there is a neighborhood of xi , Vxi , such that (Vxi \ {xi }) ∩ Ki = ∅)
(see, e.g., Hausdorff (1962, p. 147)).

Definition 10 Suppose that � = (Ti , Xi , ui , p)N
i=1 is a Bayesian game and, for each

i , let Xi = Ai ∪ Ki be the decomposition from the preceding paragraph. The game
� is said to satisfy generic entire payoff security if there exist countable subsets
C1 ⊆ A1, . . . , CN ⊆ AN such that the following three conditions are satisfied:

(i) For each i , ε > 0, and xi ∈ Ai \ Ci , and for every neighborhood Vxi of xi , there
exist yi ∈ Vxi and aneighborhoodV ′

xi
of xi such that for every (t, z−i ) ∈ T ×X−i ,

there is a neighborhood Vz−i of z−i such that

ui (t, (yi , y−i )) > ui (t, (z
′
i , z−i )) − ε, for all (z′

i , y−i ) ∈ V ′
xi

× Vz−i .

(ii) For each i , ε > 0, and xi ∈ Ki , and for every neighborhood Vxi of xi , there
exists yi ∈ Vxi such that for every (t, z−i ) ∈ T × X−i , there is a neighborhood
Vz−i of z−i such that

ui (t, (yi , y−i )) > ui (t, (xi , z−i )) − ε, for all y−i ∈ Vz−i .

(iii) For each i , ε > 0, and xi ∈ Ci , there exists yi ∈ Xi such that for every
(t, z−i ) ∈ T × X−i , there is a neighborhood Vz−i of z−i such that

ui (t, (yi , y−i )) > ui (t, (xi , z−i )) − ε, for all y−i ∈ Vz−i .

Note that the conditions in items (ii) and (iii) are strictly weaker than that in item
(i). Roughly, generic entire payoff security requires condition (i) except for countably
many xi , i.e., for themembers of the countable setCi ∪Ki , forwhichweaker conditions
((ii) for Ki and (iii) for Ci ) are required.

Intuitively, for each player i and each action xi in the player’s action set Xi , an
action yi ∈ Xi secures “virtually” the same payoff as xi against any profile z−i ∈ X−i

of actions chosen by the other players, for any t ∈ T , if i’s payoff ui (t, (yi , y−i )) at t ,
when player i chooses yi and the other players slightly deviate from z−i to a nearby
y−i , is “virtually” as large as ui (t, (xi , z−i )). Item (i) requires that the securing action
yi exist arbitrarily close to xi and that the secured payoff ui (t, (yi , y−i )) be “virtually”
as large as ui (t, (z′

i , z−i )) when the action z′
i is a slight perturbation of xi .

As is easily verified, a particular instance of the generic entire payoff security
condition is the equicontinuity of the family {ui (t, ·) : t ∈ T }, for each i , i.e., the
property that, for each i , and for every x ∈ X and ε > 0, there exists δ > 0 such that
ui (t, y) ∈ Nε(ui (t, x)) for each y ∈ Nδ(x) and t ∈ T .

Definition 10, together with the generic local equi-upper semicontinuity condi-
tion (Definition 11 below), implies strong uniform payoff security (Definition 9) (see
Lemma 3 below).

To formulate the notion of generic local equi-upper semicontinuity, we need the
following terminology.

Recall that the set of all strictly positive distributional strategies inDi (Definition 5)
is denoted by D̂i . Let D̃i be the set of members σi of Di such that for each ti ∈ Ti ,
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σi ({xi }|ti ) = 0 and σi (Nε(xi )|ti ) > 0 for every xi ∈ Ai and ε > 0 (where Nε(xi )

denotes the ε-neighborhood of xi ), and σi ({xi }|ti ) > 0 for every xi ∈ Ki . Observe that
D̃i ⊆ D̂i . In addition, D̃i is nonempty (see, e.g., Parthasarathy et al. (1962, Corollary
6.2)). Define D̃ := ×N

i=1D̃i .

Definition 11 TheBayesian game (Ti , Xi , ui , p)N
i=1 satisfiesgeneric local equi-upper

semicontinuity if there exists μ = (μ1, . . . , μN ) ∈ D̃ such that for each i and
(t, x−i ) ∈ T × X−i , there exists Yi ⊆ Xi with μi (Yi |ti ) = 1 satisfying the following:
for each xi ∈ Yi and ε > 0, there is a neighborhood Vxi of xi such that for every
yi ∈ Vxi , there is a neighborhood Vx−i of x−i such that

ui (t, (yi , y−i )) < ui (t, (xi , y−i )) + ε, for all y−i ∈ Vx−i .

The generic local equi-upper semicontinuity condition requires that for each player
i , and for every type profile t ∈ T and every action profile x−i ∈ X−i for the other
players, there exist a “full-measure” subset of actions in Xi (which may depend on
(t, x−i )) such that the members xi of Yi secure “virtually” a payoff at least as large as
any other action yi close enough to xi against sufficiently small perturbations, y−i , of
x−i for the rest of the players.

Note that a simple instance of the generic local equi-upper semicontinuity condition
is the continuity of each ui (t, ·) on X for each t ∈ T .

The combination of generic entire payoff security (Definition 10) and generic local
equi-upper semicontinuity (Definition11) implies stronguniformpayoff security (Def-
inition 9).

Definition 10 and Definition 11 can be thought of as a decomposition of Defini-
tion 9 into two independent conditions, with Definition 10 (resp. Definition 11) being
sufficient for item (a) (resp. item (b)) of Definition 9.

Lemma 3 Suppose that � = (Ti , Xi , ui , p)N
i=1 is a Bayesian game satisfying generic

entire payoff security and generic local equi-upper semicontinuity. Then � satisfies
strong uniform payoff security.

The proof of Lemma 3 is relegated to Sect. 5.
FromTheorem 1 and Lemma 3, one immediately obtains the secondmain existence

result of the paper.

Theorem 2 Suppose that the Bayesian game � = (Ti , Xi , ui , p)N
i=1 satisfies generic

entire payoff security and generic local equi-upper semicontinuity. Suppose further
that for each t ∈ T , the map

∑N
i=1 ui (t, ·) : X → R is upper semicontinuous and p

is absolutely continuous with respect to p1 ⊗ · · · ⊗ pN . Then � possesses a perfect
Bayes–Nash equilibrium.

Section 4 provides an illustration of Theorem 2 in the context of Cournot games.
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3.1 The special case of complete information games

In this subsection, we state the main existence results in the absence of incomplete
information (i.e., when type spaces are singletons), obtaining Theorem2 andCorollary
1 in Carbonell-Nicolau (2011b) as special cases of Theorem 1 and Theorem 2.

Definition 12 Themixed extension of a compact, metric, Borel gameG = (Zi , gi )
N
i=1

is the normal-formgameG := (�(Zi ), Gi )
N
i=1, where for each i ,Gi : ×N

j=1�(Z j ) →
R is defined by

Gi (σ1, . . . , σN ) :=
∫

Z
gi (z)[σ1 ⊗ · · · ⊗ σN ](dz).

Suppose that G = (Zi , gi )
N
i=1 is a compact, metric, Borel game. For each i , let

�̂(Zi ) be the set of all strictly positivemembers of�(Zi ), i.e., the set of all σi ∈ �(Zi )

such that σi (V ) > 0 for every nonempty open set V in Zi .
Given α = (α1, . . . , αN ) ∈ [0, 1)N and μ = (μ1, . . . , μN ) ∈ ×N

i=1�̂(Zi ), define
the normal-form game

G(α,μ) := (�(Zi ), G(α,μ)
i )N

i=1, (5)

where G(α,μ)
i : ×N

j=1�(Z j ) → R is defined by

G(α,μ)
i (σ1, . . . , σN ) := Gi ((1 − α1)σ + α1μ1, . . . , (1 − αN )σN + αN μN ).

In the absence of incomplete information, the notion of perfection in Definition 7
reduces to the following:

Definition 13 Suppose that G = (Zi , gi )
N
i=1 is a compact, metric, Borel game. ANash

equilibrium σ of the mixed extension G = (�(Zi ), Gi )
N
i=1 is perfect if there exist

sequences (αn), (μn), and (σ n) such that the following holds for each n: αn ∈ (0, 1)N ,
μn ∈ ×N

i=1�̂(Zi ), and σ n is a Nash equilibrium of the game G(αn ,μn) defined in (5),
and in addition αn → 0 and σ n −→

w
σ .

In the special case of complete information games, Definitions 9–11 can be more
simply stated as follows.

Definition 14 is the analogue of Definition 9.

Definition 14 A compact, metric, Borel game (Zi , gi )
N
i=1 satisfies strong uniform

payoff security if there existsμ = (μ1, . . . , μN ) ∈ ×N
i=1�̂(Zi ) such that for each i and

ε > 0 there is a sequence ( f k) of (B(Xi ),B(Xi ))-measurable maps f k : Xi → Xi

satisfying the following:

(a) For each k and x ∈ Z , there exists a neighborhood Vx−i of x−i such that

gi ( f k(xi ), y−i ) > gi (x) − ε, for all y−i ∈ Vx−i .

123



Perfect equilibria in games of incomplete information 1603

(b) For each x−i ∈ X−i , there is a subset Yi of Xi with μi (Yi ) = 1 satisfying the
following: for each xi ∈ Yi , there exists K such that for all k ≥ K , there is a
neighborhood V ′

x−i
of x−i such that

gi ( f k(xi ), y−i ) < ui (xi , y−i ) + ε, for all y−i ∈ V ′
x−i

.

Suppose that (Zi , gi )
N
i=1 is a compact, metric, Borel game. Recall that Zi can be

written as a disjoint union Ai ∪Ki , where Ai is the set of all accumulation points of Xi ,
which is closed and dense in itself (i.e., with no isolated points), and Ki is countable.
Recall that the set of all strictly positivemixed strategies in�(Zi ) is denoted by �̂(Zi ).

In the present framework, Definition 10 reduces to Definition 15.

Definition 15 Suppose that G = (Zi , gi )
N
i=1 is a metric game and, for each i , let

Zi = Ai ∪ Ki be the decomposition from the preceding paragraph. The game G is
said to satisfy generic entire payoff security if there exist countable subsets C1 ⊆
A1, . . . , CN ⊆ AN for which the following conditions are satisfied:

(i) For each i , ε > 0, and xi ∈ Ai \ Ci , and for every neighborhood Vxi of xi , there
exist yi ∈ Vxi and a neighborhood V ′

xi
of xi such that for every z−i ∈ Z−i , there

is a neighborhood Vz−i of z−i such that

gi (yi , y−i ) > gi (z
′
i , z−i ) − ε, for all (z′

i , y−i ) ∈ V ′
xi

× Vz−i .

(ii) For each i , ε > 0, and xi ∈ Ki , and for every neighborhood Vxi of xi , there
exists yi ∈ Vxi such that, for every z−i ∈ Z−i , there is a neighborhood Vz−i of
z−i such that

gi (yi , y−i ) > gi (xi , z−i ) − ε, for all y−i ∈ Vz−i .

(iii) For each i , ε > 0, and xi ∈ Ci , there exists yi ∈ Zi such that, for every
z−i ∈ Z−i , there is a neighborhood Vz−i of z−i such that

gi (yi , y−i ) > gi (xi , z−i ) − ε, for all y−i ∈ Vz−i .

Let �̃(Zi ) be the set of members σi of �(Zi ) such that σi ({xi }) = 0 and
σi (Nε(xi )) > 0 for every xi ∈ Ai and ε > 0 (where Nε(xi ) denotes the ε-
neighborhood of xi ), and σi ({xi }) > 0 for every xi ∈ Ki .

Definition 16 is the analogue of Definition 11.

Definition 16 A compact, metric, Borel game (Zi , gi )
N
i=1 satisfies generic local equi-

upper semicontinuity if there exists μ = (μ1, . . . , μN ) ∈ �̃(Zi ) such that for each
i and x−i ∈ Z−i , there exists Yi ⊆ Zi with μi (Yi ) = 1 satisfying the following: for
each xi ∈ Yi and ε > 0, there is a neighborhood Vxi of xi such that for every yi ∈ Vxi ,
there is a neighborhood Vx−i of x−i such that

gi (yi , y−i ) < gi (xi , y−i ) + ε, for all y−i ∈ Vx−i .
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The next corollaries follow immediately from the main existence results.

Corollary 1 (to Theorem 1). Suppose that the compact, metric, Borel game G =
(Zi , gi )

N
i=1 satisfies strong uniform payoff security and that the map

∑N
i=1 gi (·) :

Z → R is upper semicontinuous. Then G possesses a perfect Nash equilibrium.

Corollary 2 (to Theorem 2). Suppose that the compact, metric, Borel game G =
(Zi , gi )

N
i=1 satisfies generic entire payoff security and generic local equi-upper semi-

continuity. If the map
∑N

i=1 gi (·) : Z → R is upper semicontinuous, then G possesses
a perfect Nash equilibrium.

4 Applications

This section illustrates the machinery developed in Sect. 3 in the context of all-pay
auctions and Cournot oligopolies.

4.1 All-pay auctions

We confine attention to a generalized version of the war of attrition considered in
Krishna and Morgan (1997), but the existence result presented here extends to other
all-pay auctions. An existence result is obtained, using Theorem 1, for the war of
attrition with common values and interdependent types.

There are N bidders competing for a single indivisible object. After learning their
types, the players simultaneously submit a sealed bid bi from a closed and bounded
subinterval Bi := [b, b] of R+ (where b < b). Each Bi is endowed with the usual
relative Euclidean metric, and the Cartesian product B := ×N

i=1Bi is equipped with
the corresponding supremum metric. Let T1, . . . , TN be the type spaces (each Ti is a
compact, metric type space). The highest bidder wins the object and ties are broken
via an equal probability rule. If player i wins the object when Nature chooses a type
profile t = (t1, . . . , tN ) ∈ T and when the profile of bids chosen by the players is
b = (b1, . . . , bN ) ∈ B, then player i’s payoff is given by v(t) − max j �=i b j , where
v(t) ≥ 0 represents the value of the object in state t and max j �=i b j is the second
highest bid in the action profile b. All the other players j �= i obtain a payoff of
h j (t, b). The common prior over type profiles in T is represented by a probability
measure p on (T ,B(T )), assumed absolutely continuous with respect to the product
of its marginal probability measures, p1 ⊗ · · · ⊗ pN .

Bidder i’s expected payoff at t = (t1, . . . , tN ) ∈ T and b = (b1, . . . , bN ) ∈ B is
given by

ui (t, b) :=
{

hi (t, b) if bi < max j b j ,
v(t)

#{ j :b j =maxι bι} + hi (t, b) if bi = max j b j .

Here, the map v : T → R is assumed bounded and (B(T ),B(R))-measurable, and
the maps hi : T × B → R are bounded and (B(T × B),B(R))-measurable and
satisfy the following: for each i , the family {hi (t, ·) : t ∈ T } is equicontinuous on B
and hi (t, b) = −max j �=i b j whenever t ∈ T and b ∈ B satisfies bi = max j b j .
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In particular, if hi (t, b) = −bi whenever bi < max j b j (and if one makes additional
assumptions on the affiliation of types) one obtains thewar of attrition game considered
in Krishna and Morgan (1997).9

The associated Bayesian game is

� := (Ti , Bi , ui , p)N
i=1. (6)

Lemma 4 The game � defined in (6) satisfies strong uniform payoff security.

Proof Let μ = (μ1, . . . , μN ) ∈ D̂ be such that for each i and ti ∈ Ti , μi (·|ti ) is the
normalized Lebesgue measure over (Bi ,B(Bi )).

Fix i and ε > 0. Because {hi (t, ·) : t ∈ T } is equicontinuous on the compact set
B, {hi (t, ·) : t ∈ T } is uniformly equicontinuous on B. Therefore, there exists δ > 0
such that

|hi (t, b) − hi (t, b′)| < ε, for all t ∈ T and (b, b′) ∈ B × B with d(b, b′) < δ,

where d is a compatible metric on B.
For each k, define f k : Bi → Bi as follows: f k(bi ) := 1

k b + (1 − 1
k )bi . Let

k∗ >
b−b

δ
and observe that for k ≥ k∗ and bi ∈ Bi ,

f k(bi ) − bi = 1

k
(b − bi ) ≤ 1

k
(b − b) < δ.

Fix k ≥ k∗ and (t, b) ∈ T × B. We consider three cases:
Case 1 bi = max j b j < b. Let Vb−i be a neighborhood of b−i contained in Nε(b−i )

such that max j �=i b′
j < f k(bi ) for all b′−i ∈ Vb−i , and pick any b′−i ∈ Vb−i . Then

ui (t, ( f k(bi ), b′−i )) = v(t) − max
j

b′
j

≥ v(t)

#{ j : b j = maxι bι} − max
j

b′
j

>
v(t)

#{ j : b j = maxι bι} − max
j

b j − ε = ui (t, b) − ε.

Case 2 bi = max j b j = b. Let V ′
b−i

be a neighborhood of b−i contained in Nε(b−i )

such that b′
j < b for each j �= i whenever b′−i ∈ V ′

b−i
and b j < b. For any b′−i ∈ V ′

b−i
,

ui (t, ( f k(bi ), b′−i )) = ui (t, (bi , b′−i )) = v(t)

1 + #{ j : b′
j = maxι b′

ι}
− max

j
b′

j

>
v(t)

#{ j : b j = maxι bι} − max
j �=i

b j − ε = ui (t, b) − ε.

9 While the game considered here is a special case of the model studied Carbonell-Nicolau and McLean
(2018, Subsection 6.1), no additional assumptions are needed to establish the existence of a perfect Bayes–
Nash equilibrium.
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Case 3 bi < max j b j . Choose b′−i ∈ Nδ(b−i ). If f k(bi ) ≥ max j b′
j , then

ui (t, ( f k(bi ), b′−i )) ≥ −max
j

b′
j = hi (t, ( f k(bi ), b′−i )) > hi (t, b) − ε = ui (t, b) − ε.

If f k(bi ) < max j b′
j , then

ui (t, ( f k(bi ), b′−i )) = hi (t, ( f k(bi ), b′−i )) > hi (t, b) − ε = ui (t, b) − ε.

This establishes item (a) of Definition 9 for �. To see that item (b) of Definition 9
holds, fix (t, b−i ) ∈ T × B−i and choose bi ∈ Bi with bi �= max j �=i b j . If bi >

max j �=i b j , then for each k and for Vb−i a neighborhood of b−i such that b′
j < bi for

each j �= i whenever b′−i ∈ Vb−i ,

ui (t, ( f k(bi ), b′−i )) = v(t) − max
j

b′
j = ui (t, (bi , b′−i ))

< ui (t, (bi , b′−i )) + ε, for all b′−i ∈ Vb−i .

If bi < max j �=i b j , there exists K such that for k ≥ K one has f k(bi ) < max j �=i b j −β

for some β > 0 and f k(bi )− bi < δ, and one can choose a neighborhood V ′
b−i

of b−i

such that for all b′−i ∈ V ′
b−i

, max j b′
j > f k(bi ) > bi . Then, for k ≥ K ,

ui (t, ( f k(bi ), b′−i )) = hi (t, ( f k(bi ), b′−i )) < hi (t, (bi , b′−i )) + ε

= ui (t, (bi , b′−i )) + ε, for all b′−i ∈ Vb−i .

This establishes item (b) of Definition 9. 
�
Proposition 1 The game � defined in (6) possesses a perfect Bayes–Nash equilibrium.

Proof In view of Lemma 4, the assertion is an immediate consequence of Theorem 1
once one observes that for each t ∈ T , the map

∑N
i=1 ui (t, ·) : B → R is upper

semicontinuous (in fact, continuous). The continuity of this sum follows from the fact
that, for every (t, b) ∈ T × B,

N∑
i=1

ui (t, b) = v(t) − #
{

i : bi = max
ι

bι

}
b∗ +

∑
i :bi <maxι bι

hi (t, b),

where b∗ represents the second highest bid in b, together with the equicontinuity
of {hi (t, ·) : t ∈ T } on B, for each i , and the condition that, for each i , hi (t, b) =
−max j �=i b j whenever bi = max j b j . 
�

4.2 Cournot games

This subsection considers Cournot oligopolies with incomplete information and cost
discontinuities. The setup is essentially the same as that in Carbonell-Nicolau and
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McLean (2018, §6.2), and the reader is referred to Carbonell-Nicolau and McLean
(2018) for references on the literature.

There are N firms in a market for a single homogeneous good. The firm’s type
spaces, T1, . . . , TN , are compact, metric spaces. A type profile t = (t1, . . . , tN ) ∈ T
determines the market inverse demand (in state t), p(t, ·). Thus, p(t, q) represents the
price that clears the market in state t when aggregate output is q. Each firm i faces a
cost function ci (t, qi ) on type profiles t and individual output levels qi selected from
a compact subset Xi ofR+. The common prior is given by η, a probability measure in
�(T ), with corresponding marginal probability measures η1, . . . , ηN . It is assumed
that η is absolutely continuous with respect to the product of its marginals.

The firms simultaneously choose an output level. Given an output profile
(q1, . . . , qN ), firm i’s profit is given by qi p(t, q1 + · · · + qN ) − ci (t, qi ).

The associated Bayesian game is

� = (Ti , Xi , ui , η)N
i=1, (7)

where, for each i ,

ui (t, (q1, . . . , qN )) := qi p(t, q1 + · · · + qN ) − ci (t, qi ),

and where the maps p : T ×R+ → R+ and ci : T × R+ → R+ are assumed bounded
and (B(T ) ⊗ B(R+),B(R+))-measurable.

We make the following additional assumptions: (i) the family {p(t, ·) : t ∈ T } is
equicontinuous on {q1 + · · · + qN : (q1, . . . , qN ) ∈ X}; and (ii) for each i the family
{ci (t, ·) : t ∈ T } is equi-lower semicontinuous on Xi , i.e., for each qi ∈ Xi and ε > 0,
there exists δ > 0 such that ci (t, si ) > ci (t, qi ) − ε for each si ∈ Nδ(qi ) and t ∈ T .

The following proposition establishes the existence of a perfect Bayes–Nash equi-
librium in the game � defined in (7).

Proposition 2 The game � defined in (7) possesses a perfect Bayes–Nash equilibrium.

Proof We prove the assertion as an application of Theorem 2. By virtue of Theorem 2,
it suffices to show that � satisfies generic entire payoff security and generic local
equi-upper semicontinuity, and that, for each t ∈ T , the map

∑N
i=1 ui (t, ·) : X → R

is upper semicontinuous.
First, note that the above assumptions imply that, for each t ∈ T , the map

p(t, ·)|{q1+···+qN :(q1,...,qN )∈X} is continuous and the map q ∈ X �→ c1(t, q1) + · · · +
cN (t, qN ) is lower semicontinuous. This, together with the fact that

N∑
i=1

ui (t, q) =
(

N∑
i=1

qi

)
p

(
t,

N∑
i=1

qi

)
−

N∑
i=1

ci (t, qi ),

implies that the map
∑N

i=1 ui (t, ·) : X → R is upper semicontinuous for each t ∈ T .
To see that � satisfies generic entire payoff security (Definition 10), note first that

it suffices to show that for each i , ε > 0, and qi ∈ Xi , and for every neighborhood
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Vqi of qi in Xi , there exist q∗
i ∈ Vqi and a neighborhood V ′

qi
of qi such that, for every

(t, q−i ) ∈ T × X−i , there is a neighborhood Vq−i of q−i in X−i such that

ui (t, (q
∗
i , s−i )) > ui (t, (si , q−i )) − ε, for all (si , s−i ) ∈ V ′

qi
× Vq−i .

Since the family {p(t, ·) : t ∈ T } is equicontinuous on {q1 + · · · + qN :
(q1, . . . , qN ) ∈ X} and {q1 + · · · + qN : (q1, . . . , qN ) ∈ X} is compact, it fol-
lows that the family {p(t, ·) : t ∈ T } is uniformly equicontinuous on {q1 + · · · + qN :
(q1, . . . , qN ) ∈ X}, and so there exists δ > 0 such that

∣∣∣∣∣∣qi p

⎛
⎝t,

N∑
j=1

q j

⎞
⎠− si p

⎛
⎝t,

N∑
j=1

s j

⎞
⎠
∣∣∣∣∣∣ <

ε

2
,

for all t ∈ T and all (q, s) ∈ X × X with d(q, s) < δ,

where d is a compatible metric on X . Therefore, given i , ε > 0, qi ∈ Xi , and
a neighborhood Vqi of qi , there is a neighborhood V ∗

qi
of qi such that, for every

(t, q−i ) ∈ T × X−i , there is a neighborhood Vq−i of q−i in X−i such that

qi p

⎛
⎝t, qi +

∑
j �=i

s j

⎞
⎠ > si p

⎛
⎝t, si +

∑
j �=i

q j

⎞
⎠− ε

2
, for all (si , s−i ) ∈ V ∗

qi
× Vq−i . (8)

In addition, because the family {ci (τ, ·) : τ ∈ T } is equi-lower semicontinuous at qi ,
there exists a neighborhood V̂qi of qi such that

ci (t, si ) > ci (t, qi ) − ε

2
, for all si ∈ V̂qi ,

implying that

− ci (t, si ) − ε

2
< −ci (t, qi ), for all si ∈ V̂qi . (9)

Therefore, given i , ε > 0, qi ∈ Xi , and a neighborhood Vqi of qi , and setting q∗
i := qi

and V ′
qi

:= V ∗
qi

∩ V̂qi , it follows that, for every (t, q−i ) ∈ T × X−i , there is a
neighborhood Vq−i of q−i such that, for all (si , s−i ) ∈ V ′

qi
× Vq−i ,

ui (t, (q
∗
i , s−i )) = ui (t, (qi , s−i ))

= qi p

⎛
⎝t, qi +

∑
j �=i

s j

⎞
⎠− ci (t, qi )

> si p

⎛
⎝t, si +

∑
j �=i

q j

⎞
⎠− ε

2
− ci (t, si ) − ε

2
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Perfect equilibria in games of incomplete information 1609

= si p

⎛
⎝t, si +

∑
j �=i

q j

⎞
⎠− ci (t, si ) − ε

= ui (t, (si , q−i )) − ε,

where the inequality follows from (8) and (9). We conclude that � satisfies generic
entire payoff security.

It only remains to show that � satisfies generic local equi-upper semicontinuity
(Definition 11). Note that it suffices to show that for each i , (t, q) ∈ T × X , and
ε > 0, there is a neighborhood Vqi of qi such that for every si ∈ Vqi , there is a
neighborhood Vq−i of q−i such that

ui (t, (si , s−i )) < ui (t, (qi , s−i )) + ε, for all s−i ∈ Vq−i .

Fix i , (t, q) ∈ T × X , and ε > 0. By the continuity of p(t, ·) on {q1 + · · · + qN :
(q1, . . . , qN ) ∈ X}, there are neighborhoods V ′

qi
and Vq−i of qi and q−i , respectively,

such that

si p

⎛
⎝t,

N∑
j=1

s j

⎞
⎠ < qi p

⎛
⎝t, qi +

∑
j �=i

s j

⎞
⎠+ ε

2
, for all (si , s−i ) ∈ V ′

qi
× Vq−i . (10)

In addition, because ci (t, ·) is lower semicontinuous at qi , there exists a neighborhood
V ′′

qi
of qi such that

ci (t, si ) > ci (t, qi ) − ε

2
, for all si ∈ V ′′

qi
,

implying that

− ci (t, si ) < −ci (t, qi ) + ε

2
, for all si ∈ V ′′

qi
. (11)

Consequently, setting Vqi := V ′
qi

∩ V ′′
qi
, one obtains, for all (si , s−i ) ∈ Vqi × Vq−i ,

ui (t, (si , s−i )) = si p

⎛
⎝t,

N∑
j=1

s j

⎞
⎠− ci (t, si )

< qi p

⎛
⎝t, qi +

∑
j �=i

s j

⎞
⎠+ ε

2
− ci (t, qi ) + ε

2

= qi p

⎛
⎝t, qi +

∑
j �=i

s j

⎞
⎠− ci (t, qi ) + ε

= ui (t, (qi , s−i )) + ε,

where the inequality follows from (10) and (11). We conclude that � satisfies generic
local equi-upper semicontinuity. 
�
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1610 O. Carbonell-Nicolau

5 Proofs of Lemma 1, Lemma 2, and Lemma 3

5.1 Proof of Lemma 1

The proof of Lemma 1 relies on the following technical lemma, whose proof is rele-
gated to Appendix A.

Lemma 5 Suppose that the Bayesian game � = (Ti , Xi , ui , p)N
i=1 satisfies strong

uniform payoff security. Suppose that p is absolutely continuous with respect to p1 ⊗
· · · ⊗ pN . Then there exists (μ1, . . . , μN ) ∈ D̂ such that for each i and ε > 0, there
is a sequence ( f k) of (B(Ti × Xi ),B(Xi ))-measurable maps f k : Ti × Xi → Xi

satisfying the following:

(I) For each (ti , xi ) ∈ Ti × Xi , σ−i ∈ D−i , and k, there is a neighborhood Vσ−i of
σ−i such that

∫
T−i

∫
X−i

[ui (t, ( f k(ti , xi ), x−i ))g(t)]
[

⊗
j �=i

σ ′
j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )

>

∫
T−i

∫
X−i

[ui (t, x)g(t)]
[

⊗
j �=i

σ j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )

− ε, for all σ ′−i ∈ Vσ−i ,

where g is a density of p with respect to p1 ⊗ · · · ⊗ pN .
(II) For each σ−i ∈ D−i , there exists K such that for each k ≥ K , there is a

neighborhood V ′
σ−i

of σ−i such that

Ui (μ
k
i , σ

′−i ) < Ui (μi , σ
′−i ) + ε, for all σ ′−i ∈ V ′

σ−i
,

where μk
i (·|ti ) is defined by

μk
i (B|ti ) := μi

({
xi ∈ Xi : f k(ti , xi ) ∈ B

} ∣∣∣ti
)

. (12)

See Step 1 in the proof of Lemma 5 for a proof that the conditional probability
μk

i (·|ti ) defined in (12) is well-defined.
We are now ready to prove Lemma 1, which is restated here for the convenience of

the reader.

Lemma 1 Suppose that the Bayesian game � = (Ti , Xi , ui , p)N
i=1 satisfies strong

uniform payoff security. If p is absolutely continuous with respect to p1 ⊗ · · · ⊗ pN ,
then there exists μ ∈ D̂ such that the game G

(α,μ)
� defined in (4) is payoff secure for

each α ∈ [0, 1)N . 
�
Proof Let μ = (μ1, . . . , μN ) ∈ D̂ be the measure profile given by Lemma 5. Fix
α ∈ [0, 1)N , ε > 0, σ ∈ D , and i . We must show that there exist σ ∗

i ∈ Di and a
neighborhood Vσ−i of σ−i in D−i such that

U (α,μ)
i (σ ∗

i , σ ′−i ) > U (α,μ)
i (σ ) − ε, for all σ ′−i ∈ Vσ−i . (13)
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Perfect equilibria in games of incomplete information 1611

Define

σ̂ = (̂σ1, . . . , σ̂N ) := ((1 − α1)σ1 + α1μ1, . . . , (1 − αN )σN + αN μN ).

Lemma 5 gives a a sequence ( f k) of (B(Ti × Xi ),B(Xi ))-measurable maps f k :
Ti × Xi → Xi satisfying the following:

(i) For each (ti , xi ) ∈ Ti × Xi and k, there is a neighborhood Vσ̂−i of σ̂−i such that

∫
T−i

∫
X−i

[ui (t, ( f k(ti , xi ), x−i ))g(t)]
[

⊗
j �=i

σ ′
j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )

>

∫
T−i

∫
X−i

[ui (t, x)g(t)]
[

⊗
j �=i

σ̂ j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )

− ε

4
, for all σ ′−i ∈ Vσ̂−i ,

where g is a density of p with respect to p1 ⊗ · · · ⊗ pN .
(ii) There exists K such that for each k ≥ K , there is a neighborhood V ′̂

σ−i
of σ̂−i

such that

Ui (μ
k
i , σ

′−i ) < Ui (μi , σ
′−i ) + ε

2
, for all σ ′−i ∈ V ′̂

σ−i
, (14)

where μk
i (·|ti ) is defined by

μk
i (B|ti ) := μi

({
xi ∈ Xi : f k(ti , xi ) ∈ B

} ∣∣∣ti
)

.

Define σ̂ k
i ∈ Di andσ k

i ∈ Di via their corresponding regular conditional probability
measures as follows:

σ̂ k
i (B|ti ) := σ̂i

({
xi ∈ Xi : f k(ti , xi ) ∈ B

} ∣∣∣ti
)

and

σ k
i (B|ti ) := σi

({
xi ∈ Xi : f k(ti , xi ) ∈ B

} ∣∣∣ti
)

.

Note that
σ̂ k

i = (1 − αi )σ
k
i + αiμ

k
i . (15)

Indeed, given ti ∈ Ti and B ∈ B(Xi ), one has

σ̂ k
i (B|ti ) = σ̂i

({
xi ∈ Xi : f k(ti , xi ) ∈ B

} ∣∣∣ti
)

= (1 − αi )σi

({
xi ∈ Xi : f k(ti , xi ) ∈ B

} ∣∣∣ti
)

+ αiμi

({
xi ∈ Xi : f k(ti , xi ) ∈ B

} ∣∣∣ti
)

= (1 − αi )σ
k
i (B|ti ) + αiμ

k
i (B|ti ).
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1612 O. Carbonell-Nicolau

Below we show that for each k, there exists a neighborhood V ′′̂
σ−i

of σ̂−i in D−i

such that for each σ ′−i ∈ V ′′̂
σ−i

,

∫
T

∫
X
[ui (t, ( f k(ti , xi ), x−i ))g(t)]

[
σ̂i (·|ti ) ⊗

[
⊗
j �=i

σ ′
j (·|t j )

]]
(dx)

[
N⊗

j=1
p j

]
(dt)

> Ui (̂σ ) − ε

2
, (16)

implying that

Ui (̂σ
k
i , σ ′−i ) > Ui (̂σ ) − ε

2
, for all σ ′−i ∈ V ′′̂

σ−i
. (17)

By item (ii), there exists K such that for each k ≥ K , there is a neighborhood V ′̂
σ−i

of σ̂−i such that (14) holds. Consequently, for k ≥ K , and for σ ′−i ∈ V ′̂
σ−i

,

Ui ((1 − αi )σ
k
i + αiμi , σ

′−i ) = (1 − αi )Ui (σ
k
i , σ ′−i ) + αiUi (μi , σ

′−i )

> (1 − αi )Ui (σ
k
i , σ ′−i ) + αiUi (μ

k
i , σ

′−i ) − ε

2

= Ui (̂σ
k
i , σ ′−i ) − ε

2
,

where the last equality uses (15). This, together with (17), yields, for k ≥ K ,

Ui ((1 − αi )σ
k
i + αiμi , σ

′−i ) > Ui (̂σ ) − ε

for all σ ′−i in some neighborhood of σ̂−i . In particular, (13) holds for some σ ∗
i ∈ Di

and some neighborhood Vσ−i of σ−i in D−i .
It remains to show that for each k, there exists a neighborhood V ′′̂

σ−i
of σ̂−i such

that (16) holds for each σ ′−i ∈ V ′′̂
σ−i

. The proof of this assertion proceeds in five steps
(Step 1–Step 5 below).

We begin with the following definitions. For each k and n ∈ N, define the map
φ(k,n) : Ti × Xi → R by

φ(k,n)(ti , xi ) :=
∫

T−i

∫
X−i

[ui (t, x)g(t)]
[

⊗
j �=i

σ̂ j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )

− inf
σ ′−i ∈N 1

n
(̂σ−i )

∫
T−i

∫
X−i

[ui (t, ( f k(ti , xi ), x−i ))g(t)]
[

⊗
j �=i

σ ′
j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )

(here N 1
n
(̂σ−i ) denotes the 1

n -neighborhood of σ̂−i in D−i ).

Define ψ : Ti × Xi → R and ϑ(k,n) : Ti × Xi → R by

ψ(ti , xi ) :=
∫

T−i

∫
X−i

[ui (t, x)g(t)]
[

⊗
j �=i

σ̂ j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i ) (18)
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Perfect equilibria in games of incomplete information 1613

and

ϑ(k,n)(ti , xi )

:= inf
σ ′−i ∈N 1

n
(̂σ−i )

∫
T−i

∫
X−i

[ui (t, ( f k(ti , xi ), x−i ))g(t)]
[

⊗
j �=i

σ ′
j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i ), (19)

so that φ(k,n) = ψ(k,n) − ϑ(k,n). 
�
Step 1 The Radon-Nikodym derivative, g, may be taken bounded.

Proof of Step 1 See the proof of Step 2 in the proof of Lemma 5, on p. 1628. 
�
Step 2 The map ψ defined in (18) is (B(Ti × Xi ),B(R))-measurable.

Proof of Step 2 Define ψ : �(T × X) → R by

ψ(�) :=
∫

T ×X
[ui (t, x)g(t)]�(d(t, x)). (20)

Since ui is bounded and (B(T × X),B(R))-measurable, the map ψ is (B(�(T ×
X)),B(R))-measurable (see, e.g., Aliprantis and Border (2006, Theorem 15.13)).

Let�p(T × X) be the set of all product measures in�(T × X) (i.e., ν ∈ �p(T × X)

if and only if ν = ν1 ⊗ · · · ⊗ νN for some (ν1, . . . , νN ) ∈ × j�(Tj × X j )).
The set �p(T × X) (with the relative w-topology (Definition 1)) is closed in

�(T × X). To see this, let (νn = νn
1 ⊗ · · · ⊗ νn

N ) be a sequence in �p(T × X)

with νn −→
w

ν ∈ �(T × X). Then νn(A1 × · · · × AN ) → ν(A1 × · · · × AN ),

where for each j , A j is any ν j -continuity subset of Tj × X j and ν j denotes the
marginal projection of ν into Tj × X j (see, e.g., Billingsley (1999, Theorem 2.8(i)))).
In particular, letting νn

j represent the marginal projection of νn into the factor Tj × X j ,
we have νn

j (A j ) → ν j (A j ) for every ν j -continuity set A j , and so it follows from the
Portmanteau Theorem (e.g., see Billingsley (1999, Theorem 2.1)) that νn

j −→
w

ν j for

each j . Therefore, applying Theorem 2.8(ii) in Billingsley Billingsley (1999), we see
that ν = ν1 ⊗ · · · ⊗ νN ∈ �p(T × X).

Since �p(T × X) is closed in �(T × X), and since the map ψ defined in (20) is
(B(�(T ×X)),B(R))-measurable, it follows that themapψ |�p(T ×X) is (B(�p(T ×
X)),B(R))-measurable. Hence, because the map (ν1, . . . , νN ) ∈ × j�(Tj × X j ) �→
ν1 ⊗· · ·⊗ νN ∈ �p(T × X) is continuous (by Theorem 2.8(ii) in Billingsley (1999)),
it follows that the map

(ν1, . . . , νN ) ∈ × j�(Tj × X j ) �→ ψ(ν1 ⊗ · · · ⊗ νN )

is (B(× j�(Tj × X j )),B(R))-measurable, and hence (B(�(Ti × Xi ))⊗B(× j �=i�

(Tj × X j )),B(R))-measurable (see, e.g., Aliprantis and Border (2006, Theorem
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1614 O. Carbonell-Nicolau

4.44)). Therefore, the map νi ∈ �(Ti × Xi ) �→ ψ(νi ⊗ [⊗ j �=i σ̂ j ]) is (B(�(Ti ×
Xi )),B(R))-measurable (see, e.g., Aliprantis and Border (Aliprantis and Border
2006, Theorem 4.48)). Now let δ(ti ,xi ) denote the Dirac measure in �(Ti × Xi ) with
support {(ti , xi )}. The set {δ(ti ,xi ) : (ti , xi ) ∈ Ti × Xi } is closed in �(Ti × Xi ) (see,
e.g., Aliprantis and Border (2006, Theorem 15.8)), and so the map νi ∈ {δ(ti ,xi ) :
(ti , xi ) ∈ Ti × Xi } �→ ψ(νi ⊗[⊗ j �=i σ̂ j ]) is (B({δ(ti ,xi ) : (ti , xi ) ∈ Ti × Xi }),B(R))-
measurable. Because the map (ti , xi ) ∈ Ti × Xi �→ δ(ti ,xi ) is an embedding
(Aliprantis and Border (Aliprantis and Border 2006, Theorem 15.8)), it follows that
ψ is (B(Ti × Xi ),B(R))-measurable. 
�

Step 3 There exist a (B(Ti × Xi ),B(R))-measurable map ϑ̂ (k,n) : Ti × Xi → R

and Â ∈ B(Ti × Xi ) such that

σ̂i ( Â) = 0 and ϑ̂ (k,n)(ti , xi ) = ϑ(k,n)(ti , xi ) for all (ti , xi ) ∈ (Ti × Xi ) \ Â (21)

(where ϑ(k,n) is the map defined in (19)).

Proof of Step 3 Define ϑk : �(T × X) → R by

ϑk(�) :=
∫

T ×X
[ui (t, ( f k(ti , xi ), x−i ))g(t)]�(d(t, x)).

Reasoning as in the proof of Step 2, one can show that the map

((ti , xi ), ν−i ) ∈ (Ti × Xi ) ×
[

×
j �=i

�(Tj × X j )

]
�→ ϑk

(
δ(ti ,xi ) ⊗

[
⊗
j �=i

ν j

])

is (B(Ti × Xi ) ⊗ B(× j �=i�(Tj × X j )),B(R))-measurable.
For each j , D j is closed in �(Tj × X j ) (with the w-topology (Definition 1)) (see,

e.g., Milgrom and Weber (Milgrom and Weber 1985, p. 626)). Hence, D−i is closed
in × j �=i�(Tj × X j ). Consequently, the map

((ti , xi ), ν−i ) ∈ (Ti × Xi ) × D−i �→ ϑk
(

δ(ti ,xi ) ⊗
[

⊗
j �=i

ν j

])
(22)

is (B(Ti × Xi ) ⊗ B(D−i ),B(R))-measurable.
Let Bσ̂i (Ti × Xi ) be the σ̂i -completion of B(Ti × Xi ). Then the map in (22) is

(Bσ̂i (Ti × Xi ) ⊗ B(D−i ),B(R))-measurable, and since Bσ̂i (Ti × Xi ) equals its
universal completion, it follows from the proof of the Theorem in Carbonell-Nicolau
(2014a) that the map

((ti , xi ), ν−i ) ∈ (Ti × Xi ) × D−i �→ inf
ν′−i ∈N 1

n
(ν−i )

ϑk
(

δ(ti ,xi ) ⊗
[

⊗
j �=i

ν′
j

])
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is (Bσ̂i (Ti × Xi ) ⊗ B(D−i ),B(R))-measurable (here N 1
n
(ν−i ) denotes the 1

n -

neighborhood of ν−i in D−i ), and consequently the map

(ti , xi ) ∈ (Ti × Xi ) �→ inf
ν′−i ∈N 1

n
(̂σ−i )

ϑk
(

δ(ti ,xi ) ⊗
[

⊗
j �=i

ν′
j

])

is (Bσ̂i (Ti × Xi ),B(R))-measurable (Aliprantis and Border (Aliprantis and Border
2006, Theorem 4.48)). Now Theorem 10.35 in Aliprantis and Border (2006) gives a
(B(Ti × Xi ),B(R))-measurable map ϑ̂ (k,n) : Ti × Xi → R and Â ∈ B(Ti × Xi )

satisfying (21). 
�
Step 4 There exist a (B(Ti × Xi ),B(R))-measurable map φ̂(k,n) : Ti × Xi → R

and Â ∈ B(Ti × Xi ) such that

σ̂i ( Â) = 0 and φ̂(k,n)(ti , xi ) = φ(k,n)(ti , xi ) for all (ti , xi ) ∈ (Ti × Xi ) \ Â. (23)

Proof of Step 4 Because φ(k,n) = ψ(k,n) − ϑ(k,n), the assertion follows immediately
from Step 2 and Step 3. 
�
Step 5 Let Â be the set given in Step 4. There exist A ⊆ (Ti × Xi ) \ Â with

σ̂i (A)

(
sup

(t,x)∈T ×X
|ui (t, x)g(t)|

)
<

ε

16
(24)

and a neighborhood V ′′̂
σ−i

of σ̂−i such that, for all σ ′−i ∈ V ′′̂
σ−i

,

∫
T−i

∫
X−i

[ui (t, ( f k(ti , xi ), x−i ))g(t)]
[

⊗
j �=i

σ ′
j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )

>

∫
T−i

∫
X−i

[ui (t, x)g(t)]
[

⊗
j �=i

σ̂ j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i ) − 3ε

8
(25)

for all (ti , xi ) ∈ (Ti × Xi ) \ (A ∪ Â).

Proof of Step 5 First, note that the left-hand side of (24) is well-defined because ui is
bounded by assumption and g may be taken bounded (Step 1).

Define ϕk : Ti × Xi → R by

ϕk(ti , xi ) := lim
n→∞

[
sup
n′≥n

φ̂(k,n′)(ti , xi )

]
, (26)

where φ̂(k,n) : Ti × Xi → R is the map given in Step 4.
For each (k, n), the map φ̂(k,n) : Ti × Xi → R is (B(Ti × Xi ),B(R))-measurable

(Step 4). Therefore, the map (ti , xi ) ∈ Ti × Xi �→ supn′≥n φ̂(k,n′)(ti , xi ) is also
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1616 O. Carbonell-Nicolau

(B(Ti × Xi ),B(R))-measurable. In addition, the map ϕk defined in (26), being the
pointwise limit of a sequence of (B(Ti × Xi ),B(R))-measurable maps,

(
(ti , xi ) ∈ Ti × Xi �→ sup

n′≥n
φ̂(k,n′)(ti , xi )

)∞

n=1

, (27)

is itself a (B(Ti × Xi ),B(R))-measurable map. Consequently, thanks to Egorov’s
Theorem (see, e.g., Dudley (Dudley 2004, Theorem 7.5.1)), there exists A ⊆ (Ti ×
Xi ) \ Â such that (24) holds and the sequence of maps in (27) converges, as n → ∞,
to the map ϕk (defined in (26)) uniformly on (Ti × Xi ) \ (A ∪ Â). Therefore, there
exists n such that, for all n ≥ n,

∣∣∣∣∣supn′≥n
φ̂(k,n′)(ti , xi ) − ϕk(ti , xi )

∣∣∣∣∣ <
ε

8
, for all (ti , xi ) ∈ (Ti × Xi ) \ (A ∪ Â). (28)

Next, observe that, by item (i) on p. 17, we have

ϕk(ti , xi ) ≤ ε

4
, for each (ti , xi ) ∈ (Ti × Xi ).

Combined with (28), this yields, for all n ≥ n,

sup
n′≥n

φ̂(k,n′)(ti , xi ) <
3ε

8
, for all (ti , xi ) ∈ (Ti × Xi ) \ (A ∪ Â).

Consequently, there exists a neighborhood V ′′̂
σ−i

of σ̂−i such that, for all σ ′−i ∈ V ′′̂
σ−i

,
(25) holds. 
�

Let V ′′̂
σ−i

be the neighborhood given in Step 5. For all σ ′−i ∈ V ′′̂
σ−i

, one has

∫
T

∫
X
[ui (t, ( f k(ti , xi ), x−i ))g(t)]

[
σ̂i (·|ti ) ⊗

[
⊗
j �=i

σ ′
j (·|t j )

]]
(dx)

[
N⊗

j=1
p j

]
(dt)

=
∫

(Ti ×Xi )\(A∪ Â)

∫
T−i

∫
X−i

[ui (t, ( f k(ti , xi ), x−i ))g(t)]
[

⊗
j �=i

σ ′
j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )̂σi (d(ti , xi ))

+
∫

(A∪ Â)

∫
T−i

∫
X−i

[ui (t, ( f k(ti , xi ), x−i ))g(t)]
[

⊗
j �=i

σ ′
j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )̂σi (d(ti , xi ))

=
∫

(Ti ×Xi )\(A∪ Â)

∫
T−i

∫
X−i

[ui (t, ( f k(ti , xi ), x−i ))g(t)]
[

⊗
j �=i

σ ′
j (·|t j )

]
(dx−i )
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Perfect equilibria in games of incomplete information 1617

[
⊗
j �=i

p j

]
(dt−i )̂σi (d(ti , xi ))

+
∫

A

∫
T−i

∫
X−i

[ui (t, ( f k(ti , xi ), x−i ))g(t)]
[

⊗
j �=i

σ ′
j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )̂σi (d(ti , xi ))

>

∫
(Ti ×Xi )\(A∪ Â)

∫
T−i

∫
X−i

[ui (t, x)g(t)]
[

⊗
j �=i

σ̂ j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )̂σi (d(ti , xi )) − 3ε

8

+
∫

A

∫
T−i

∫
X−i

[ui (t, ( f k(ti , xi ), x−i ))g(t)]
[

⊗
j �=i

σ ′
j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )̂σi (d(ti , xi ))

+
∫

(A∪ Â)

∫
T−i

∫
X−i

[ui (t, x)g(t)]
[

⊗
j �=i

σ̂ j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )̂σi (d(ti , xi ))

−
∫

(A∪ Â)

∫
T−i

∫
X−i

[ui (t, x)g(t)]
[

⊗
j �=i

σ̂ j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )̂σi (d(ti , xi ))

= Ui (̂σ ) +
∫

A

∫
T−i

∫
X−i

[ui (t, ( f k(ti , xi ), x−i ))g(t)]
[

⊗
j �=i

σ ′
j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )̂σi (d(ti , xi ))

− 3ε

8
−
∫

(A∪ Â)

∫
T−i

∫
X−i

[ui (t, x)g(t)]
[

⊗
j �=i

σ̂ j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )̂σi (d(ti , xi ))

= Ui (̂σ ) +
∫

A

∫
T−i

∫
X−i

[ui (t, ( f k(ti , xi ), x−i ))g(t)]
[

⊗
j �=i

σ ′
j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )̂σi (d(ti , xi ))

− 3ε

8
−
∫

A

∫
T−i

∫
X−i

[ui (t, x)g(t)]
[

⊗
j �=i

σ̂ j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )̂σi (d(ti , xi ))
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1618 O. Carbonell-Nicolau

≥ Ui (̂σ ) − σ̂i (A)

(
sup

(t,x)∈T ×X
|ui (t, x)g(t)|

)
− 3ε

8
− σ̂i (A)

(
sup

(t,x)∈T ×X
|ui (t, x)g(t)|

)

= Ui (̂σ ) − ε

2
,

where the second and fourth equalities follow from the fact that σ̂i ( Â) = 0 (see
(23) in Step 4), the first inequality uses the fact that (25) holds for all (ti , xi ) ∈
(Ti × Xi ) \ (A ∪ Â), and the last equality uses (24).

This finishes the proof of Lemma 1. 
�

5.2 Proof of Lemma 2

We restate Lemma 2 here for the convenience of the reader.

Lemma 2 Given a Bayesian game (Ti , Xi , ui , p)N
i=1, suppose that for each t ∈ T ,

the map
∑N

i=1 ui (t, ·) : X → R is upper semicontinuous. Suppose further that p is
absolutely continuous with respect to p1⊗· · ·⊗ pN . Then the map

∑N
i=1 Ui (·) : D →

R is upper semicontinuous. 
�
Proof The map

∑N
i=1 Ui (·) : D → R is upper semicontinuous with respect to the

so-called weak-strong topology (ws-topology for short) (see Balder (2001, Definition
1.1)). More precisely, if each Di is endowed with the relative ws-topology, and D is
endowedwith the corresponding product topology, then themap

∑N
i=1 Ui (·) : D → R

is upper semicontinuous (see Carbonell-Nicolau and McLean (2018, §5.2)). It only
remains to observe that, by an argument analogous to that in the proof of Step 19 (on
p. 1641, in the proof of Lemma 5), the relative product w-topology onD is equivalent
to the relative product ws-topology on D . 
�

5.3 Proof of Lemma 3

Lemma 3 Suppose that � = (Ti , Xi , ui , p)N
i=1 is a Bayesian game satisfying generic

entire payoff security and generic local equi-upper semicontinuity. Then � satisfies
strong uniform payoff security. 
�
Proof Let μ = (μ1, . . . , μN ) ∈ D̃ be the profile of measures given by the generic
local equi-upper semicontinuity condition (see Definition 11).

Since D̃ ⊆ D̂ , it suffices to show the following (recall Definition 9): For each
i and ε > 0 there is a sequence ( f k) of (B(Ti × Xi ),B(Xi ))-measurable maps
f k : Ti × Xi → Xi satisfying the following:

(a) For each k and (t, x) ∈ T × X , there exists a neighborhood Vx−i of x−i such that

ui (t, ( f k(ti , xi ), y−i )) > ui (t, x) − ε, for all y−i ∈ Vx−i .
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Perfect equilibria in games of incomplete information 1619

(b) For each (t, x−i ) ∈ T × X−i , there is a subset Yi of Xi with μi (Yi |ti ) = 1
satisfying the following: for each xi ∈ Yi , there exists K such that for all k ≥ K ,
there is a neighborhood V ′

x−i
of x−i such that

ui (t, ( f k(ti , xi ), y−i )) < ui (t, (xi , y−i )) + ε, for all y−i ∈ V ′
x−i

.

Fix ε > 0 and i . By the generic entire payoff security condition (Definition 10), for
each xi ∈ Xi and k ∈ N, there exist hk(xi ) ∈ Xi and γ k(xi ) > 0 such that for every
(t, z−i ) ∈ T × X−i , there is a neighborhood Vz−i of z−i such that

ui (t, (h
k(xi ), y−i )) > ui (t, (xi , z−i )) − ε for all y−i ∈ Vz−i , if xi ∈ Ki ∪ Ci ,

hk(xi ) ∈ N 1
k
(xi ) and ui (t, (h

k(xi ), y−i ))

> ui (t, (z
′
i , z−i )) − ε for all (z′

i , y−i ) ∈ Nγ k (xi )
(xi ) × Vz−i ,

if xi ∈ Ai \ Ci ,

where Ci is a countable subset of Ai . In addition, there is no loss of generality in
assuming that γ k(xi ) < 1

k , and, since the members of Ki are isolated points, one may
take hk(xi ) = xi for xi ∈ Ki .

Now, since Ai \Ci ⊆ Xi and Xi is compact and metric, Ai \Ci is separable, hence
Lindelöf, and so, for each k, there is a countable subset {x (k,1)

i , x (k,2)
i , . . .} of Ai \ Ci

such that

∞⋃
l=1

(
N

γ k (x (k,l)
i )

(x (k,l)
i ) ∩ (Ai \ Ci )

)
=

⋃
xi ∈Ai \Ci

(
Nγ k (xi )

(xi ) ∩ (Ai \ Ci )
)
.

Now define V (k,1), V (k,2), . . . recursively as follows:

V (k,1) := N
γ k (x (k,1)

i )
(x (k,1)

i ) ∩ (Ai \ Ci )

and

V (k,l) :=
(

N
γ k (x (k,l)

i )
(x (k,l)

i ) ∩ (Ai \ Ci )
)

\
(

l−1⋃
m=1

V (k,m)

)
, l ∈ {2, 3, . . .}.

Next, define, for each k, f k : Ti × Xi → Xi by

f k(ti , xi ) :=
{

hk(x (k,l)
i ) if xi ∈ V (k,l),

hk(xi ) if xi ∈ Ci ∪ Ki .

Observe that

f k(Ti × Xi ) = f k(Ti × (Ai \ Ci )) ∪ f k(Ti × (Ci ∪ Ki ))
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1620 O. Carbonell-Nicolau

=
{

hk(x (k,1)), hk(x (k,2)), . . .
}

∪ f k(Ti × (Ci ∪ Ki )),

and so f k(Ti × Xi ) is countable. Therefore, given B ∈ B(Xi ), B ∩ f k(Ti × Xi ) is
countable, and

f k−1
(B) = f k−1

(B ∩ f k(Ti × Xi ))

= f k−1
({

hk(x (k,1)), hk(x (k,2)), . . .
}

∩ B
)

∪
(

Ti ×
{

xi ∈ Ci ∪ Ki : hk(xi ) ∈ B
})

=
(

Ti ×
( ∞⋃

m=1

V (k,lm )

))
∪
(

Ti ×
{

xi ∈ Ci ∪ Ki : hk(xi ) ∈ B
})

for some subsequence (lm) of (l). Thus, f k−1
(B) is expressible as a union of Borel

subsets of Ti × Xi , and we see that f k is (B(Ti × Xi ),B(Xi ))-measurable.
To see that item (a) holds, fix k and (t, x) ∈ T × X . If xi ∈ Ci ∪ Ki , it is clear that

there exists a neighborhood Vx−i of x−i such that

ui (t, ( f k(ti , xi ), y−i )) > ui (t, x) − ε, for all y−i ∈ Vx−i . (29)

Now suppose that xi ∈ Ai \Ci . Then xi ∈ V (k,l) for some l and f k(ti , xi ) = hk(x (k,l)
i ).

Therefore, since there is a neighborhood Vx−i of x−i such that

ui (t, (h
k(x (k,l)

i ), y−i ))

> ui (t, (x ′
i , x−i )) − ε, for all (x ′

i , y−i ) ∈ N
γ k (x (k,l)

i )
(x (k,l)

i ) × Vx−i ,

and because xi ∈ N
γ k (x (k,l)

i )
(x (k,l)

i ), one obtains (29).

To see that item (b) holds, fix (t, x−i ) ∈ T × X−i and let Yi be the set given by the
generic local equi-upper semicontinuity condition (Definition 11). Set Y ′

i := Yi \ Ci .
Then μi (Y ′

i |ti ) = 1. In addition, given xi ∈ Y ′
i , f k(ti , xi ) = xi if xi ∈ Ki and

f k(ti , xi ) = hk(x (k,l)
i ), hk(x (k,l)

i ) ∈ N 1
k
(x (k,l)

i ), and xi ∈ V (k,l) ⊆ N
γ k (x (k,l)

i )
(x (k,l)

i ) ⊆
N 1

k
(x (k,l)

i ) if xi ∈ Ai \ Ci . Consequently, f k(ti , xi ) → xi for every xi ∈ Y ′
i . Now

given xi ∈ Y ′
i , the generic local equi-upper semicontinuity condition (Definition 11)

gives a neighborhood Vxi of xi such that for every yi ∈ Vxi , there is a neighborhood
V ′

x−i
of x−i such that

ui (t, (yi , y−i )) < ui (t, (xi , y−i )) + ε, for all y−i ∈ V ′
x−i

.
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Perfect equilibria in games of incomplete information 1621

Since f k(ti , xi ) → xi , there exists K such that for all k ≥ K , f k(ti , xi ) ∈ Vxi , and
so, for all k ≥ K , there is a neighborhood V ′

x−i
of x−i such that

ui (t, ( f k(ti , xi ), y−i )) < ui (t, (xi , y−i )) + ε, for all y−i ∈ V ′
x−i

,

as desired. 
�

A Proof of Lemma 5

In this appendix, we prove Lemma 5, which is instrumental for the proof of Lemma 1.
Since the proof of Lemma 5 is rather technical, the formal details are preceded by a
preliminary sketch of the proof’s main argument.

Lemma 5 Suppose that the Bayesian game � = (Ti , Xi , ui , p)N
i=1 satisfies strong

uniform payoff security. Suppose that p is absolutely continuous with respect to p1 ⊗
· · · ⊗ pN . Then there exists (μ1, . . . , μN ) ∈ D̂ such that for each i and ε > 0, there
is a sequence ( f k) of (B(Ti × Xi ),B(Xi ))-measurable maps f k : Ti × Xi → Xi

satisfying the following:

(I) For each (ti , xi ) ∈ Ti × Xi , σ−i ∈ D−i , and k, there is a neighborhood Vσ−i of
σ−i such that

∫
T−i

∫
X−i

[ui (t, ( f k(ti , xi ), x−i ))g(t)]
[

⊗
j �=i

σ ′
j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )

>

∫
T−i

∫
X−i

[ui (t, x)g(t)]
[

⊗
j �=i

σ j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )

− ε, for all σ ′−i ∈ Vσ−i ,

where g is a density of p with respect to p1 ⊗ · · · ⊗ pN .
(II) For each σ−i ∈ D−i , there exists K such that for each k ≥ K , there is a

neighborhood V ′
σ−i

of σ−i such that

Ui (μ
k
i , σ

′−i ) < Ui (μi , σ
′−i ) + ε, for all σ ′−i ∈ V ′

σ−i
,

where μk
i (·|ti ) is defined by

μk
i (B|ti ) := μi

({
xi ∈ Xi : f k(ti , xi ) ∈ B

} ∣∣∣ti
)

. (12)

A.1 Sketch of the proof of Lemma 5

We first verify (in Step 1 of the proof of Lemma 5) that the conditional probability
μk

i (·|ti ) defined in (12) is well-defined.
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1622 O. Carbonell-Nicolau

We must show that there exists (μ1, . . . , μN ) ∈ D̂ such that for each i and ε > 0,
there is a sequence ( f k) of (B(Ti ×Xi ),B(Xi ))-measurablemaps f k : Ti ×Xi → Xi

satisfying items (I) and (II) in the statement of Lemma 5.
Strong uniformpayoff security (Definition 9) immediately givesμ = (μ1, . . . , μN )

∈ D̂ such that for each i and η > 0 there is a sequence ( f k
(i,η))

∞
k=1 of (B(Ti ×

Xi ),B(Xi ))-measurable maps f k
(i,η) : Ti × Xi → Xi satisfying the following:

(a) For each k and (t, x) ∈ T × X , there exists a neighborhood Vx−i of x−i such that

ui (t, ( f k
(i,η)(ti , xi ), y−i ))g(t) ≥ [ui (t, x) − η]g(t), for all y−i ∈ Vx−i .

(b) For each (t, x−i ) ∈ T × X−i , there is a subset Y(i,η,t,x−i ) of Xi with
μi (Y(i,η,t,x−i )|ti ) = 1 satisfying the following: for each xi ∈ Y(i,η,t,x−i ), there
exists K(i,η,t,x) such that for all k ≥ K(i,η,t,x), there exists n(i,η,t,x,k) such that

ui (t, ( f k
(i,η)(ti , xi ), y−i ))g(t)

≤ [ui (t, (xi , y−i )) + η]g(t), for all y−i ∈ N1/n(i,η,t,x,k)
(x−i ).

Fix (i, ε). To prove item (II) in the statement of Lemma 5, it suffices to show that
there exists η such that, letting f k := f k

(i,η) for each k, and given σ−i ∈ D−i , there
exists K such that, for each k ≥ K , there is a neighborhood V ′

σ−i
of σ−i such that

Ui (μ
k
i , σ

′−i ) < Ui (μi , σ
′−i ) + ε, for all σ ′−i ∈ V ′

σ−i
,

where μk
i (·|ti ) is defined by

μk
i (B|ti ) := μi

({
xi ∈ Xi : f k(ti , xi ) ∈ B

} ∣∣∣ti
)

.

Choose any η < ε
12 and σ−i ∈ D−i . Define ψk

(i,η) : T−i × X−i → R by

ψk
(i,η)(t−i , x−i )

:=
∫

Ti ×Xi

[
ui (t, ( f k

(i,η)(ti , xi ), x−i )) − ui (t, (xi , x−i ))
]

g(t)μi (d(ti , xi ))

and ψ
k
(i,η) : T−i × X−i → R by

ψ
k
(i,η)(t−i , x−i ) := inf

n
sup

y−i ∈N 1
n
(x−i )

ψk
(i,η)(t−i , y−i ).

Define p−i ∈ �(T−i ) by

p−i := ⊗ j �=i p j ,
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Perfect equilibria in games of incomplete information 1623

and let B∗(T−i ) be the p−i -completion of B(T−i ). Next, let p∗−i be the complete
extension of p−i , and let P∗−i be the space of all probability measures ν in �(T−i ×
X−i ,B∗(T−i ) ⊗ B(X−i )) with

ν(A × X−i ) = p∗−i (A), for all A ∈ B∗(T−i ).

Let p∗−i ⊗ σ−i be a probability measure inP∗−i defined by

[p∗−i ⊗ σ−i ](A∗ × B) :=
∫

A∗

[
⊗
j �=i

σ j (·|t j )

]
(B)p∗−i (dt−i ),

for A∗ ∈ B∗(T−i ) and B ∈ B(X−i ).
Endow the space P∗−i with the relative w-topology (Definition 1) on �(T−i ×

X−i ,B∗(T−i ) ⊗ B(X−i )), and recall that each D j is endowed with the relative w-
topology (Definition1) on�(Tj ×X j ), and thatD−i is providedwith the corresponding
product topology.

For each k, there is a neighborhood V k
η of p∗−i ⊗ σ−i inP∗−i such that

∫
T−i ×X−i

ψ
k
(i,η)(t−i , x−i )ν(d(t−i , x−i ))

<

∫
T−i ×X−i

ψ
k
(i,η)(t−i , x−i )[p∗−i ⊗ σ−i ](d(t−i , x−i )) + ε

2
, for all ν ∈ V k

η

(this is proven in Step 19 of the proof of Lemma 5). Since ψk
(i,η) ≤ ψ

k
(i,η), it follows

that
∫

T−i ×X−i

ψk
(i,η)(t−i , x−i )ν(d(t−i , x−i ))

<

∫
T−i ×X−i

ψ
k
(i,η)(t−i , x−i )[p∗−i ⊗ σ−i ](d(t−i , x−i )) + ε

2
, for all ν ∈ V k

η .

Now since there exists kη such that, for all k ≥ kη,

∫
T−i ×X−i

ψ
k
(i,η)(t−i , x−i )[p∗−i ⊗ σ−i ](d(t−i , x−i )) < 5η

(see Step 15 in the proof of Lemma 5), we see that, for all k ≥ kη,

∫
T−i ×X−i

ψk
(i,η)(t−i , x−i )ν(d(t−i , x−i )) <

ε

2
+ 5η, for all ν ∈ V k

η .

Next, since V k
η is open inP∗−i and the map h : D−i → P∗−i defined by

h(ν1, . . . , νi−1, νi+1, . . . , νN ) := p∗−i ⊗ ν−i (30)
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is continuous (see Step 17 in the proof of Lemma 5), it follows that U k
η := h−1(V k

η )

is open in D−i . Because U k
η contains (σ1, . . . , σi−1, σi+1, σN ), and since, for all

σ ′−i ∈ U k
η , we have h(σ ′−i ) ∈ V k

η and

∫
T−i ×X−i

ψk
(i,η)(t−i , x−i )

[
⊗
j �=i

σ ′
j

]
(d(t−i , x−i ))

=
∫

T−i ×X−i

ψk
(i,η)(t−i , x−i )h(σ ′−i )(d(t−i , x−i ))

(the map ψk
(i,ε) is (B(T−i ) ⊗ B(X−i ),B(R))-measurable by Step 8 in the proof of

Lemma 5), it follows that, for all k ≥ kη,

∫
T−i ×X−i

ψk
(i,η)(t−i , x−i )

[
⊗
j �=i

σ ′
j

]
(d(t−i , x−i )) <

ε

2
+ 5η, for all σ ′−i ∈ U k

η .

But since η ∈ (0, ε
12 ), one obtains K such that, for all k ≥ K , there is a neighborhood

V ′
σ−i

of σ−i such that

Ui (μ
k
i , σ

′−i ) − Ui (μi , σ
′−i )

=
∫

T−i ×X−i

ψk
(i,η)(t−i , x−i )

[
⊗
j �=i

σ ′
j

]
(d(t−i , x−i )) < ε, for all σ ′−i ∈ V ′

σ−i
.

This establishes item (II) in the statement of Lemma 5.
To prove item (I) in the statement of Lemma 5, fix i and ε, and note that it suffices

to show that there exists η (which may depend on i and ε) such that, given (ti , xi ) ∈
Ti × Xi , σ−i ∈ D−i , and k, there is a neighborhood Vσ−i of σ−i such that

∫
T−i

∫
X−i

[ui (t, ( f k
(i,η)(ti , xi ), x−i ))g(t)]

[
⊗
j �=i

σ ′
j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )

>

∫
T−i

∫
X−i

[ui (t, x)g(t)]
[

⊗
j �=i

σ j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )

− ε, for all σ ′−i ∈ Vσ−i , (31)

Chooseη < ε
2 . Fix (ti , xi ) ∈ Ti ×Xi ,σ−i ∈ D−i , and k. Define ζη : T−i ×X−i → R

by

ζη(t−i , x−i ) := sup
n∈N

inf
y−i ∈N 1

n
(x−i )

ui (t, ( f k
(i,η)(ti , xi ), y−i ))g(t).

There exists a neighborhood V ∗
η of p∗−i ⊗ σ−i inP∗−i such that

∫
T−i ×X−i

ζη(t−i , x−i )ν(d(t−i , x−i ))
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>

∫
T−i ×X−i

ζη(t−i , x−i )[p∗−i ⊗ σ−i ](d(t−i , x−i )) − η, for all ν ∈ V ∗
η

(see Step 23 in the proof of Lemma 5). From item (a) (on page 1622) and from the
definition of ζη, we see that, for every (t−i , x−i ) ∈ T−i × X−i ,

ui (t, ( f k
(i,η)(ti , xi ), x−i ))g(t) ≥ ζη(t−i , x−i ) ≥ [ui (t, x) − η]g(t).

Consequently, for all ν ∈ P∗−i ,

∫
T−i ×X−i

ui (t, ( f k
(i,η)(ti , xi ), x−i ))g(t)ν(d(t−i , x−i ))

≥
∫

T−i ×X−i

ζη(t−i , x−i )ν(d(t−i , x−i ))

and

∫
T−i ×X−i

ζη(t−i , x−i )ν(d(t−i , x−i )) ≥
∫

T−i ×X−i

[ui (t, x) − η]g(t)ν(d(t−i , x−i )),

and so one obtains, for every ν ∈ V ∗
η ,

∫
T−i ×X−i

ui (t, ( f k
(i,η)(ti , xi ), x−i ))g(t)ν(d(t−i , x−i ))

≥
∫

T−i ×X−i

ζη(t−i , x−i )ν(d(t−i , x−i ))

>

∫
T−i ×X−i

ζη(t−i , x−i )[p∗−i ⊗ σ−i ](d(t−i , x−i )) − η

≥
∫

T−i ×X−i

[ui (t, x) − η]g(t)[p∗−i ⊗ σ−i ](d(t−i , x−i )) − η

=
∫

T−i ×X−i

ui (t, x)g(t)[p∗−i ⊗ σ−i ](d(t−i , x−i )) − η − η

>

∫
T−i ×X−i

ui (t, x)g(t)[p∗−i ⊗ σ−i ](d(t−i , x−i )) − ε,

where the last inequality follows from the inequality η < ε
2 .

Next, because the map h defined in (30) is continuous (see Step 17 in the proof of
Lemma 5), and since V ∗

η is open in P∗−i , it follows that Vσ−i := h−1(V ∗
η ) is open in

D−i . Since Vσ−i contains σ−i , and since, for all σ ′−i ∈ Vσ−i , one has h(σ ′−i ) ∈ V ∗
η and

∫
T−i

∫
X−i

[ui (t, ( f k
(i,η)(ti , xi ), x−i ))g(t)]

[
⊗
j �=i

σ ′
j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )
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1626 O. Carbonell-Nicolau

=
∫

T−i ×X−i

ui (t, ( f k
(i,η)(ti , xi ), x−i ))g(t)h(σ ′−i )(d(t−i , x−i ))

and

∫
T−i

∫
X−i

[ui (t, x)g(t)]
[

⊗
j �=i

σ j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )

=
∫

T−i ×X−i

[ui (t, x)g(t)][p∗−i ⊗ σ−i ](d(t−i , x−i )),

it follows that (31) holds.
This establishes item (I) in the statement of Lemma 5 and completes the argument.
We are now ready for the formal proof of Lemma 5.

Proof of Lemma 5 The proof is organized in a number of steps. To begin, we verify
that the conditional probability μk

i (·|ti ) defined in (12) is well-defined.

Step 1 The map ti ∈ Ti �→ μk
i (B|ti ) ∈ [0, 1] is (B(Ti ),B([0, 1]))-measurable for

each B ∈ B(Xi ), and μk
i (·|ti ) ∈ �(Xi ) for each ti ∈ Ti .

Proof of Step 1 For ti ∈ Ti , it is clear that μk
i (B|ti ) ∈ [0, 1] for each B ∈ B(Xi ), and

thatμk
i (Xi |ti ) = μi (Xi |ti ) = 1 andμk

i (∅|ti ) = μi (∅|ti ) = 0. To see that eachμk
i (·|ti )

is countably additive, choose a countable collection (Bl)∞l=1 of pairwise disjoint sets
inB(Xi ) and note that

μk
i

(∞⋃
l=1

Bl
∣∣∣∣ti
)

= μi

({
xi ∈ Xi : f k(ti , xi ) ∈

∞⋃
l=1

Bl

} ∣∣∣∣ti
)

= μi

(∞⋃
l=1

{
xi ∈ Xi : f k(ti , xi ) ∈ Bl

} ∣∣∣∣ti
)

=
∞∑

l=1

μi

({
xi ∈ Xi : f k(ti , xi ) ∈ Bl

} ∣∣∣ti
)

=
∞∑

l=1

μk
i (Bl |ti ).

Thus, μk
i (·|ti ) ∈ �(Xi ) for each ti ∈ Ti .10

10 The sets
⎧⎨
⎩xi ∈ Xi : f k (ti , xi ) ∈

∞⋃
l=1

Bl

⎫⎬
⎭ and

{
xi ∈ Xi : f k (ti , xi ) ∈ Bl

}

are inB(Xi ) because the map f k , being jointly measurable, is separately measurable (see, e.g., Aliprantis
and Border (2006, Theorem 4.48)).
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Next, we show that the map ti ∈ Ti �→ μk
i (B|ti ) ∈ [0, 1] is (B(Ti ),B([0, 1]))-

measurable for each B ∈ B(Xi ).
Fix B ∈ B(Xi ). Because the map f k : Ti × Xi → Xi is (B(Ti × Xi ),B(Xi ))-

measurable, one has

A := f k−1
(B) ∈ B(Ti × Xi ).

Now define the maps ϑ : Ti → Ti × �(Xi ) and ζ : Ti × �(Xi ) → [0, 1] as follows:

ϑ(ti ) := (ti , μi (·|ti )) and ζ(ti , ν) := ν(Ati ), (32)

where Ati denotes the ti -section of A in Xi : Ati := {xi ∈ Xi : (ti , xi ) ∈ A}.
We proceed in four sub-steps.

Step 1.1 The map ϑ defined in (32) is (B(Ti ),B(Ti × �(Xi )))-measurable.

Proof of Step 1.1 Because the map ti ∈ Ti �→ μi (B̂|ti ) ∈ [0, 1] is (B(Ti ),B([0, 1]))-
measurable for each B̂ ∈ B(Xi ), Proposition 7.26 in Bertsekas and Shreve (1996)
implies that the map ti ∈ Ti �→ μ(·|ti ) ∈ �(Xi ) is (B(Ti ),B(�(Xi )))-measurable.
Therefore, because the map ti ∈ Ti �→ ti ∈ Ti is (B(Ti ),B(Ti ))-measurable and the
map ti ∈ Ti �→ μ(·|ti ) ∈ �(Xi ) is (B(Ti ),B(�(Xi )))-measurable, it follows from
Lemma 4.49 in Aliprantis and Border (2006) that the map ϑ : Ti → Ti × �(Xi )

is (B(Ti ),B(Ti ) ⊗ B(�(Xi )))-measurable, and hence (B(Ti ),B(Ti × �(Xi )))-
measurable. 
�

Step 1.2 The map ζ defined in (32) is (B(Ti × �(Xi )),B([0, 1]))-measurable.

Proof of Step 1.2 Since B(Ti ) ⊗ B(�(Xi )) = B(Ti × �(Xi )), the assertion is an
immediate consequence of Theorem 17.25 in Kechris (1995). 
�

Step 1.3 The composition map ζ ◦ϑ : Ti → [0, 1] is (B(Ti ),B([0, 1]))-measurable.

Proof of Step 1.3 The assertion follows from Step 1.1 and Step 1.2, together with the
fact that compositions of measurable functions are measurable. 
�

Step 1.4 The map ti ∈ Ti �→ μk
i (B|ti ) ∈ [0, 1] is (B(Ti ),B([0, 1]))-measurable.

Proof of Step 1.4 In light of Step 1.3, it suffices to show that the map ti ∈ Ti �→
μk

i (B|ti ) ∈ [0, 1] is identical to the composition map ζ ◦ ϑ : Ti → [0, 1]. To see this,
fix ti ∈ Ti and note that

[ζ ◦ ϑ](ti ) = ζ(ϑ(ti )) = ζ(ti , μi (·|ti )) = μi (Ati |ti )
= μi ({xi ∈ Xi : (ti , xi ) ∈ A} |ti ) = μi

({
xi ∈ Xi : f k(ti , xi ) ∈ B

} ∣∣∣ti
)

= μk
i (B|ti ). 
�
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1628 O. Carbonell-Nicolau

Step 1.4 gives the desired conclusion. This finishes the proof of Step 1. 
�
Next, we must show that there exists (μ1, . . . , μN ) ∈ D̂ such that for each i

and ε > 0, there is a sequence ( f k) of (B(Ti × Xi ),B(Xi ))-measurable maps
f k : Ti × Xi → Xi satisfying items (I) and (II) in the statement of Lemma 5.
Let g : T → [0,∞) be a ((B(T ),B([0,∞)))-measurable) density of p with

respect to p1 ⊗ · · · ⊗ pN (i.e., a Radon-Nikodym derivative of p with respect to
p1 ⊗ · · · ⊗ pN ). First, we remark that there is no loss of generality in assuming that
g is bounded.

Step 2 The Radon-Nikodym derivative, g, may be taken bounded.

Proof of Step 2 This follows from the fact that g is bounded up to sets of p1⊗· · ·⊗ pN -
measure zero if and only if there exists C ∈ R such that p(B) ≤ C[p1⊗· · ·⊗ pN ](B)

for all B ∈ B(T ). The proof of this assertion is straightforward. 
�
Stronguniformpayoff security (Definition9) immediately givesμ = (μ1, . . . , μN ) ∈

D̂ such that for each i and ε > 0 there is a sequence ( f k
(i,ε))

∞
k=1 of (B(Ti ×

Xi ),B(Xi ))-measurable maps f k
(i,ε) : Ti × Xi → Xi satisfying the following:

(a) For each k and (t, x) ∈ T × X , there exists a neighborhood Vx−i of x−i such that

ui (t, ( f k
(i,ε)(ti , xi ), y−i ))g(t) ≥ [ui (t, x) − ε]g(t), for all y−i ∈ Vx−i .

(b) For each (t, x−i ) ∈ T × X−i , there is a subset Y(i,ε,t,x−i ) of Xi with
μi (Y(i,ε,t,x−i )|ti ) = 1 satisfying the following: for each xi ∈ Y(i,ε,t,x−i ), there
exists K(i,ε,t,x) such that for all k ≥ K(i,ε,t,x), there exists n(i,ε,t,x,k) such that

ui (t, ( f k
(i,ε)(ti , xi ), y−i ))g(t)

≤ [ui (t, (xi , y−i )) + ε]g(t), for all y−i ∈ N1/n(i,ε,t,x,k)
(x−i ).

First, we prove item (II) in the statement of Lemma 5. To this end, we first prove a
number of preliminary facts, Step 3–Step 12 below.

Webeginwith the following definition.Given (i, ε, t−i , x−i ) and {k, n} ⊆ N, define
ξ

(k,n)
(i,ε,t−i ,x−i )

: Ti × Xi → R by

ξ
(k,n)
(i,ε,t−i ,x−i )

(ti , xi )

:= sup
y−i ∈N 1

n
(x−i )

[
[ui (t, ( f k

(i,ε)(ti , xi ), y−i )) − ui (t, (xi , y−i ))]g(t)
]
. (33)

Step 3 Given (i, ε, t−i , x−i ), there exist a (B(Ti × Xi ),B(R))-measurable map
ξ̂

(k,n)
(i,ε,t−i ,x−i )

: Ti × Xi → R and Â ∈ B(Ti × Xi ) such that

μi ( Â) = 0 and ξ̂
(k,n)
(i,ε,t−i ,x−i )

(ti , xi )

= ξ
(k,n)
(i,ε,t−i ,x−i )

(ti , xi ) for all (ti , xi ) ∈ (Ti × Xi ) \ Â. (34)
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Proof of Step 3 Because the map f k
(i,ε) : Ti × Xi → Xi is (B(Ti × Xi ),B(Xi ))-

measurable, it is clear that the map (τi , y) ∈ Ti × X �→ f k
(i,ε)(τi , yi ) ∈ Xi is

(B(Ti × X),B(Xi ))-measurable. Therefore, applying Lemma 4.49 and Theorem
4.44 in Aliprantis and Border (2006), we see that the map (τi , y) ∈ Ti × X �→
((τi , t−i ), ( f k

(i,ε)(τi , yi ), y−i )) ∈ Ti × X is (B(Ti × X),B(Ti × X))-measurable.
Consequently, the map

(τi , y) ∈ Ti × X

�→
[
ui ((τi , t−i ), ( f k

(i,ε)(τi , yi ), y−i )) − ui ((τi , t−i ), (yi , y−i ))
]

g(τi , t−i )

is (B(Ti × X),B(R))-measurable, and hence (by Theorem 4.44 in Aliprantis and
Border (2006)) the map

((τi , zi ), z−i ) ∈ Ti × Xi × X−i

�→
[
ui ((τi , t−i ), ( f k

(i,ε)(τi , yi ), y−i )) − ui ((τi , t−i ), y)
]

g(τi , t−i ) (35)

is (B(Ti × Xi ) ⊗ B(X−i ),B(R))-measurable. Letting Bμi (Ti × Xi ) denote the
μi -completion of B(Ti × Xi ), it follows that the map in (35) is (Bμi (Ti × Xi ) ⊗
B(X−i ),B(R))-measurable, and sinceBμi (Ti ×Xi ) equals its universal completion,
it follows from the proof of the Theorem in Carbonell-Nicolau (2014a) that the map

((τi , zi ), z−i ) ∈ Ti × Xi × X−i

�→ sup
y−i ∈N 1

n
(z−i )

[
[ui ((τi t−i ), ( f k

(i,ε)(τi , zi ), y−i )) − ui ((τi , t−i ), (zi , y−i ))]g(τi , t−i )
]

is (Bμi (Ti × Xi )⊗B(X−i ),B(R))-measurable. Consequently, the map ξ
(k,n)
(i,ε,t−i ,x−i )

defined in (33) is (Bμi (Ti × Xi ),B(R))-measurable (see, e.g., Aliprantis and Border
(2006, Theorem 4.48)). Applying Theorem 10.35 in Aliprantis and Border (2006), we
see that there exist a (B(Ti ×Xi ),B(R))-measurablemap ξ̂

(k,n)
(i,ε,t−i ,x−i )

: Ti ×Xi → R

and Â ∈ B(Ti × Xi ) satisfying (34), as we sought. 
�

Now let ξ(i,ε,t−i ,x−i ) : Ti × Xi → R be defined by

ξ(i,ε,t−i ,x−i )(ti , xi ) := lim sup
k→∞

[
inf

n
ξ

(k,n)
(i,ε,t−i ,x−i )

(ti , xi )
]

= lim
k→∞

[
sup
k′≥k

[
inf

n
ξ

(k′,n)
(i,ε,t−i ,x−i )

(ti , xi )
]]

. (36)

Step 4 Given (i, ε, t−i , x−i ), there exists a sequence (nk) such that
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1630 O. Carbonell-Nicolau

ξ(i,ε,t−i ,x−i )(ti , xi ) = lim sup
k→∞

ξ
(k,nk )
(i,ε,t−i ,x−i )

(ti , xi )

= lim
k→∞

[
sup
k′≥k

[
ξ

(k′,nk′ )
(i,ε,t−i ,x−i )

(ti , xi )
]]

, for each (ti , xi ) ∈ Ti × Xi . (37)

Proof of Step 4 For each (ti , xi ) ∈ Ti × Xi and k, there exists nk such that

inf
n

ξ
(k,n)
(i,ε,t−i ,x−i )

(ti , xi ) ≤ ξ
(k,nk)
(i,ε,t−i ,x−i )

(ti , xi ) < inf
n

ξ
(k,n)
(i,ε,t−i ,x−i )

(ti , xi ) + 1

k
.

Consequently,

lim sup
k→∞

[
inf

n
ξ

(k,n)
(i,ε,t−i ,x−i )

(ti , xi )
]

≤ lim sup
k→∞

[
ξ

(k,nk )
(i,ε,t−i ,x−i )

(ti , xi )
]

≤ lim sup
k→∞

[
inf

n
ξ

(k,n)
(i,ε,t−i ,x−i )

(ti , xi )
]
,

and (in light of (36)) this yields (37). 
�
Step 5 Given (i, ε, t−i , x−i ) and ti ∈ Ti , let Y(i,ε,t,x−i ) be the subset of Xi given in
item (b) on page 1628. Then, for xi ∈ Y(i,ε,t,x−i ), one has

ξ(i,ε,t−i ,x−i )(ti , xi ) ≤ εg(t). (38)

Proof of Step 5 By item (b), for each xi ∈ Y(i,ε,t,x−i ), there exists K(i,ε,t,x) such that
for all k ≥ K(i,ε,t,x), there exists n(i,ε,t,x,k) such that

[
ui (t, ( f k

(i,ε)(ti , xi ), y−i )) − ui (t, (xi , y−i ))
]

g(t)

≤ εg(t), for all y−i ∈ N1/n(i,ε,t,x,k)
(x−i ).

Therefore, using (33) and (36), we see that (38) holds. 
�
Step 6 Given (i, ε, t−i , x−i ), let Â be the subset of Ti × Xi given by Step 3 and let
(nk) be the sequence given by Step 4. Then there exist A ⊆ (Ti × Xi ) \ Â with

μi (A)

[
sup
t∈T

g(t)

][
sup

((τ,z),(τ ′,z′))∈T ×X×T ×X
[ui (τ, z) − ui (τ

′, z′)]
]

< ε (39)

and k satisfying the following: for each k ≥ k and y−i ∈ N1/nk (x−i ),

[ui (t, ( f k
(i,ε)(ti , xi ), y−i )) − ui (t, (xi , y−i ))]g(t) < ε + εg(t) (40)

for all (ti , xi ) ∈ (Ti × Xi ) \ ( Â ∪ A) with xi ∈ Y(i,ε,t,x−i ).
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Proof of Step 6 First, note that the left-hand side of (39) is well-defined because ui is
bounded by assumption and g may be taken bounded (Step 2).

Now, given (37), and applying Egorov’s Theorem (e.g., see Dudley (2004, Theorem
7.5.1)), there exists A ⊆ (Ti × Xi ) \ Â satisfying (39) such that the map

(ti , xi ) ∈ Ti × Xi �→ sup
k′≥k

[
ξ

(k′,nk′ )
(i,ε,t−i ,x−i )

(ti , xi )
]

converges to ξ(i,ε,t−i ,x−i ) uniformly on (Ti × Xi ) \ ( Â ∪ A). Therefore, there exists k
such that for all k ≥ k and (ti , xi ) ∈ (Ti × Xi ) \ ( Â ∪ A),

∣∣∣∣∣supk′≥k

[
ξ

(k′,nk′ )
(i,ε,t−i ,x−i )

(ti , xi )
]

− ξ(i,ε,t−i ,x−i )(ti , xi )

∣∣∣∣∣ < ε,

implying that for all k ≥ k and (ti , xi ) ∈ (Ti × Xi ) \ ( Â ∪ A),

sup
k′≥k

[
ξ

(k′,nk′ )
(i,ε,t−i ,x−i )

(ti , xi )
]

< ξ(i,ε,t−i ,x−i )(ti , xi ) + ε.

Consequently, in light of Step 5 and (38), we see that for all k ≥ k,

ξ
(k,nk)
(i,ε,t−i ,x−i )

(ti , xi ) ≤ sup
k′≥k

[
ξ

(k′,nk′ )
(i,ε,t−i ,x−i )

(ti , xi )
]

< ε + εg(t)

for all (ti , xi ) ∈ (Ti × Xi ) \ ( Â ∪ A) with xi ∈ Y(i,ε,t,x−i ), and so for each k ≥ k,

sup
y−i ∈N 1

nk
(x−i )

[
[ui (t, ( f k

(i,ε)(ti , xi ), y−i )) − ui (t, (xi , y−i ))]g(t)
]

< ε + εg(t)

for all (ti , xi ) ∈ (Ti × Xi ) \ ( Â ∪ A) with xi ∈ Y(i,ε,t,x−i ), whence for each
k ≥ k and y−i ∈ N1/nk (x−i ), (40) holds for all (ti , xi ) ∈ (Ti × Xi ) \ ( Â ∪ A)

with xi ∈ Y(i,ε,t,x−i ). 
�
Step 7 Given (i, ε, t−i , x−i ), there exists k(i,ε,t−i ,x−i ) such that for each k ≥
k(i,ε,t−i ,x−i ) and y−i ∈ N1/nk (x−i ),

∫
Ti ×Xi

[
ui (t, ( f k

(i,ε)(ti , xi ), y−i )) − ui (t, (xi , y−i ))
]

g(t)μi (d(ti , xi )) < 2ε

+ε

∫
Ti

g(t)pi (dti ). (41)

Proof of Step 7 Given (i, ε, t−i , x−i ), Step 6 gives k(i,ε,t−i ,x−i ) such that, for each k ≥
k(i,ε,t−i ,x−i ) and y−i ∈ N1/nk (x−i ), (40) holds for all (ti , xi ) ∈ (Ti × Xi ) \ ( Â ∪ A)
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with xi ∈ Y(i,ε,t,x−i ). Therefore, for each k ≥ k(i,ε,t−i ,x−i ) and y−i ∈ N1/nk (x−i ), and
given ti ∈ Ti , we have

∫
Y(i,ε,t,x−i )∩Xti

[ui (t, ( f k
(i,ε)(ti , xi ), y−i ))−ui (t, (xi , y−i ))]g(t)μi (dxi |ti ) < ε+εg(t),

where Xti denotes the ti -section of (Ti × Xi ) \ ( Â ∪ A) in Xi , i.e.,

Xti := {
xi ∈ Xi : (ti , xi ) ∈ (Ti × Xi ) \ ( Â ∪ A)

}
.11

Since μi (Y(i,ε,t,x−i )|ti ) = 1 (see (b)), it follows that, for each k ≥ k(i,ε,t−i ,x−i ) and
y−i ∈ N1/nk (x−i ), and given ti ∈ Ti , we have

∫
Xti

[ui (t, ( f k
(i,ε)(ti , xi ), y−i )) − ui (t, (xi , y−i ))]g(t)μi (dxi |ti ) < ε + εg(t).

Note that the last inequality is expressible as

∫
Xi

[ui (t, ( f k
(i,ε)(ti , xi ), y−i )) − ui (t, (xi , y−i ))]g(t)μi (dxi |ti )

< ε + εg(t) +
∫

Xi \Xti

[ui (t, ( f k
(i,ε)(ti , xi ), y−i )) − ui (t, (xi , y−i ))]g(t)μi (dxi |ti )

= ε + εg(t) +
∫

(A∪ Â)ti

[ui (t, ( f k
(i,ε)(ti , xi ), y−i )) − ui (t, (xi , y−i ))]g(t)μi (dxi |ti ),

where (A ∪ Â)ti denotes the ti -section of A ∪ Â in Xi (i.e., (A ∪ Â)ti :={
xi ∈ Xi : (ti , xi ) ∈ A ∪ Â

}
). Now since

∫
(A∪ Â)ti

[ui (t, ( f k
(i,ε)(ti , xi ), y−i )) − ui (t, (xi , y−i ))]g(t)μi (dxi |ti )

≤
[

sup
((τ,z),(τ ′,z′))∈T ×X×T ×X

[ui (τ, z) − ui (τ
′, z′)]

]
g(t)

∫
(A∪ Â)ti

μi (dxi |ti )

=
[

sup
((τ,z),(τ ′,z′))∈T ×X×T ×X

[ui (τ, z) − ui (τ
′, z′)]

]
g(t)μi ((A ∪ Â)ti |ti )

=
[

sup
((τ,z),(τ ′,z′))∈T ×X×T ×X

[ui (τ, z) − ui (τ
′, z′)]

]
g(t)μi ((A)ti ∪ ( Â)ti |ti )

≤
[

sup
((τ,z),(τ ′,z′))∈T ×X×T ×X

[ui (τ, z) − ui (τ
′, z′)]

]

11Since (Ti × Xi ) \ ( Â ∪ A) ∈ B(Ti × Xi ), it follows from Halmos (1974, Theorem A, §34, p. 141) that
Xti ∈ B(Xi ).
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[
sup
t∈T

g(t)

] (
μi ((A)ti |ti ) + μi (( Â)ti |ti )

)
,

where (A)ti and ( Â)ti denote, respectively, the ti -sections of A and Â in Xi , we
conclude that for each k ≥ k(i,ε,t−i ,x−i ) and y−i ∈ N1/nk (x−i ), and given ti ∈ Ti , we
have

∫
Xi

[ui (t, ( f k
(i,ε)(ti , xi ), y−i )) − ui (t, (xi , y−i ))]g(t)μi (dxi |ti )

< ε + εg(t) +
[

sup
((τ,z),(τ ′,z′))∈T ×X×T ×X

[ui (τ, z) − ui (τ
′, z′)]

]

[
sup
t∈T

g(t)

] (
μi ((A)ti |ti ) + μi (( Â)ti |ti )

)
.

Consequently, letting

C :=
[

sup
((τ,z),(τ ′,z′))∈T ×X×T ×X

[ui (τ, z) − ui (τ
′, z′)]

][
sup
t∈T

g(t)

]
,

we have, for each k ≥ k(i,ε,t−i ,x−i ) and y−i ∈ N1/nk (x−i ),

∫
Ti ×Xi

[ui (t, ( f k
(i,ε)(ti , xi ), y−i )) − ui (t, (xi , y−i ))]g(t)μi (d(ti , xi ))

=
∫

Ti

∫
Xi

[ui (t, ( f k
(i,ε)(ti , xi ), y−i )) − ui (t, (xi , y−i ))]g(t)μi (dxi |ti )pi (dti )

< ε + ε

∫
Ti

g(t)pi (dti ) + C

(∫
Ti

μi ((A)ti |ti )pi (dti ) +
∫

Ti

μi (( Â)ti |ti )pi (dti )

)

= ε + ε

∫
Ti

g(t)pi (dti ) + C(μi (A) + μi ( Â))

= ε + ε

∫
Ti

g(t)pi (dti ) + Cμi (A) < 2ε + ε

∫
Ti

g(t)pi (dti ),

where the last equality uses the fact that μi ( Â) = 0 (see Step 3) and the last inequal-
ity follows from (39) (see Step 6). This establishes (41) and finishes the proof of
Step 7. 
�

Next, define ψk
(i,ε) : T−i × X−i → R by

ψk
(i,ε)(t−i , x−i )

:=
∫

Ti ×Xi

[
ui (t, ( f k

(i,ε)(ti , xi ), x−i )) − ui (t, (xi , x−i ))
]

g(t)μi (d(ti , xi )) (42)
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and ψ
k
(i,ε) : T−i × X−i → R by

ψ
k
(i,ε)(t−i , x−i ) := inf

n
sup

y−i ∈N 1
n
(x−i )

ψk
(i,ε)(t−i , y−i ). (43)

Step 8 The map ψk
(i,ε) is (B(T−i ) ⊗ B(X−i ),B(R))-measurable.

Proof of Step 8 Since the map

((ti , xi ), (t−i , x−i )) ∈ Ti × Xi × T−i × X−i

�→
[
ui (t, ( f k

(i,ε)(ti , xi ), x−i )) − ui (t, (xi , x−i ))
]

g(t)

is (B(Ti × Xi )⊗B(T−i × X−i ),B(R))-measurable, it follows from Theorem 17.25
in Kechris (1995) that the map

(νi , (t−i , x−i )) ∈ �(Ti × Xi ) × T−i × X−i

�→
∫

Ti ×Xi

[
ui (t, ( f k

(i,ε)(ti , xi ), x−i )) − ui (t, (xi , x−i ))
]

g(t)νi (d(ti , xi ))

is (B(�(Ti × Xi ))⊗B(T−i × X−i ),B(R))-measurable. Consequently, by Theorem
4.48 in Aliprantis and Border (2006), the map ψk

(i,ε) is (B(T−i × X−i ),B(R))-
measurable, and hence (B(T−i ) ⊗ B(X−i ),B(R))-measurable. 
�

Given i , define p−i ∈ �(T−i ) by

p−i := ⊗ j �=i p j . (44)

Define B∗(T−i ) as the p−i -completion of B(T−i ).

Step 9 The map ψ
k
(i,ε) is (B∗(T−i ) ⊗ B(X−i ),B(R))-measurable.

Proof of Step 9 Becauseψk
(i,ε) is (B(T−i )⊗B(X−i ),B(R))-measurable (Step 8), and

hence (B∗(T−i ) ⊗ B(X−i ),B(R))-measurable, and since B∗(T−i ) coincides with
its universal completion, the assertion follows from the Theorem in Carbonell-Nicolau
(2014a). 
�

Define ψ̂k
(i,ε) : T−i × X−i → R by

ψ̂k
(i,ε)(t−i , x−i ) := sup

k′≥k
ψ

k′
(i,ε)(t−i , x−i ). (45)

Given i and σ−i ∈ D−i , let p∗−i be the complete extension of p−i (which was
defined in (44)), and define p−i ⊗ σ−i ∈ �(T−i × X−i ) by

[p−i ⊗ σ−i ](A × B) :=
∫

A

[
⊗
j �=i

σ j (·|t j )

]
(B)p−i (dt−i ) (46)
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for A ∈ B(T−i ) and B ∈ B(X−i ), and let p∗−i ⊗ σ−i be a probability measure in
�(T−i × X−i ,B∗(T−i ) ⊗ B(X−i )) defined by

[p∗−i ⊗ σ−i ](A∗ × B) :=
∫

A∗

[
⊗
j �=i

σ j (·|t j )

]
(B)p∗−i (dt−i ), (47)

for A∗ ∈ B∗(T−i ) and B ∈ B(X−i ).
Given i andσ−i ∈ D−i , letA−i (σ−i ) denote the p−i ⊗σ−i -completion ofB(T−i )⊗

B(X−i ), and letA ∗−i (σ−i ) represent the p∗−i ⊗σ−i -completion ofB∗(T−i )⊗B(X−i ).

Step 10 We have A−i (σ−i ) = A ∗−i (σ−i ).

Proof of Step 10 Let B(T−i ) × B(X−i ) denote the product semiring of B(T−i ) and
B(X−i ), and similarly forB∗(T−i )×B(X−i ). Let ν and ν∗ denote the Carathéodory
extensions of p−i ⊗ σ−i and p∗−i ⊗ σ−i , respectively (which were defined in (46) and
(47)).

We claim that ν = ν∗. To see this, note first that, becauseB(T−i ) ⊆ B∗(T−i ) and
p∗−i |B(T−i ) = p−i ,

ν∗(E)

= inf

{ ∞∑
n=1

[p∗−i ⊗ σ−i ](An × Bn) : An ∈ B∗(T−i ), Bn ∈ B(X−i ), E ⊆
∞⋃

n=1

(An × Bn)

}

≤ inf

{ ∞∑
n=1

[p∗−i ⊗ σ−i ](An × Bn) : An ∈ B(T−i ), Bn ∈ B(X−i ), E ⊆
∞⋃

n=1

(An × Bn)

}

= inf

{ ∞∑
n=1

[p−i ⊗ σ−i ](An × Bn) : An ∈ B(T−i ), Bn ∈ B(X−i ), E ⊆
∞⋃

n=1

(An × Bn)

}

= ν(E)

for each E ⊆ T−i × X−i . In addition, since for each A ∈ B∗(T−i ) and B ∈ B(X−i )

there exists C ∈ B∗(T−i ) with p∗−i (C) = 0, A ∩ C = ∅, and A ∪ C ∈ B(T−i ) (see,
e.g., Aliprantis and Border (2006, Theorem 10.23(7))), so that

[p∗−i ⊗ σ−i ](A × B) =
∫

A

[
⊗
j �=i

σ j (·|t j )

]
(B)p∗−i (dt−i )

=
∫

A

[
⊗
j �=i

σ j (·|t j )

]
(B)p∗−i (dt−i )

+
∫

C

[
⊗
j �=i

σ j (·|t j )

]
(B)p∗−i (dt−i )

=
∫

A∪C

[
⊗
j �=i

σ j (·|t j )

]
(B)p∗−i (dt−i )

=
∫

A∪C

[
⊗
j �=i

σ j (·|t j )

]
(B)p−i (dt−i )

= [p−i ⊗ σ−i ]((A ∪ C) × B),
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it follows that ν∗(E) ≥ ν(E) for each E ⊆ T−i × X−i . Thus, ν∗(E) = ν(E) for each
E ⊆ T−i × X−i . It follows from Definition 10.34 and Theorem 10.23 in Aliprantis
and Border (2006) that A−i = A ∗−i . 
�
Step 11 For every σ−i ∈ D−i , the map ψ̂k

(i,ε) is (A ∗(σ−i ),B(R))-measurable.

Proof of Step 11 By Step 9 and the definition of ψ̂k
(i,ε) in (45), we see that the map

ψ̂k
(i,ε) is (B∗(T−i ) ⊗ B(X−i ),B(R))-measurable, and hence (A ∗(σ−i ),B(R))-

measurable. 
�
Now define ψ̂(i,ε) : T−i × X−i → R by

ψ̂(i,ε)(t−i , x−i ) := lim
k→∞ ψ̂k

(i,ε)(t−i , x−i ). (48)

Step 12 Given (i, ε) and σ−i ∈ D−i , there exists B̂(i,ε,σ−i ) ⊆ T−i × X−i such that

[p∗−i ⊗ σ−i ](B̂(i,ε,σ−i ))

[
sup

k

(
sup

(t−i ,x−i )∈T−i ×X−i

ψ
k
(i,ε)(t−i , x−i )

)]
< ε

and ψ̂k
(i,ε) converges uniformly to ψ̂(i,ε) on (T−i × X−i ) \ B̂(i,ε,σ−i ), i.e., there exists

k(i,ε,σ−i ) such that for all k ≥ k(i,ε,σ−i ) and (t−i , x−i ) ∈ (T−i × X−i ) \ B̂(i,ε,σ−i ),

∣∣∣ψ̂k
(i,ε)(t−i , x−i ) − ψ̂(i,ε)(t−i , x−i )

∣∣∣ < ε.

Proof of Step 12 To lighten notation, let A ∗ = A ∗(σ−i ). Let ν∗ denote the
Carathéodory extension of p∗−i ⊗ σ−i (which was defined in (47)), and let ν∗|A ∗
be the restriction of ν∗ to A ∗.

Given the definition of ψ̂(i,ε) in (48), and since each ψ̂k
(i,ε) is (A ∗,B(R))-

measurable (Step 11) and ψ̂(i,ε), being the pointwise limit of a sequence of
(A ∗,B(R))-measurable functions, is itself (A ∗,B(R))-measurable (see, e.g.,
Aliprantis and Border (2006, Lemma 4.29)), Egorov’s Theorem (e.g., see Dudley
(2004, Theorem 7.5.1)) implies that there exists B(i,ε,σ−i ) ∈ A ∗ such that

ν∗|A ∗(B(i,ε,σ−i ))

[
sup

k

(
sup

(t−i ,x−i )∈T−i ×X−i

ψ
k
(i,ε)(t−i , x−i )

)]
< ε

and ψ̂k
(i,ε) converges uniformly to ψ̂(i,ε) on (T−i × X−i ) \ B(i,ε,σ−i ).

It only remains to show that there exists B̂(i,ε,σ−i ) ∈ B∗(T−i ) ⊗B(X−i ) such that
B(i,ε,σ−i ) ⊆ B̂(i,ε,σ−i ) and

ν∗|A ∗(B(i,ε,σ−i )) = [p−i ⊗ σ−i ](B̂(i,ε,σ−i )).

But this follows from Theorem 10.23(6) in Aliprantis and Border (2006). 
�
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We are now ready to prove item (II) in the statement of Lemma 5.
Fix (i, ε) and, for each η, let ( f k

(i,η))
∞
k=1 be the sequence given on page 1628. It

suffices to show that there exists η such that, letting f k := f k
(i,η) for each k, and given

σ−i ∈ D−i , there exists K such that, for each k ≥ K , there is a neighborhood V ′
σ−i

of
σ−i such that

Ui (μ
k
i , σ

′−i ) < Ui (μi , σ
′−i ) + ε, for all σ ′−i ∈ V ′

σ−i
, (49)

where μk
i (·|ti ) is defined by

μk
i (B|ti ) := μi

({
xi ∈ Xi : f k(ti , xi ) ∈ B

} ∣∣∣ti
)

.

Choose η < ε
12 and σ−i ∈ D−i . We proceed in nine additional steps (Step 13–

Step 21).

Step 13 We have

ψ̂(i,η)(t−i , x−i ) ≤ 2η + η

∫
Ti

g(t)pi (dti ), for all (t−i , x−i ) ∈ T−i × X−i . (50)

Proof of Step 13 Given the definitions in (48), (45), (43), and (42), (50) follows from
(41) (see Step 7). 
�
Step 14 There exist k(i,η,σ−i ) and B̂(i,η,σ−i ) with

[p∗−i ⊗ σ−i ](B̂(i,η,σ−i ))

[
sup

k

(
sup

(t−i ,x−i )∈T−i ×X−i

ψ
k
(i,η)(t−i , x−i )

)]
< η (51)

such that for all k ≥ k(i,η,σ−i ),

ψ
k
(i,η)(t−i , x−i )

< 3η + η

∫
Ti

g(t)pi (dti ), for all (t−i , x−i ) ∈ (T−i × X−i ) \ B̂(i,η,σ−i ). (52)

Proof of Step 14 Recall that i and σ−i ∈ D−i have been fixed, and choose η. By
Step 12, there exists B̂(i,η,σ−i ) ⊆ T−i × X−i such that (51) holds and ψ̂k

(i,η) converges

uniformly to ψ̂(i,η) on (T−i × X−i ) \ B̂(i,η,σ−i ), i.e., there exists k(i,η,σ−i ) such that for
all k ≥ k(i,η,σ−i ) and (t−i , x−i ) ∈ (T−i × X−i ) \ B̂(i,η,σ−i ),

∣∣∣ψ̂k
(i,η)(t−i , x−i ) − ψ̂(i,η)(t−i , x−i )

∣∣∣ < η.

Consequently, in light of (50), we see that, for all k ≥ k(i,η,σ−i ),

ψ̂k
(i,η)(t−i , x−i ) < 3η + η

∫
Ti

g(t)pi (dti ), for all (t−i , x−i ) ∈ (T−i × X−i ) \ B̂(i,η,σ−i ),
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1638 O. Carbonell-Nicolau

and so, recalling the definition in (45), it follows that, for all k ≥ k(i,η,σ−i ), (52)
holds. 
�

Step 15 There exists k(i,η,σ−i ) such that, for all k ≥ k(i,η,σ−i ),

∫
T−i ×X−i

ψ
k
(i,η)(t−i , x−i )[p∗−i ⊗ σ−i ](d(t−i , x−i )) < 5η (53)

(recall that p∗−i ⊗ σ−i was defined in (47)).

Proof of Step 15 First, recall from Step 9 that the map ψ
k
(i,ε) is (B∗(T−i ) ⊗

B(X−i ),B(R))-measurable, implying that the integral on the left-hand side of (53)
is well-defined.

By Step 14, there there exist k(i,η,σ−i ) and B̂(i,η,σ−i ) satisfying (51) such that for all
k ≥ k(i,η,σ−i ), (52) holds. Consequently, for all k ≥ k(i,η,σ−i ),

∫
T−i ×X−i

ψ
k
(i,η)(t−i , x−i )[p∗−i ⊗ σ−i ](d(t−i , x−i ))

=
∫

(T−i ×X−i )\B̂(i,η,σ−i )

ψ
k
(i,η)(t−i , x−i )[p∗−i ⊗ σ−i ](d(t−i , x−i ))

+
∫

B̂(i,η,σ−i )

ψ
k
(i,η)(t−i , x−i )[p∗−i ⊗ σ−i ](d(t−i , x−i ))

< 4η + [p∗−i ⊗ σ−i ](B̂(i,η,σ−i ))

[
sup

k′

(
sup

(t−i ,x−i )∈T−i ×X−i

ψ
k′
(i,η)(t−i , x−i )

)]

< 5η,

as desired. 
�

Next, letP∗−i be the space of all probabilitymeasures ν in�(T−i ×X−i ,B∗(T−i )⊗
B(X−i )) with

ν(A × X−i ) = p∗−i (A), for all A ∈ B∗(T−i ),

where, recall, p∗−i denotes the complete extension of p−i (which was defined in (44)),
and where B∗(T−i ) denotes the p−i -completion of B(T−i ).

Endow the space P∗−i with the relative w-topology (Definition 1) on �(T−i ×
X−i ,B∗(T−i ) ⊗ B(X−i )).

Recall that each D j is endowed with the relative w-topology (Definition 1) on
�(Tj × X j ), and that D−i is provided with the corresponding product topology.

Define the map h : D−i → P∗−i by

h(ν1, . . . , νi−1, νi+1, . . . , νN ) := p∗−i ⊗ ν−i , (54)
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where p∗−i ⊗ ν−i is a member of P∗−i defined as follows:

[p∗−i ⊗ ν−i ](A × B) :=
∫

A

[
⊗
j �=i

ν j (·|t j )

]
(B)p∗−i (dt−i ),

for A ∈ B∗(T−i ) and B ∈ B(X−i ).

Step 16 The space P∗−i (with the relative w-topology) is homeomorphic to the space
P−i of all probability measures ν in �(T−i × X−i ,B(T−i ) ⊗B(X−i )) = �(T−i ×
X−i ) with

ν(A × X−i ) = p−i (A), for all A ∈ B(T−i )

(with the relative w-topology) (where, recall, p−i was defined in (44)).

Proof of Step 16 Define H : P∗−i → P−i by

H(ν) := ν|B(T−i )⊗B(X−i ),

where ν|B(T−i )⊗B(X−i ) denotes the restriction of ν to B(T−i ) ⊗ B(X−i ). We claim
that H is a homeomorphism ofP∗−i onto P−i .

To see that H is one-to-one, fix ν and ν′ inP∗−i and suppose that

H(ν) = ν|B(T−i )⊗B(X−i ) = ν′|B(T−i )⊗B(X−i ) = H(ν′).

Recall that A−i (σ−i ) (resp. A ∗−i (σ−i )) is the p−i ⊗ σ−i -completion of B(T−i ) ⊗
B(X−i ) (resp., the p∗−i ⊗σ−i -completion ofB∗(T−i )⊗B(X−i )). SinceA−i (σ−i ) =
A ∗−i (σ−i ) (Step 10), and since B∗(T−i ) ⊗ B(X−i ) ⊆ A ∗(σ−i ), it follows from
Theorem 10.23(8) in Aliprantis and Border (2006) that there is a unique extension of
H(ν) = H(ν′) toB∗(T−i ) ⊗ B(X−i ), implying that ν = ν′.

To see that H is onto, pick ν ∈ P−i . Let ν∗ be the (unique) extension of ν to
B∗(T−i ) ⊗ B(X−i ). Then H(ν∗) = ν.

It remains to show that H and H−1 are continuous maps. First, note that the w-
topology (Definition 1) on �(T−i × X−i ,B∗(T−i ) ⊗ B(X−i )) can be viewed as the
initial topology on �(T−i × X−i ,B∗(T−i ) ⊗ B(X−i )) generated by the family of
maps (F f ) f ∈Cb(T−i ×X−i )

, where F f : �(T−i × X−i ,B∗(T−i ) ⊗ B(X−i )) → R is
defined by

F f (ν) :=
∫

T−i ×X−i

f (t−i , x−i )ν(d(t−i , x−i ))

(recall that Cb(T−i × X−i ) denotes the set of all bounded, continuous, real-valued
functions on T−i × X−i ), i.e., the coarsest topology on �(T−i × X−i ,B∗(T−i ) ⊗
B(X−i )) that makes all the functions F f continuous. By Lemma 2.52 in Aliprantis
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and Border (2006), a net (να) w-converges to ν in�(T−i × X−i ,B∗(T−i )⊗B(X−i ))

if and only if F f (ν
α) → F f (ν) for all f ∈ Cb(T−i × X−i ), i.e., if and only if

∫
T−i ×X−i

f (t−i , x−i )ν
α(d(t−i , x−i ))

→
∫

T−i ×X−i

f (t−i , x−i )ν(d(t−i , x−i )), for all f ∈ Cb(T−i × X−i ). (55)

A similar argument can be made for the w-topology (Definition 1) on �(T−i ×
X−i ,B(T−i ) ⊗ B(X−i )) = �(T−i × X−i ). Thus, a net (να) w-converges to ν in
�(T−i × X−i ) if and only if (55) holds.

To see that H is continuous, let (να) be a weakly convergent net in P∗−i with
limit point ν ∈ P∗−i . Then, since the members of Cb(T−i × X−i ) are (B(T−i ×
X−i ),B(R))-measurable,

∫
T−i ×X−i

f (t−i , x−i )H(να)(d(t−i , x−i ))

=
∫

T−i ×X−i

f (t−i , x−i )ν
α(d(t−i , x−i ))

→
∫

T−i ×X−i

f (t−i , x−i )ν(d(t−i , x−i ))

=
∫

T−i ×X−i

f (t−i , x−i )H(ν)(d(t−i , x−i )), for all f ∈ Cb(T−i × X−i ).

The continuity of H−1 can be proven analogously. 
�

Step 17 The map h defined in (54) is continuous.

Proof of Step 17 Let (νn
j ) j �=i be a weakly convergent sequence in D−i with limit

point (ν j ) j �=i ∈ D−i . Applying Theorem 2.8 in Billingsley (1999), it follows that
⊗ j �=iν

n
j −→

w
⊗ j �=iν j . Therefore, by the Portmanteau Theorem,

∫
T−i ×X−i

f (t−i , x−i )

[
⊗
j �=i

νn
j

]
(d(t−i , x−i ))

→
∫

T−i ×X−i

f (t−i , x−i )

[
⊗
j �=i

ν j

]
(d(t−i , x−i )) (56)

for all bounded, continuous f : T−i × X−i → R. BecauseP∗−i is metrizable (Step 18
below), it suffices to show that h((νn

j ) j �=i ) −→
w

h((ν j ) j �=i ). By Step 16 and the Port-

manteau Theorem, it suffices to prove that for all bounded, continuous f : T−i × X−i

→ R,
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∫
T−i ×X−i

f (t−i , x−i )
[

p∗−i ⊗ νn
−i

]
(d(t−i , x−i ))

→
∫

T−i ×X−i

f (t−i , x−i )
[

p∗−i ⊗ μ−i
]
(d(t−i , x−i )). (57)

For every (ρ j ) j �=i ∈ D−i and bounded continuous f : T−i × X−i → R, one has
∫

T−i ×X−i

f (t−i , x−i )

[
⊗
j �=i

ρ j

]
(d(t−i , x−i ))

=
∫

T1×X1

· · ·
∫

Ti−1×Xi−1

∫
Ti+1×Xi+1

· · ·
∫

TN ×X N

f (t−i , x−i )ρN (d(tN , xN )) · · · ρi+1(d(ti+1, xi+1))ρi−1

(d(ti−1, xi−1)) · · · ρ1(d(t1, x1))

=
∫

T1

∫
X1

· · ·
∫

Ti−1

∫
Xi−1

∫
Ti+1

∫
Xi+1

· · ·
∫

TN

∫
X N

f (t−i , x−i )ρN (dxN |tN )pN (dtN )

· · · ρi+1(dxi+1|ti+1)pi+1(dti+1)ρi−1(dxi−1|ti−1)pi−1(dti−1) · · · ρ1(dx1|t1)p1(dt1)

=
∫

T−i ×X−i

f (t−i , x−i )
[

p−i ⊗ ρ−i
]
(d(t−i , x−i ))

=
∫

T−i ×X−i

f (t−i , x−i )
[

p∗−i ⊗ ρ−i
]
(d(t−i , x−i )).

Consequently, because (56) holds for all bounded, continuous f : T−i × X−i → R,
it follows that (57) holds for all bounded, continuous f : T−i × X−i → R. 
�
Step 18 The space P∗−i with the relative w-topology is metrizable.

Proof of Step 18 Because a topological space is metrizable if and only if it is homeo-
morphic to a subspace of some metric space, and since �(T−i × X−i ) is metrizable,
the assertion follows from Step 16. 
�

Recall that (i, ε) and σ−i ∈ D−i have been fixed.

Step 19 For each k, there is a neighborhood V k
η of p∗−i ⊗ σ−i in P∗−i such that

∫
T−i ×X−i

ψ
k
(i,η)(t−i , x−i )ν(d(t−i , x−i ))

<

∫
T−i ×X−i

ψ
k
(i,η)(t−i , x−i )[p∗−i ⊗ σ−i ](d(t−i , x−i )) + ε

2
, for all ν ∈ V k

η .

Proof of Step 19 First, note that the map ψ
k
(i,η) : T−i × X−i → R (recall the defi-

nition in (43)) is (B∗(T−i ) ⊗ B(X−i ),B(R))-measurable (Step 9) and satisfies the
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1642 O. Carbonell-Nicolau

following: the map x−i ∈ X−i �→ ψ
k
(i,ε)(t−i , x−i ) is upper semicontinuous for each

t−i ∈ T−i (see, e.g., Ash (1972, Theorem A6.5)).
Next, recall that the space P∗−i is endowed with the relative w-topology (Defini-

tion 1) on �(T−i × X−i ,B∗(T−i ) ⊗ B(X−i )).
Let (να) be a weakly convergent net in P∗−i with limit point ν ∈ P∗−i . Then

(να) converges to ν in the weak-strong topology (ws-topology for short) (see Balder
(2001, Definition 1.1)).12 To see this, note that the net (να(· × X−i )) = (p∗−i ) is
constant, and so, because να −→

w
ν, Theorem 3.7(viii) in Schäl (1975) implies that

(να) ws-converges to ν in P∗−i . Now suppose that (να) ws-converges to ν in P∗−i .
Again applying Theorem 3.7(viii) in Schäl (1975), it is clear that να −→

w
ν. We have

seen that the relative w-topology onP∗−i is equivalent to the relative ws-topology on
P∗−i . In other words,P

∗−i with the relativew-topology is homeomorphic toP∗−i with
the relative ws-topology. Consequently, becauseP∗−i with the relative w-topology is
metrizable (Step 18), it follows thatP∗−i with the relative ws-topology is metrizable.

Now suppose that (νn) is a ws-convergent sequence inP∗−i with limit point p∗−i ⊗
σ−i . Then, because the mapψ

k
(i,η) : T−i × X−i → R is (B∗(T−i )⊗B(X−i ),B(R))-

measurable, and since themap x−i ∈ X−i �→ ψ
k
(i,ε)(t−i , x−i ) is upper semicontinuous

for each t−i ∈ T−i , Theorem 3.1 in Balder (2001) implies that

lim sup
n→∞

∫
T−i ×X−i

ψ
k
(i,η)(t−i , x−i )ν

n(d(t−i , x−i ))

≤
∫

T−i ×X−i

ψ
k
(i,η)(t−i , x−i )[p∗−i ⊗ σ−i ](d(t−i , x−i )).

Consequently, there is a ws-open neighborhood V of p∗−i ⊗ σ−i for which

∫
T−i ×X−i

ψ
k
(i,η)(t−i , x−i )ν(d(t−i , x−i ))

<

∫
T−i ×X−i

ψ
k
(i,η)(t−i , x−i )[p∗−i ⊗ σ−i ](d(t−i , x−i )) + ε

2
(58)

for all ν ∈ V , and so there exists a w-open neighborhood V ∗ of p∗−i ⊗ σ−i such that
(58) holds for all ν ∈ V ∗. 
�

Step 20 There exists kη such that, for all k ≥ kη, there is a neighborhood U k
η of σ−i

in D−i such that

∫
T−i ×X−i

ψk
(i,η)(t−i , x−i )

[
⊗
j �=i

σ ′
j

]
(d(t−i , x−i )) <

ε

2
+5η, for all σ ′−i ∈ U k

η . (59)

12 The ws-topology was introduced in Schäl (1975). See also Balder (2001).
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Proof of Step 20 Since ψk
(i,η) ≤ ψ

k
(i,η), Step 19 gives a neighborhood V k

η of p∗−i ⊗σ−i

inP∗−i such that

∫
T−i ×X−i

ψk
(i,η)(t−i , x−i )ν(d(t−i , x−i ))

<

∫
T−i ×X−i

ψ
k
(i,η)(t−i , x−i )[p∗−i ⊗ σ−i ](d(t−i , x−i )) + ε

2
, for all ν ∈ V k

η .

By Step 15, there exists kη such that, for all k ≥ kη,

∫
T−i ×X−i

ψk
(i,η)(t−i , x−i )ν(d(t−i , x−i )) <

ε

2
+ 5η, for all ν ∈ V k

η .

Now, since V k
η is open in P∗−i and the map h : D−i → P∗−i defined in (54) is

continuous (Step 17), it follows thatU k
η := h−1(V k

η ) is open inD−i . SinceU k
η contains

(σ1, . . . , σi−1, σi+1, σN ), and since, for all σ ′−i ∈ U k
η , we have h(σ ′−i ) ∈ V k

η and

∫
T−i ×X−i

ψk
(i,η)(t−i , x−i )

[
⊗
j �=i

σ ′
j

]
(d(t−i , x−i ))

=
∫

T−i ×X−i

ψk
(i,η)(t−i , x−i )h(σ ′−i )(d(t−i , x−i ))

(recall that the map ψk
(i,ε) is (B(T−i ) ⊗ B(X−i ),B(R))-measurable by Step 8), it

follows that, for all k ≥ kη, (59) holds. 
�

Step 21 There exists K such that, for each k ≥ K , there is a neighborhood V ′
σ−i

of
σ−i such that (49) holds.

Proof of Step 21 In light of Step 20, and since η ∈ (0, ε
12 ), one obtains K such that,

for all k ≥ K , there is a neighborhood V ′
σ−i

of σ−i such that

Ui (μ
k
i , σ

′−i ) − Ui (μi , σ
′−i )

=
∫

T−i ×X−i

ψk
(i,η)(t−i , x−i )

[
⊗
j �=i

σ ′
j

]
(d(t−i , x−i )) < ε, for all σ ′−i ∈ V ′

σ−i
. 
�

Step 21 establishes item (II) in the statement of Lemma 5.
It remains to prove item (I) in the statement of Lemma 5.
Fix i and ε, and, given η, let ( f k

(i,η))
∞
k=1 be the sequence given on page 1628. It

suffices to show that there exists η (which may depend on i and ε) such that, given
(ti , xi ) ∈ Ti × Xi , σ−i ∈ D−i , and k, there is a neighborhood Vσ−i of σ−i such that
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1644 O. Carbonell-Nicolau

∫
T−i

∫
X−i

[ui (t, ( f k
(i,η)(ti , xi ), x−i ))g(t)]

[
⊗
j �=i

σ ′
j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )

>

∫
T−i

∫
X−i

[ui (t, x)g(t)]
[

⊗
j �=i

σ j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )

− ε, for all σ ′−i ∈ Vσ−i , (60)

Chooseη < ε
2 . Fix (ti , xi ) ∈ Ti ×Xi ,σ−i ∈ D−i , and k. Define ζη : T−i ×X−i → R

by
ζη(t−i , x−i ) := sup

n∈N
inf

y−i ∈N 1
n
(x−i )

ui (t, ( f k
(i,η)(ti , xi ), y−i ))g(t). (61)

Recall that P∗−i represents the space of all probability measures ν in �(T−i ×
X−i ,B∗(T−i ) ⊗ B(X−i )) with

ν(A × X−i ) = p∗−i (A), for all A ∈ B∗(T−i ),

where p∗−i denotes the complete extension of p−i (which was defined in (44)), and
where B∗(T−i ) denotes the p−i -completion of B(T−i ).

Endow the space P∗−i with the relative w-topology (Definition 1) on �(T−i ×
X−i ,B∗(T−i ) ⊗ B(X−i )).

Let p∗−i ⊗ σ−i be the member of �(T−i × X−i ,B∗(T−i ) ⊗ B(X−i )) defined in
(47).

We proceed in four steps (Step 22–Step 25).

Step 22 The map ζη defined in (61) is (B∗(T−i ) ⊗ B(X−i ),B(R))-measurable.

Proof of Step 22 Because ui is (B(Ti × Xi ) ⊗ B(T−i × X−i ),B(R))-measurable,
the map

(t−i , x−i ) ∈ T−i × X−i �→ ui (t, ( f k
(i,η)(ti , xi ), x−i ))g(t)

is (B(T−i × X−i ),B(R))-measurable (see, e.g., Aliprantis and Border (2006, The-
orem 4.48)), and hence (B(T−i ) ⊗ B(X−i ),B(R))-measurable and (B∗(T−i ) ⊗
B(X−i ),B(R))-measurable. Consequently, since B∗(T−i ) coincides with its uni-
versal completion, the Theorem in Carbonell-Nicolau (2014a) implies that ζη is
(B∗(T−i ) ⊗ B(X−i ),B(R))-measurable. 
�
Step 23 There exists a neighborhood V ∗

η of p∗−i ⊗ σ−i in P∗−i such that

∫
T−i ×X−i

ζη(t−i , x−i )ν(d(t−i , x−i ))

>

∫
T−i ×X−i

ζη(t−i , x−i )[p∗−i ⊗ σ−i ](d(t−i , x−i )) − η, for all ν ∈ V ∗
η .

Proof of Step 23 First, note that the map ζη : T−i × X−i → R defined in (61) is
(B∗(T−i ) ⊗ B(X−i ),B(R))-measurable (Step 22) and satisfies the following: the
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map x−i ∈ X−i �→ ζη(t−i , x−i ) is lower semicontinuous for every t−i ∈ T−i (see, e.g.,
Ash (1972, Theorem A6.5)). The rest of the proof is an almost verbatim transcription
of the proof of Step 19. 
�
Step 24 Let V ∗

η be the neighborhood from Step 23. For all ν ∈ V ∗
η ,

∫
T−i ×X−i

[ui (t, ( f k
(i,η)(ti , xi ), x−i ))g(t)]ν(d(t−i , x−i ))

>

∫
T−i ×X−i

[ui (t, x)g(t)][p∗−i ⊗ σ−i ](d(t−i , x−i )) − ε.

Proof of Step 24 For every (t−i , x−i ) ∈ T−i × X−i , one has

ui (t, ( f k
(i,η)(ti , xi ), x−i ))g(t)

≥ ζη(t−i , x−i ) ≥ [ui (t, x) − η]g(t).

Indeed, these inequalities follow from item (a) (on page 1628) and from the definition
of ζη : T−i × X−i → R in (61). Consequently, for all ν ∈ P∗−i ,

∫
T−i ×X−i

ui (t, ( f k
(i,η)(ti , xi ), x−i ))g(t)ν(d(t−i , x−i ))

≥
∫

T−i ×X−i

ζη(t−i , x−i )ν(d(t−i , x−i ))

and
∫

T−i ×X−i

ζη(t−i , x−i )ν(d(t−i , x−i )) ≥
∫

T−i ×X−i

[ui (t, x) − η]g(t)ν(d(t−i , x−i )),

and so, applying Step 23, one obtains, for every ν ∈ V ∗
η ,

∫
T−i ×X−i

ui (t, ( f k
(i,η)(ti , xi ), x−i ))g(t)ν(d(t−i , x−i ))

≥
∫

T−i ×X−i

ζη(t−i , x−i )ν(d(t−i , x−i ))

>

∫
T−i ×X−i

ζη(t−i , x−i )[p∗−i ⊗ σ−i ](d(t−i , x−i )) − η

≥
∫

T−i ×X−i

[ui (t, x) − η]g(t)[p∗−i ⊗ σ−i ](d(t−i , x−i )) − η

=
∫

T−i ×X−i

ui (t, x)g(t)[p∗−i ⊗ σ−i ](d(t−i , x−i )) − η − η

>

∫
T−i ×X−i

ui (t, x)g(t)[p∗−i ⊗ σ−i ](d(t−i , x−i )) − ε,
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where the last inequality follows from the inequality η < ε
2 . 
�

Step 25 There is a neighborhood Vσ−i of σ−i in D−i such that (60) holds.

Proof of Step 25 Recall the definition of the map h : D−i → P∗−i in (54). Because h
is continuous (Step 17), and since V ∗

η is open inP∗−i , it follows that Vσ−i := h−1(V ∗
η )

is open in D−i . Since Vσ−i contains σ−i , and since, for all σ ′−i ∈ Vσ−i , one has
h(σ ′−i ) ∈ V ∗

η and

∫
T−i

∫
X−i

[ui (t, ( f k
(i,η)(ti , xi ), x−i ))g(t)]

[
⊗
j �=i

σ ′
j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )

=
∫

T−i ×X−i

ui (t, ( f k
(i,η)(ti , xi ), x−i ))g(t)h(σ ′−i )(d(t−i , x−i ))

and

∫
T−i

∫
X−i

[ui (t, x)g(t)]
[

⊗
j �=i

σ j (·|t j )

]
(dx−i )

[
⊗
j �=i

p j

]
(dt−i )

=
∫

T−i ×X−i

[ui (t, x)g(t)][p∗−i ⊗ σ−i ](d(t−i , x−i )),

it follows that (60) holds. 
�
Step 25 gives item (I) in the statement of Lemma 5 and completes the proof of

Lemma 5. 
�
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