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Abstract
We study games with intransitive preferences that admit skew-symmetric represen-
tations. We introduce the notion of surrogate better-reply security for discontinuous
skew-symmetric games and elucidate the relationship between surrogate better-reply
security and other security concepts in the literature.We then prove existence of behav-
ioral strategy equilibrium for discontinuous skew-symmetric games of incomplete
information (and, in particular, existence of mixed-strategy equilibrium for discontin-
uous skew-symmetric games of complete information), generalizing extant results.

Keywords Skew-symmetric game · Bayesian game · Existence of Nash equilibrium ·
Discontinuous game · Behavioral strategy

JEL classification C72

1 Introduction

A number of important applications of Game Theory involve discontinuous payoff
functions. Building on previous work of Dasgupta and Maskin (1986), Simon (1987),
and others, Reny (1999) derived a number of existence results for games with discon-
tinuous payoffs using various weakenings of upper semicontinuity of payoffs (such
as Simon’s (1987) reciprocal upper semicontinuity or Dasgupta and Maskin’s (1986)
upper semicontinuity of the sum of payoffs) and lower semicontinuity of payoffs
(such as the notion of payoff security). If strategy sets are convex and payoffs are
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quasiconcave in own actions, then these weakenings of upper and lower semiconti-
nuity can be applied to derive pure-strategy existence results.1 The mixed extension
of a game will satisfy the convexity and quasiconcavity assumptions so these pure-
strategy existence results can be applied to the mixed extension if the mixed extension
itself satisfies the Reny weakenings of upper and lower semicontinuity. It is however
useful to identify conditions on the primitives of a complete information game imply-
ing that the mixed extension will satisfy the Reny conditions (therefore implying the
existence of a mixed-strategy equilibrium). Such conditions are typically easier to
verify and one such condition, called uniform payoff security in Monteiro and Page
(2007), guarantees that the mixed extension of a strategic-form game is payoff secure.
In Carbonell-Nicolau and McLean (2018), this mixed-strategy result is generalized in
order to obtain the existence of equilibrium in behavioral and distributional strategies
in games of incomplete information with discontinuous payoffs. In related work, He
and Yannelis (2016a) extend the mixed-strategy result of Allison and Lepore (2014)
for games satisfying disjoint payoff matching to the incomplete information setup.

All of the aforementioned results are formulated in the framework of strategic-form
games with a utility representation, i.e., games in which each player’s preference order
defined on the set of all strategy profiles is represented by a real-valued payoff function.
Several recent papers have investigated the extent towhich these results for gameswith
discontinuous payoff functions can be extended to the case in which a player’s pref-
erence order need not be representable by a utility function. Reny (2016a) introduces
the notions of point security and correspondence security for games in which players’
preference relations are complete, reflexive, and transitive, and generalizes existence
results for strategic-form games with payoff functions found in Reny (1999), Barelli
and Meneghel (2013), and McLennan et al. (2011). Carmona and Podczeck (2016)
introduce the notions of point target security and correspondence target security and
provide several further generalizations of these results. For related results in games and
models of abstract economies in which agents’ preferences need not be representable
by utility functions, see Reny (2016c) and He and Yannelis (2016b).

The existence results in these papers, while generalizing many results for strategic-
form games, are pure-strategy existence results that weaken the assumption that
preferences are representable by payoff functions but retain the assumption of con-
vexity of the players’ strategy sets and, in several results, the convexity assumption
of preferences. In the absence of convexity of strategy sets and/or preferences, one
naturally looks for an equilibrium in mixed strategies. It is the goal of this paper
to generalize certain of the aforementioned results in a framework that weakens the
assumption that discontinuous preferences are representable by utility functions while
still allowing for a tractable theory of mixed-strategy equilibrium in the absence of
convexity. Consequently, our approach is based on complete, reflexive preference rela-
tions that need not satisfy transitivity but do admit a skew-symmetric representation.

To introduce this idea, let S be a nonempty set. A function ϕ : S × S → R is skew-
symmetric if ϕ(x, y) = −ϕ(y, x) for all (x, y) ∈ S × S. Obviously, skew symmetry
implies that ϕ(x, x) = 0 for all x ∈ S. A relation � in S × S has a skew-symmetric

1 For an excellent survey of this literature including extensive references, see Carmona (2013). For more
recent results, see Reny (2016b).
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representation if there exists a skew-symmetric function ϕ : S × S → R satisfying

y � x ⇔ ϕ(y, x) ≥ 0.

From the definition, it follows that every relation � admitting a skew-symmetric
representation is reflexive and complete, and if � admits a utility representation u :
S → R, then � admits the skew-symmetric representation ϕ(x, y) = u(x) − u(y).

In the case of a consumer with a preference relation defined on S = R
L+ for

some L > 0, Shafer (1974) characterized preferences admitting a skew-symmetric
representation in terms of comparability (reflexivity and completeness), convexity, and
continuity axioms. In the case of decision making in the presence of risk, Fishburn
extended the linear theory of von Neumann andMorgenstern to the case of intransitive
preferences and in several papers, Fishburn studies the axiomatic structure of skew-
symmetric bilinear utility theory and its properties. This work is presented in the
comprehensive monograph of Fishburn (1988b) that also presents his skew-symmetric
bilinear extension of Savage’s (1972) subjective expected utility theory.

Intransitive preferences in games arise naturally in strategic interactions among
groups of agents taking collective actions. These situations can often be modeled as
games admitting a skew-symmetric representation, and we illustrate this idea in the
context of Bayesian games.

Summarizing, we wish to weaken the order assumption on preferences but still
retain sufficient structure so as to allow for mixed-strategy equilibria in the absence
of convex preferences or convex strategy sets. In addition, we want to recover as
special cases the extant results concerning mixed-strategy equilibria of discontinuous
complete information games and distributional/behavioral strategy equilibria of dis-
continuous incomplete information games. To that end, we introduce the notion of
surrogate function that will form the basis for the various security definitions that we
will present in the context of gameswith preferences represented by a skew-symmetric
function.

Following a presentation of basic definitions in Sect. 2, we define, in Sect. 3, the
basic concept of surrogate better-reply security and its generalizations, surrogate point
security and surrogate correspondence security. We note that surrogate better-reply
security (resp. surrogate point and correspondence security) generalizes the notion of
better-reply security (resp. point and correspondence security) defined in Reny (1999)
(resp. Reny (2016a) ) in the case of strategic-form games, and we record several exis-
tence theorems for skew-symmetric discontinuous games satisfying these surrogate
security definitions. Informally, our surrogate security concepts allow us to replace a
game defined by skew-symmetric evaluation functions with a new “surrogate” game
satisfying reflexivity, completeness and transitivity whose equilibria yield equilib-
ria of the original game. We can then apply an existence result in Reny (2016a) or
Nessah and Tian (2016) to the surrogate game, thus establishing the existence of equi-
librium in the original problem. In Sect. 4, we introduce uniform surrogate payoff
security for skew-symmetric games of incomplete information as a generalization of
the notion of uniform payoff security defined inCarbonell-Nicolau andMcLean (2018)
for strategic-form games, and we provide a behavioral strategy equilibrium existence
result for discontinuous incomplete information skew-symmetric games. A simple
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application illustrates the existence results in Sect. 4.4. In the case of strategic-form
games, our results for games of incomplete information can be specialized to games
of complete information, resulting in existence theorems that strictly generalize the
mixed-strategy result in Monteiro and Page (2007). In the case of skew-symmetric
games, the analysis extends that of Fishburn and Rosenthal (1986), who proved the
existence of a mixed-strategy Nash equilibrium in strategic-form games with finitely
many actions.

2 Preliminaries

Given i ∈ {1, . . . , N } and sets X1, . . . , XN , define X−i := × j �=i X j ; given i , the
set ×N

j=1X j is sometimes represented as Xi × X−i , and we sometimes write z =
(zi , z−i ) ∈ Xi × X−i for a member z of ×N

j=1X j .

Definition 1 A game is a collection G = (Xi ,�i )
N
i=1, where N is a finite number of

players, Xi is a nonempty set of actions for player i , and�i is a preference relation for
player i defined on the set X := ×N

i=1Xi of action profiles, i.e., �i is a binary relation
in X × X .

We say that a gameG = (Xi ,�i )
N
i=1 has a skew-symmetric (SSYM) representation

if for each i there exists a skew-symmetric map ϕi : X × X → R satisfying2

y �i x ⇔ ϕi (y, x) ≥ 0, for all (x, y) ∈ X × X .

A skew-symmetric (SSYM) game is a collection G = (Xi , ϕi )
N
i=1, where each

ϕi : X × X → R is skew-symmetric and each Xi is a topological space.
A strategic-form (SF) game is a collectionG = (Xi , ui )Ni=1, where each ui : X →

R is a payoff function and each Xi is a topological space.
Obviously, every SF game G = (Xi , ui )Ni=1 has an equivalent representation as an

SSYMgameG = (Xi , ϕi )
N
i=1 whereϕi (x, y) = ui (x)−ui (y) for each (x, y) ∈ X×X

and i .

Definition 2 We say that G = (Xi , ϕi )
N
i=1 is compact (resp. metric) if each Xi is

a compact (resp. metric) space. The game G = (Xi , ϕi )
N
i=1 is quasiconcave if for

each i , Xi is a convex subset of a linear space and the map xi �→ ϕi ((xi , z−i ), z) is
quasiconcave on Xi for each z ∈ X .3 The game G = (Xi , ϕi )

N
i=1 is bounded if for

each i , ϕi : X × X → R is bounded.

Definition 3 A Nash equilibrium of an SSYM game (Xi , ϕi )
N
i=1 is a strategy profile

(z1, . . . , zN ) ∈ ×N
i=1Xi such that for each i ,

ϕi ((xi , z−i ), z) ≤ 0, for all xi ∈ Xi .

2 The map ϕi is skew-symmetric if ϕi (x, y) = −ϕi (y, x) for all (x, y) ∈ X × X .
3 In the special case of SF games, this notion of quasiconcavity reduces to the standard notion of quasi-
concavity in own strategies.
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When (Xi , ϕi )
N
i=1 has a utility representation, Definition 3 reduces to the standard

notion of equilibrium for strategic-form games.
When each Xi is a finite set, Fishburn and Rosenthal (1986) proved the existence of

a mixed-strategy equilibrium by mimicking Nash’s “adjustment function” argument
that only utilizes Brouwer’s Fixed Point Theorem. However, the classical argument for
existence of a pure-strategy equilibrium based on the Kakutani Fixed Point Theorem
also trivially applies if enough continuity is assumed. For example, suppose that each
Xi is a compact, nonempty, convex subset ofRmi for somemi ≥ 1. In addition, suppose
that each ϕi is continuous on X × X and xi �→ ϕi ((xi , z−i ), z) is quasiconcave for
each z ∈ X . Now define

μi (z) := arg max
xi∈Xi

ϕi ((xi , z−i ), z), for each z ∈ X .

Then, combining Berge’sMaximumTheorem and the Kakutani Fixed Point Theorem,
it follows that there exists x∗ ∈ X such that for each x ∈ X , we have

x∗ ∈ μ1(x
∗) × · · · × μn(x

∗),

i.e.,
ϕi ((xi , x

∗−i ), x
∗) ≤ ϕi (x

∗, x∗) = 0.

A mixed-strategy equilibrium result is similarly straightforward.
Note the assumption here that ϕi is continuous on X × X , which allows us to apply

Berge’s Maximum Theorem in the usual way. This raises some delicate issues later
when trying to formulate a discontinuous generalization of the better-reply security
condition introduced in Reny (1999) that includes Reny’s original definition in the
special case where ϕi (x, y) = ui (x) − ui (y) for each (x, y) ∈ X × X .

Of course, there is also an obvious approach to existence using some version of the
Ky-Fan inequality. Let

F(x, z) =
N∑

i=1

ϕi ((xi , z−i ), z).

Then x∗ ∈ X is an equilibrium if and only if

F(x, x∗) ≤ 0, for all x ∈ X .

Consequently, any assumptions that guarantee the existence of a solution to theKy-Fan
inequality will yield an equilibrium even in the SSYM generalization. For example,
we can deduce the existence of an equilibrium from the Ky-Fan inequality if for each
i , xi �→ ϕi ((xi , z−i ), z) is concave for each z ∈ X and z �→ ϕi ((xi , z−i ), z) is lower
semicontinuous for each xi ∈ Xi .Of course, one can askwhether an equilibrium exists
when xi �→ ϕi ((xi , z−i ), z) is quasiconcave for each z ∈ X and z �→ ϕi ((xi , z−i ), z)
is lower semicontinuous for each xi ∈ Xi , and we can answer this in the affirmative
as consequence of our main result below.
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3 Complete information games: pure-strategy equilibrium

Throughout this section, we will assume that for each i , Xi is a nonempty subset of a
locally convex Hausdorff topological vector space.

3.1 Surrogate better-reply security

We begin by recalling the basic notion of better-reply security for SF games. Given
an SF game G = (Xi , ui )Ni=1, the graph of G is the set

�G := {(x, α) ∈ X × R
N : (u1(x), . . . , uN (x)) = α}.

The closure of �G in X × R
N is denoted by �G .

Definition 4 (Reny 1999) An SF game G = (Xi , ui )Ni=1 is better-reply secure if
whenever (x∗, α∗) ∈ �G and x∗ is not a Nash equilibrium of G, there exist i , xi ∈ Xi ,
and an open set Vx∗ containing x∗ such that

inf
z∈Vx∗

ui (xi , z−i ) > α∗
i .

We wish to extend this definition to SSYM games so that, when specialized to SF
games with bounded payoffs , we recover the definition of Reny (1999) .

Given a map H : X → R
N , define the graph of H by

�H := {(x, α) ∈ X × R
N : H(x) = α},

and let �H represent the closure of �H in X × R
N .

Definition 5 An SSYM game G = (Xi , ϕi )
N
i=1 is surrogate better-reply secure if

there exists a bounded function H : X → R
N such that, whenever (x∗, α∗) ∈ �H

and x∗ is not a Nash equilibrium of G, then there exist i , xi ∈ Xi , and an open set Vx∗
containing x∗ such that

inf
z∈Vx∗

[ϕi ((xi , z−i ), z) + Hi (z)] > α∗
i .

A function H : X → R
N satisfying the condition in Definition 5 is called a

surrogate function for the game G = (Xi , ϕi )
N
i=1 in which case we will say that the

game G = (Xi , ϕi )
N
i=1 is surrogate better-reply secure with respect to H . A similar

convention will be followed for the successively more general notions of surrogate
security that we will define in this paper.

Remark 1 An SF gameG = (Xi , ui )Ni=1 with bounded payoff functions is better-reply
secure if and only if the associated SSYM game G = (Xi , ϕi )

N
i=1 with ϕi (x, y) =

ui (x) − ui (y) is surrogate better-reply secure with respect to H where Hi = ui for
each i . In the following example, we show that a strategic-form game can satisfy
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surrogate better-reply security but not better-reply security. That is, surrogate better-
reply security strictly generalizes better-reply security even for strategic-form games.

Example 1 Consider the two-player SF game G = ([0, 1], [0, 1], u1, u2), where u2 ≡
0 and

u1(x1, x2) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if x1 ∈ [0, 1) and x2 = 0,

0 if x1 ∈ [0, 1) and x2 �= 0,

2 if x1 = 1 and x2 = 0,

1 if x1 = 1 and x2 �= 0.

Note that G is compact and quasiconcave. Compactness is clear. Quasiconcavity
follows from the fact that u1(·, x2) is nondecreasing for each x2 ∈ [0, 1].

The game G fails better-reply security. To see this, note that (x∗, u(x∗)) =
((0, 0), (1, 0)) ∈ �G . Suppose that Vx∗ is open in X and (0, 0) ∈ Vx∗ . If there exists
an x1 such that

inf
z∈Vx∗

u1(x1, z2) > 1

then x1 = 1. However, every open set containing (0, 0) contains a point z such that
z2 > 0. Since u1(1, z2) = 1 if z2 > 0, it follows that

inf
z∈Vx∗

u1(x1, z2) ≤ 1.

A strategy pair (x1, x2) is not an equilibrium if and only if (x1, x2) ∈ [0, 1)×[0, 1].
To see that G satisfies surrogate better-reply security, let Hi ≡ 0 for each i . We claim
that G is surrogate better-reply secure with respect to H . In particular, we must show
that, for every (x∗

1 , x
∗
2 ) ∈ [0, 1) × [0, 1], there exists x1 ∈ [0, 1] and an open set Vx∗

with x∗ ∈ Vx∗ such that

inf
z∈Vx∗

[u1(x1, z2) − u1(z1, z2)] > 0.

Choose (x∗
1 , x

∗
2 ) ∈ [0, 1) × [0, 1]. Let x1 = 1 and choose an open set Vx∗ with

x∗ ∈ Vx∗ so that z1 < 1 for every z ∈ Vx∗ . If z ∈ Vx∗ then

u1(1, z2) − u1(z1, z2) = 1,

implying that
inf

z∈Vx∗
[u1(x1, z2) − u1(z1, z2)] ≥ 1.

Remark 2 In the case of an SF game G = (Xi , ui )Ni=1 with bounded payoff functions,
surrogate better-reply security with respect to H where Hi ≡ 0 for each i is equivalent
to the notion of weak transfer continuity of Nessah and Tian (see Definition 3.1 in
Nessah (2011)).

As a consequence of a more general result (Theorem 1) that we will prove later, we
have the following pure-strategy existence theorem for SSYM games that generalizes
Theorem 3.1 in Reny (1999).
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Proposition 1 Suppose that G = (Xi , ϕi )
N
i=1 is a bounded, compact, quasiconcave

SSYM game satisfying surrogate better-reply security. Then, G possesses a Nash equi-
librium.

The following corollary is immediate since an SSYMgame is surrogate better-reply
secure (with respect to the surrogate function H ≡ 0) if x �→ ϕi ((yi , x−i ), x) is lower
semicontinuous for each i and each yi ∈ Xi .

Corollary 1 (to Proposition 1) Suppose that G = (Xi , ϕi )
N
i=1 is a bounded, compact,

quasiconcave SSYM game with the property that x �→ ϕi ((yi , x−i ), x) is lower semi-
continuous on X for each i and each yi ∈ Xi . Then G possesses a Nash equilibrium.

3.2 Surrogate point security

Definition 6 (Reny 2016a) aN SF game G = (Xi , ui )Ni=1 is point secure if whenever
x∗ is not a Nash equilibrium of G, there exist x ∈ X and an open setU containing x∗
such that for each y ∈ U there is a player i such that

ui (xi , x
′−i ) > ui (y), for all x ′ ∈ U .

Definition 7 (Reny 2016a) An SF gameG = (Xi , ui )Ni=1 is point secure* if whenever
x∗ is not a Nash equilibrium of G, there exist x ∈ X and an open setU containing x∗
such that for each y ∈ U there is a player i such that

yi /∈ co{wi ∈ Xi : ui (xi , x ′−i ) ≤ ui (wi , y−i )}, for all x ′ ∈ U .

Remark 3 If the SF game G = (Xi , ui )Ni=1 is point secure and for each i the function
xi �→ ui (xi , x−i ) is quasiconcave for each x−i , then G is point secure*.

Remark 4 Example 1 violates point security. To see this, note that (0, 0) is not a Nash
equilibrium and since u1(0, 0) = 1, in this game the above definition requires that
u1(1, x ′′

2 ) > 1 for all x ′′ in some neighborhood of (0, 0). This is impossible since for
x ′′ arbitrarily close to (0, 0) with x ′′

2 �= 0 we have u1(1, x ′′
2 ) = 1.

Definition 8 AnSSYMgameG = (Xi , ϕi )
N
i=1 is surrogate point secure if there exists

a function H : X → R
N such that, whenever x∗ is not a Nash equilibrium of G, there

exist x ∈ X and an open set U containing x∗ such that for each y ∈ U there is an i
such that

ϕi ((xi , x
′−i ), x

′) + Hi (x
′) > Hi (y), for all x ′ ∈ U .

Definition 9 An SSYM game G = (Xi , ϕi )
N
i=1 is surrogate point secure* if there

exists a function H : X → R
N such that, whenever x∗ is not a Nash equilibrium of

G, there exist x ∈ X and an open set U containing x∗ such that for each y ∈ U there
is an i such that

yi /∈ co{wi ∈ Xi : ϕi ((xi , x
′−i ), x

′) + Hi (x
′) ≤ ϕi ((wi , y−i ), y) + Hi (y)}

for all x ′ ∈ U .
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Remark 5 If the SSYM game G = (Xi , ϕi )
N
i=1 is surrogate point secure and for each

i the function xi �→ ϕi ((xi , z−i ), z) is quasiconcave for each z, then G is surrogate
point secure*.

Remark 6 It is easy to see that for SF games, point security implies surrogate point
security of the associated SSYM game by choosing the surrogate function H with
Hi = ui for each i .

Before proving that surrogate better-reply security implies surrogate point security,
we provide an intermediate surrogate security definition that generalizes the notion of
B-security in McLennan et al. (2011).

Definition 10 An SSYM game G = (Xi , ϕi )
N
i=1 is surrogate B-secure if there exists

a bounded function H : X → R
N such that, whenever x∗ ∈ X is not a Nash

equilibrium of G, there exist an open set Vx∗ containing x∗, α ∈ R
N , and ε >

0 such that the following is satisfied: (a) there exists x ∈ X such that for each i ,
ϕi ((xi , x ′−i ), x

′)+ Hi (x ′) ≥ αi +ε for each x ′ ∈ Vx∗ ; and (b) for each x ′ ∈ Vx∗ , there
is a player i with Hi (x ′) < αi − ε.

Lemma 1 (i) If the SSYM game G = (Xi , ϕi )
N
i=1 is bounded and surrogate better-

reply secure, then G is surrogate B-secure. (ii) If the SSYM game G = (Xi , ϕi )
N
i=1 is

surrogate B-secure, then G is surrogate point secure.

Proof (i) Suppose that G = (Xi , ϕi )
N
i=1 is bounded and surrogate better-reply secure

with (bounded) surrogate function H . Suppose that x∗ ∈ X is not a Nash equilibrium
of G. Define, for each i ,

βi := sup
xi∈Xi

sup
U�x∗

inf
x ′∈U

[ϕi ((xi , x ′−i ), x
′) + Hi (x

′)].

Applying the argument in the proof of Lemma 2.5 in McLennan et al. (2011), we see
that there exists ε > 0 such that if xn → x∗ and H(xn) → α′ then there is an i
with βi > α′

i + 2ε. Defining α ∈ R
N by αi := βi − ε, there exist Vx∗ and x ∈ X

such that for each i , ϕi ((xi , x ′−i ), x
′) + Hi (x ′) ≥ αi + ε for each x ′ ∈ Vx∗ . This

establishes item (a) of Definition 10. The proof that (b) of Definition 10 holds is a
verbatim transcription of the argument in the last paragraph of the proof of Lemma
2.5 in McLennan et al. (2011).

(ii) Suppose that SSYMgameG = (Xi , ϕi )
N
i=1 is surrogate B-securewith surrogate

function H . Suppose that x∗ ∈ X is not an equilibrium of G. Then, there exist an open
set Vx∗ containing x∗, α ∈ R

N , and ε > 0 such that the following is satisfied: (a)
there exists x ∈ X such that for each i , ϕi ((xi , x ′−i ), x

′) + Hi (x ′) ≥ αi + ε for each
x ′ ∈ Vx∗ ; and (b) for each x ′ ∈ Vx∗ , there is a player i with Hi (x ′) < αi − ε. Fix
x ′ ∈ Vx∗ . Then, there is a player i for whom

ϕi ((xi , x
′′−i ), x

′′) + Hi (x
′′) ≥ αi + ε > αi − ε > Hi (x

′), for all x ′′ ∈ Vx∗ .

Thus, G is surrogate point secure with respect to H . �
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We now extend Theorems 3.4 and Theorem 5.5 in Reny (2016a) to relations admit-
ting an SSYM representation satisfying surrogate point security.

Proposition 2 Suppose that the SSYMgameG = (Xi , ϕi )
N
i=1 is compact and surrogate

point secure∗ with Xi convex for each i . Then, G possesses a Nash equilibrium.

Proposition 2 follows from themain existence result, Theorem 1,which is presented
in Sect. 3.3.

Corollary 2 (to Proposition 2) Suppose that the SSYM game G = (Xi , ϕi )
N
i=1 is com-

pact, quasiconcave, and surrogate point secure. Then, G possesses aNash equilibrium.

Adapting the definition of Tian (1992) to the SSYM framework, we have:

Definition 11 A skew-symmetric function ϕi : X × X → R is 0-transfer lower
semicontinuous in X with respect to Xi if for each (xi , z) ∈ Xi × X satisfying
ϕi ((xi , z−i ), z) > 0 there exist xi ∈ Xi and an open set U containing x such that

ϕi ((xi , x
′−i ), x

′) > 0, for all x ′ ∈ U .

Generalizing the definition of Prokopovych (2013, Example 1) to the skew-
symmetric framework, we have:

Definition 12 An SSYM game G = (Xi , ϕi )
N
i=1 satisfies the single player deviation

property if whenever x∗ is not a Nash equilibrium of G, there exist x ∈ X and an open
set U containing x∗ and an i such that

ϕi ((xi , x
′−i ), x

′) > 0, for all x ′ ∈ U .

If z �→ ϕi ((xi , z−i ), z) is lower semicontinuous for each xi ∈ Xi , then ϕi is 0-
transfer lower semicontinuous in X with respect to Xi . If G = (Xi , ϕi )

N
i=1 is an

SSYM game and if each ϕi is 0-transfer lower semicontinuous in X with respect to
Xi , then G satisfies the single player deviation property. Finally, note that G satisfies
the single player deviation property if and only if G is surrogate point secure with
respect to surrogate function H where Hi ≡ 0 for each i . Consequently, we have the
following generalization of our Corollary 1, the existence result presented in Example
1 of Prokopovych (2013), and (consequently) Corollary 3.1 in Nessah (2011).

Corollary 3 (to Proposition 2) Suppose that the SSYM game G = (Xi , ϕi )
N
i=1 is

compact and quasiconcave. If G = (Xi , ϕi )
N
i=1 satisfies the single player deviation

property, then G possesses a Nash equilibrium.

We conclude this subsection with an example illustrating the existence of quasicon-
cave, surrogate point secure SF games that fails to satisfy point security and surrogate
point security with H ≡ 0 and also fails to satisfy point security and surrogate point
security with H ≡ u.
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Example 2 LetG = (Xi , ui )2i=1. Here, for each i , Xi := [0, 2], and for x = (x1, x2) ∈
[0, 1]2, the payoff ui is defined as follows:

ui (x1, x2) :=
{
1 − xi if xi > x−i ,

0 if xi ≤ x−i .

For x ∈ [1, 2]2 \ {(1, 1)}, define u2 ≡ 0 and

u1(x1, x2) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if 1 ≤ x1 < 2 and x2 = 2,

0 if 1 ≤ x1 < 2 and 1 ≤ x2 < 2,

2 if x1 = 2 and x2 = 2,

x2 − 1 if x1 = 2 and 1 ≤ x2 < 2.

Everywhere else in [0, 2] × [0, 2], the payoffs are identically zero.
This example fails to satisfy surrogate point security with H = u, i.e., the example

fails to satisfy point security. Therefore, this example fails to satisfy surrogate better-
reply security with H = u, i.e., better-reply security. To see this, note that x∗ = (1, 2)
is not a Nash equilibrium and that (u1(1, 2), u2(1, 2)) = (1, 0). Suppose that Vx∗ is
open in X and (1, 2) ∈ Vx∗ and let y = (1, 2). For each x1 ∈ [0, 2], there exists a
z ∈ Vx∗ with z2 < 2 such that u1(x1, 2) ∈ {0, 1}. For each x2 ∈ [0, 2], let z = (1, 2)
and note that (1, 2) ∈ Vx∗ and u2(1, x2) = 0.

This example fails to satisfy surrogate point security with H ≡ 0. Therefore, this
example fails to satisfy surrogate better-reply security with H ≡ 0. To see this, choose
x = (0, 0) and an open set V containing x . Note that x is not an equilibrium and choose
x1 ∈ [0, 2].Wemust show that there exists a z ∈ V such that u1(x1, z2)−u1(z1, z2) ≤
0.

If x1 = 0, choose z2 = 0 and z1 so that (z1, 0) ∈ V and 0 < z1 < 1. Then

u1(x1, z2) − u1(z1, z2) = u1(0, 0) − u1(z1, 0) = 0 − (1 − z1) < 0.

If 0 < x1 < 1, choose z2 = 0 and z1 so that (z1, 0) ∈ V and 0 < z1 < x1. Then

u1(x1, z2) − u1(z1, z2) = u1(x1, 0) − u1(z1, 0) = (1 − x1) − (1 − z1) < 0.

If 1 ≤ x1 ≤ 2, choose z2 = 0 and z1 so that (z1, 0) ∈ V and 0 < z1 < 1. Then

u1(x1, z2) − u1(z1, z2) = u1(x1, 0) − u1(z1, 0) = 0 − (1 − z1) < 0.

A completely symmetric argument for player 2 establishes the claim.
Finally, in Sect. A.3 of the Appendix, we show that this example satisfies surrogate

better-reply security for H defined as H(x) := u(x) for all x ∈ [0, 1]2 and H(x) := 0
elsewhere.
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3.3 Surrogate correspondence security

For two subsets A and B of topological vector spaces, we call a correspondence
F : A ⇒ B co-closed if the correspondence x �→ co(F(x)) has closed graph in the
relative topology on A × B.

Definition 13 (Reny 2016a) An SF game G = (Xi , ui )Ni=1 is correspondence secure
if whenever x∗ is not a Nash equilibrium of G, there exist an open set U containing
x∗ and a closed correspondence d : U ⇒ X with nonempty convex values such that
for each y ∈ U there is a player i such that

ui (zi , x
′−i ) > ui (y), for all x ′ ∈ U and zi ∈ di (x

′).

Definition 14 (Reny 2016a)AnSF gameG = (Xi , ui )Ni=1 is correspondence secure*
if whenever x∗ is not a Nash equilibrium of G, there exist an open set U containing
x∗ and a co-closed correspondence d : U ⇒ X with nonempty values such that for
each y ∈ U there is a player i such that

yi /∈ co{wi ∈ Xi : ui (zi , x ′−i ) ≤ ui (wi , y−i )}, for all x ′ ∈ U and zi ∈ di (x
′).

The following are the surrogate generalizations of Definitions 13 and 14.

Definition 15 An SSYM game G = (Xi , ϕi )
N
i=1 is surrogate correspondence secure

if there exists a function H : X → R
N such that,whenever x∗ is not aNash equilibrium

ofG, there exist an open setU containing x∗ and a closed correspondence d : U ⇒ X
with nonempty convex values such that for each y ∈ U there is a player i such that

ϕi ((zi , x
′−i ), x

′) + Hi (x
′) > Hi (y), for all x ′ ∈ U and zi ∈ di (x

′).

Definition 16 AnSSYMgameG = (Xi , ϕi )
N
i=1 is surrogate correspondence secure*

if there exists a function H : X → R
N such that,whenever x∗ is not aNash equilibrium

ofG, there exist an open setU containing x∗ and a co-closed correspondence d : U ⇒
X with nonempty values such that for each y ∈ U there is a player i such that

yi /∈ co{wi ∈ Xi : ϕi ((zi , x
′−i ), x

′) + Hi (x
′) ≤ ϕi ((wi , y−i ), y) + Hi (y)}

for all x ′ ∈ U and for all zi ∈ di (x ′).
Generalizing Definition 3.2 in Nessah (2011), we also have:

Definition 17 An SSYM game G = (Xi , ϕi )
N
i=1 is said to be generalized weakly

transfer continuous if whenever x∗ ∈ X is not a Nash equilibrium of G, there exist
an open set U containing x∗, a closed correspondence d : U ⇒ X with nonempty
convex values and a player i such that

inf
(x ′,zi )∈�di

ϕi ((zi , x
′−i ), x

′) > 0

where �di denotes the graph of the correspondence di : U ⇒ Xi .
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Note that if G = (Xi , ϕi )
N
i=1 is generalized weakly transfer continuous, then G is

surrogate correspondence secure with respect to surrogate function H : X → R
N ,

where Hi ≡ 0 for each i .
We now present our main existence result for pure-strategy equilibria and then

discuss the proof technique and the relationship between Theorem 1, Theorem 5.6
in Reny (2016a), and Theorem 4 in Nessah and Tian (2016). Note that Theorem
1 extends Theorem 5.6 in Reny (2016a) to reflexive, complete relations that admit
a skew-symmetric representation satisfying surrogate correspondence security∗. In
addition, Theorem 1 provides an alternative route to Theorem 3.1 of Nessah (2011)
using our surrogate security concept rather than the qualitative games approach of
Theorem 5 in Prokopovych (2013) (see Example 1 in Prokopovych (2013)).

Theorem 1 Suppose that G = (Xi , ϕi )
N
i=1 is a compact SSYM game with Xi convex

for each i . If G satisfies surrogate correspondence security*, then G possesses a Nash
equilibrium.

There are two ways to prove Theorem 1. In the first, we could use the surrogate
function to construct a surrogate game based on that found in the proof of Theorem
5.6 in Reny (2016a), and then use the argument in that proof to establish existence.
Alternatively, we can prove Theorem 1 as an application of Theorem 4 of Nessah and
Tian (2016) by using the surrogate function to construct an “inherited correspondence”
as defined in that paper. For the sake of completeness, however, we will provide a self-
contained proof that adapts the argument of Theorem 4 of Nessah and Tian (2016)
directly to our framework. This proof highlights the role of the surrogate function
in defining a surrogate game whose evaluations satisfy reflexivity, completeness and
transitivity and to which Reny’s (2016a) Theorem 5.6 can be applied. The reader can
find the proof of Theorem 1 in Sect. A.1 of the Appendix.

Remark 7 The hypothesis of Theorem 1 is sufficient for existence but not necessary.
Indeed, the quasiconcave SF game G = (Xi , ui )2i=1, where X1 = X2 := [0, 1],
u2 ≡ 0, and

u1(x1, x2) :=
{
1 if (x1, x2) = (1, 0),

0 elsewhere,

can be shown to violate surrogate correspondence security*, and yet the point (1, 0)
is a Nash equilibrium.

3.4 Surrogate payoff security and reciprocal upper semicontinuity

Better-reply security for strategic-form games (and its extension to SSYM games)
is quite general so it is useful to identify conditions that are stronger than better-
reply security but easier to check. In the case of strategic-form games, Reny (1999)
identifies two conditions whose conjunction implies better-reply security. We next
provide surrogate generalizations of these conditions that can be applied in the SSYM
framework.

Definition 18 A function H : X → R
N satisfies reciprocal upper semicontinuity if

(x, η) ∈ �H and H(x) ≤ η imply that H(x) = η.
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Remark 8 If
∑

i Hi : X → R
N is upper semicontinuous, then H satisfies reciprocal

upper semicontinuity.

Definition 19 An SSYM game (Xi , ϕi )
N
i=1 is surrogate payoff secure if there exists

a function H : X → R
N such that for each x ∈ X , y ∈ X , ε > 0 and i , there exists

an xi ∈ Xi and an open set Vx with x ∈ Vx such that

ϕi ((xi , z−i ), z) + Hi (z) ≥ ϕi ((yi , x−i ), x) + Hi (x) − ε, for all z ∈ Vx .

Proposition 3 Suppose that H : X → R
N is bounded and satisfies reciprocal upper

semicontinuity. If G = (Xi , ϕi )
N
i=1 is surrogate payoff secure with surrogate function

H, then G is surrogate better-reply secure with surrogate function H.

Proof Suppose that (x∗, α∗) ∈ �H and x∗ is not an equilibrium. Then, reciprocal
upper semicontinuity implies that H(x∗) = α∗ or Hi (x∗) > α∗

i for some i . Suppose
that H(x∗) = α∗. Since x∗ is not an equilibrium, there exists an i and yi ∈ Xi such
that

ϕi ((yi , x
∗−i ), x

∗) > 0.

Choose ε > 0 so that ϕi ((yi , x∗−i ), x
∗) − ε = γ > 0. Applying surrogate payoff

security, there exists an xi ∈ Xi and an open set Vx∗ with x∗ ∈ Vx∗ such that

ϕi ((xi , z−i ), z) + Hi (z) ≥ ϕi ((yi , x
∗−i ), x

∗) + Hi (x
∗) − ε = α∗

i + γ

for all z ∈ Vx∗ . Suppose that Hi (x∗) > α∗
i for some i . Choose ε > 0 and γ > 0 so

that Hi (x∗)− ε = α∗
i +γ. Then applying surrogate payoff security again, there exists

an xi ∈ Xi and an open set Vx∗ with x∗ ∈ Vx∗ such that

ϕi ((xi , z−i ), z) + Hi (z) ≥ ϕi ((yi , x
∗−i ), x

∗) + Hi (x
∗) − ε > Hi (x

∗) − ε = α∗
i + γ

for all z ∈ Vx∗ . �

4 Games of incomplete information: behavioral strategy equilibrium

We borrow notation and terminology from Carbonell-Nicolau and McLean (2018)
wherever possible. If S is a compact metric space, then B(S) denotes the σ -algebra of
Borel subsets of S, and 
(S) represents the set of Borel probability measures on S.
In addition, C(S) denotes the set of all real-valued continuous maps on S.

4.1 Bayesian games

We begin with a general formulation of a Bayesian game.We then introduce the notion
of a Bayesian game with a skew-symmetric (resp. utility) representation.

Definition 20 A Bayesian game is a collection

� = (
(Ti , Ti ), Xi ,�i , p

)N
i=1 ,
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where

• {1, . . . , N } is a finite set of players;
• (Ti , Ti ) is a measurable space, where Ti is player i ’s nonempty type space;4

• Xi is player i’s action space, a nonempty compact metric space;
• �i is a binary relation on the set of Borel probabilitymeasures on T×X ,
(T×X),
where T := ×N

i=1Ti and X := ×N
i=1Xi ; and

• p is a probability measure on (T ,⊗N
i=1Ti ) , denoting the common prior over type

profiles.

We denote by pi the marginal probability measure induced by p on Ti , i.e., pi is a
probability measure on (Ti , Ti ) defined by

pi (S) := p(S × T−i ).

For each (Ti , Ti ) and Xi , C(Ti , Xi ) will denote the space of integrably bounded
Carathéodory integrands on Ti × Xi , i.e., the functions f : Ti × Xi → R that are
integrably bounded and (Ti ⊗ B(Xi ),B(R))-measurable with f (ti , ·) ∈ C(Xi ) for
each ti ∈ Ti .5

The product σ -algebra ⊗N
i=1Ti will be denoted by T , and 
(T , T ) will represent

the set of probability measures on the measurable space (T , T ).

4.2 Strategies

Definition 21 Let � = (
(Ti , Ti ), Xi ,�i , p

)N
i=1 be a Bayesian game. A pure strategy

for a player i in� is a (Ti ,B(Xi ))-measurablemap si : Ti → Xi with the interpretation
that, upon learning her type ti ∈ Ti , a player i selects the action si (ti ) from the set Xi .

Let Pi denote the set of pure strategies for player i , and set P := ×N
i=1Pi .

Definition 22 Let � = (
(Ti , Ti ), Xi ,�i , p

)N
i=1 be a Bayesian game. A behavioral

strategy for player i in � is a transition probability with respect to (Ti , Ti ) and
(Xi ,B(Xi )), i.e., a mapping

σi : B(Xi ) × Ti → [0, 1],

where σi (·|ti ) ∈ 
(Xi ) for each ti ∈ Ti and σi (A|·) : Ti → R is a (Ti ,B(R))-
measurable function for each A ∈ B(Xi ).

The set of behavioral strategies for player i will be denoted by Yi , and Y will
represent the Cartesian product ×N

i=1Yi .

A Bayesian game � = (
(Ti , Ti ), Xi ,�i , p

)N
i=1 admits a skew-symmetric (SSYM)

representation if, for each i , there exists a bounded and

4 Observe that no topological structure is imposed on Ti .
5 An (Ti ⊗ B(Xi ),B(R))-measurable function f : Ti × Xi → R is integrably bounded if there exists a
pi -integrable function ϕ satisfying | f (ti , xi )| ≤ ϕ(ti ) for all (ti , xi ) ∈ Ti × Xi .
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([⊗N
i=1Ti ] ⊗ [⊗N

i=1B(Xi )] ⊗ [⊗N
i=1B(Xi )],B(R)

)
-measurable map ψi : T × X ×

X → R satisfying

ψi (t, x, y) = −ψi (t, y, x), for all (t, x, y) ∈ T × X × X ,

such that the map ψ i : Y × Y → R defined by

ψ i (σ, μ) :=
∫

T

∫

XN

· · ·
∫

X1

∫

XN

· · ·
∫

X1

ψi (t, x, y)

⎡

⎣
N∏

j=1

σ j (dx j |t j )
⎤

⎦

⎡

⎣
N∏

j=1

μ j (dy j |t j )
⎤

⎦ p(dt)

(1)

satisfies the following:

[ ⊗ j σ j ] ∗ p �i [⊗ jμ j ] ∗ p ⇔ ψ i (σ, μ) ≥ 0, for all (σ, μ) ∈ Y × Y,

where, given ν ∈ Y , [⊗ jν j ] ∗ p denotes the probability measure in 
(T × X) defined
by

([⊗ jν j ] ∗ p)(A × B1 × · · · × BN ) :=
∫

A

⎡

⎣
N∏

j=1

ν j (Bj |t j )
⎤

⎦ p(dt).

In this case, we write � = ((Ti , Ti ), Xi , ψi , p)Ni=1 and we call � an SSYM Bayesian
game.

The game � has a utility representation if there exists, for each i , a payoff function
ui : T × X → R such that ψi (t, x, y) = ui (t, x) − ui (t, y) for each (x, y) ∈ X × X .
In this case we write � = ((Ti , Ti ), Xi , ui , p)Ni=1 and we call � a Bayesian game
with a utility representation.

For every pure-strategy si ∈ Pi , there is a corresponding “pure” behavioral strategy
σ
si
i ∈ Yi defined by

σ
si
i (A|ti ) := δsi (ti )(A),

where δsi (ti ) ∈ 
(Xi ) denotes the Dirac measure with mass point si (ti ).
For si ∈ Pi and σ−i ∈ Y−i , define

ψ i (si , σ−i ) := ψ i (σ
si
i , σ−i ).

Todefine the topology for the setsYi , let L̂i be the spaceof uniformlyfinite transition
measures with respect to (Ti , Ti ) and (Xi ,B(Xi ). Recall that C(Ti , Xi ) denotes the
space of integrably bounded Carathé odory integrands on Ti × Xi .

Definition 23 The narrow topology on L̂i is the weakest topology with respect to
which all functionals in the set

{
ζ f : f ∈ C(Ti , Xi )

}
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are continuous, where ζ f : L̂i → R is defined for each f ∈ C(Ti , Xi ) as

ζ f (μ) :=
∫

Ti

∫

Xi

f (ti , xi )μ(dxi |ti )pi (dti ).

WeviewYi as a subspace of L̂i endowedwith its relative topology, and theCartesian
productY is endowed with the corresponding product topology. The following lemma
is a consequence of Theorem 2.3 in Balder (1988).

Lemma 2 Yi is a compact, convex subspace of the topological vector space L̂i .

4.3 Equilibrium existence

Definition 24 A Bayes–Nash equilibrium of a Bayesian game � = ((Ti , Ti ), Xi ,

�i , p
)N
i=1 is a profile (σ1, . . . , σN ) ∈ Y such that for each i and μi ∈ Yi ,

[ ⊗ j σ j ] ∗ p �i [μi ⊗ (⊗ j �=iσ j )] ∗ p.

It is easy to see that a Bayes–Nash equilibrium of an SSYM Bayesian game � =
((Ti , Ti ), Xi , ψi , p)Ni=1 is a Nash equilibrium of the SSYM game G� defined by

G� := (
Yi ,ψ i

)N
i=1 , (2)

where ψ i : Y × Y → R is given by (1), i.e., a profile (σ1, . . . , σN ) ∈ Y such that for
each i ,

ψ i ((μi , σ−i ), σ ) ≤ 0, for all μi ∈ Yi .

Carbonell-Nicolau andMcLean (2018) introduced a notion of uniform payoff secu-
rity for games of incomplete information, and the following extensions are proposed
here.

Definition 25 An SSYM Bayesian game ((Ti , Ti ), Xi , ψi , p)Ni=1 is uniformly surro-
gate payoff secure if there exists a bounded function H : T × X → R

N such that for
each i , ε > 0, and si ∈ Pi , there exists s∗

i ∈ Pi such that for all (t, x, y) ∈ T × X × X ,
there exist neighborhoods Vx and Vy of x and y, respectively, such that

ψi (t, (s
∗
i (ti ), x

′−i ), y
′) + Hi (t, y

′) > ψi (t, (si (ti ), x−i ), y) + Hi (t, y) − ε,

for all (x ′, y′) ∈ Vx × Vy .

Remark 9 Suppose that � = ((Ti , Ti ), Xi , ui , p)Ni=1 is a Bayesian game with a utility
representation. If � is uniformly payoff secure in the sense of Carbonell-Nicolau and
McLean (2018, Definition 9), then � satisfies both uniform surrogate payoff security
and weak uniform surrogate payoff security for the surrogate function H = u.

For SSYM Bayesian games, our existence results are presented in terms of Defini-
tion 25. In the special case of Bayesian games, we can prove stronger results in terms
of a weaker notion (Definition 26 below).
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Fix an SSYM Bayesian game ((Ti , Ti ), Xi , ψi , p)Ni=1 and suppose that for each i ,

Hi : T × X → R is bounded and
(
[⊗N

j=1T j ] ⊗ [⊗N
j=1B(X j )],B(R)

)
-measurable.

Then one may define H i : Y → R as follows:

H i (σ ) :=
∫

T

∫

XN

· · ·
∫

X1

Hi (t, x)

⎡

⎣
N∏

j=1

σ j (dx j |t j )
⎤

⎦ p(dt).

The following two results are instrumental in proving our first main existence
result. Surrogate payoff security for surrogate function H (in Lemma 3) and upper
semicontinuity of the map

∑N
i=1 H i (·) (in Lemma 4) are defined with respect to the

narrow topology (see Definition 23). The proof of Lemma 3 is relegated to Sect. A.2.
Lemma 4 is an immediate consequence of Lemma 3 inCarbonell-Nicolau andMcLean
(2018).

Lemma 3 Suppose that the SSYMBayesian game ((Ti , Ti ), Xi , ψi , p)Ni=1 satisfies uni-
form surrogate payoff security with surrogate function H. If Hi : T × X → R is

bounded and
(
[⊗N

j=1T j ] ⊗ [⊗N
j=1B(X j )],B(R)

)
-measurable for each i , and if p is

absolutely continuous with respect to p1 ⊗ · · ·⊗ pN , then the game G� defined in (2)
is surrogate payoff secure with surrogate function H .

Lemma 4 Given an SSYM Bayesian game ((Ti , Ti ), Xi , ψi , p)Ni=1, suppose that for

each t ∈ T , the map
∑N

i=1 Hi (t, ·) : X → R is upper semicontinuous. Suppose
further that p is absolutely continuous with respect to p1 ⊗ · · · ⊗ pN . Then the map∑N

i=1 H i (·) : Y → R is upper semicontinuous.

Theorem 2 Suppose that the SSYM Bayesian game � = ((Ti , Ti ), Xi , ψi , p)Ni=1 sat-
isfies uniform surrogate payoff security with surrogate function H. Suppose that

Hi : T × X → R is bounded and
(
[⊗N

j=1T j ] ⊗ [⊗N
j=1B(X j )],B(R)

)
-measurable

for each i . Suppose further that for each t ∈ T , the map
∑N

i=1 Hi (t, ·) : X → R is
upper semicontinuous. If p is absolutely continuous with respect to p1 ⊗ · · · ⊗ pN ,
then � possesses a Bayes–Nash equilibrium.

Proof For each i , Yi is a compact, convex subspace of a topological vector space
(Lemma 2), and for each σ ∈ Y , the map ψ i ((·, σ−i ), σ ) : Yi → R is quasiconcave.
Hence, because the map

∑N
i=1 H i (·) : Y → R is upper semicontinuous (Lemma 4),

and the gameG� defined in (2) is surrogate payoff secure for H (Lemma 3), it follows
from Proposition 3 and Remark 8 that � possesses a Bayes–Nash equilibrium. �

The analysis for SSYM Bayesian games with a utility representation is analogous
to that for general SSYM games. In this case, we can prove a stronger existence result
in terms of the following definition.

Definition 26 A Bayesian game with a utility representation ((Ti , Ti ), Xi , ui , p)Ni=1
satisfies weak uniform surrogate payoff security if there exists a bounded function
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H : T × X → R
N such that for each i , ε > 0, and si ∈ Pi , there exists s∗

i ∈ Pi such
that for all (t, x) ∈ T × X , there exists a neighborhood Vx of x such that

ui (t, (s
∗
i (ti ), z−i )) − ui (t, z) + Hi (t, z)

> ui (t, (si (ti ), x−i )) − ui (t, x) + Hi (t, x) − ε, for all z ∈ Vx .

The following lemma is the analog of Lemma 3 for Bayesian games.

Lemma 5 Suppose that the Bayesian game with a utility representation ((Ti , Ti ), Xi ,

ui , p)Ni=1 satisfies weak uniform surrogate payoff security with surrogate function H.

If Hi : T × X → R is bounded and
(
[⊗N

j=1T j ] ⊗ [⊗N
j=1B(X j )],B(R)

)
-measurable

for each i and if p is absolutely continuous with respect to p1 ⊗ · · · ⊗ pN , then the
game G� defined in (2) is surrogate payoff secure with surrogate function H .

Theorem 3 Suppose that the Bayesian game with a utility representation � =
((Ti , Ti ), Xi , ui , p)Ni=1 satisfiesweak uniform surrogate payoff security with surrogate

function H . Suppose that Hi : T×X →R is boundedand
(
[⊗N

j=1T j ] ⊗ [⊗N
j=1B(X j )],

B(R))-measurable for each i . Suppose further that for each t ∈ T , the map∑N
i=1 Hi (t, ·) : X → R is upper semicontinuous. If p is absolutely continuous with

respect to p1 ⊗ · · · ⊗ pN , then � possesses a Bayes–Nash equilibrium.

Proof For each i , Yi is a compact, convex subspace of a topological vector space
(Lemma 2), and for each σ ∈ Y , the map ψ i ((·, σ−i ), σ ) : Yi → R is quasiconcave.
Hence, because the map

∑N
i=1 H i (·) : Y → R is upper semicontinuous (Lemma 4),

and the gameG� defined in (2) is surrogate payoff secure for H (Lemma 5), it follows
from Proposition 3 and Remark 8 that � possesses a Bayes–Nash equilibrium. �

4.4 Example

Intransitivities arise naturally in gameswhen theplayers’ actions reflect the preferences
of a group of individuals. We have in mind strategic interactions among groups that
take collective actions. In this section, we provide a simple example illustrating this
idea as an immediate application of Theorem 2.

There are two groups of individuals (or organizations), A and B, which are viewed
as “the players.” Group i ∈ {A, B} has ni members. Each group i ∈ {A, B}
observes a private signal ti from an arbitrary measurable type space (Ti , Ti ) and
makes a collective choice from an action space Xi . The groups’ actions are taken
simultaneously. To keep matters simple, assume that each Xi is finite. The pref-
erences of an individual k ∈ {1, . . . , ni } of group i ∈ {A, B} over profiles of
types and actions in T × X , where T := TA × TB and X := XA × XB , are rep-
resented by a

([⊗i∈{A,B}Ti ] ⊗ [⊗i∈{A,B}B(Xi )],B(R)
)
-measurable utility function

u(i,k) : T × X → R.
The game played by the two players A and B is

� = (
(Ti , Ti ), Xi ,�i , p

)
i∈{A,B} ,
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where, for each i ∈ {A, B} and (σ, μ) ∈ Y × Y ,

[ ⊗ j σ j ] ∗ p �i [⊗ jμ j ] ∗ p ⇔ ψ i (σ, μ) ≥ 0,

where ψ i is defined as in (1) and where ψi : T × X × X → R is defined by

ψi (t, x, y) := #
{
k : u(i,k)(t, x) > u(i,k)(t, y)

} − #
{
k : u(i,k)(t, x) < u(i,k)(t, y)

}
.

Note that, according to these preferences, the net plurality within group i (defined as
the difference between the number of group members preferring one action profile
over another) determines the group’s aggregate preferences over action profiles. It is
well known that majority voting yields—except in very special cases—an intransitive
aggregate preference relation. Consequently, the game defined above features intran-
sitivities that cannot be handled by the extant literature on the existence of equilibrium
in Bayesian games.

The game G admits a skew-symmetric representation. Indeed, for each i ∈
{A, B} and (t, x, y) ∈ T × X × X , ψi (t, x, y) = −ψi (t, y, x). Thus, � =
((Ti , Ti ), Xi , ψi , p)i∈{A,B} is the associated SSYM Bayesian game. An immediate
implication of Theorem 2 is that � possesses a Bayes–Nash equilibrium.

4.5 Mixed-strategy equilibria in complete information games

Recall that if S is a compact metric space, then B(S) denotes the σ -algebra of Borel
subsets of S, and 
(S) represents the set of Borel probability measures on S.

Definition 27 Given an SSYM, compact, metric game G = (Xi , ϕi )
N
i=1, the mixed

extension of G is the SSYM game (
(Xi ),ϕi )
N
i=1, where

ϕi :
[
×N

j=1
(X j )
]

×
[
×N

j=1
(X j )
]

→ R

is defined by

ϕi (μ, ν)=
∫

XN

· · ·
∫

X1

∫

XN

. . .

∫

X1

ϕi (x, y)μ1(dx1) · · · μN (dxN )ν1(dy1) · · · νN (dyN ).

Definition 28 below specializes Definition 25 to the case of complete information
SSYM games and Theorem 4 below follows immediately from Theorem 2.

Definition 28 AnSSYMgame (Xi , ϕi )
N
i=1 satisfiesuniform surrogate payoff security

if there exists a bounded function H : X → R
N such that for every i , ηi ∈ Xi , and

ε > 0, there exists ηi ∈ Xi such that for all (x, y) ∈ X × X there exist neighborhoods
Vx and Vy of x and y, respectively, such that

ϕi ((ηi , x
′−i ), y

′)+Hi (y
′) > ϕi ((ηi , x−i ), y)+Hi (y)−ε, for all (x ′, y′) ∈ Vx ×Vy .
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Theorem 4 Suppose that G = (Xi , ϕi )
N
i=1 is a compact, metric SSYM game with ϕi

bounded and (B(X),B(R))-measurable for each i and suppose that G satisfies uni-
form surrogate payoff security with surrogate function H. If H : X → R

N is bounded
and (B(X),B(RN ))-measurable, and if

∑N
i=1 Hi : X → R is upper semicontinuous,

then the mixed extension (
(Xi ),ϕi )
N
i=1 has a Nash equilibrium.

Definition 29 below specializes Definition 26 to case of complete information
strategic-form games and Theorem 5 is an immediate consequence of Theorem 3.

Definition 29 An SF game (Xi , ui )Ni=1 satisfiesweak uniform surrogate payoff secu-
rity if there exists a bounded function H : X → R

N such that for every i , ηi ∈ Xi ,
and ε > 0, there exists ηi ∈ Xi such that for all x ∈ X there exists a neighborhood
Vx of x such that

ui (ηi , z−i ) − ui (z) + Hi (z) > ui (ηi , x−i ) − ui (x) + Hi (x) − ε, for all z ∈ Vx .

Theorem 5 Suppose that G = (Xi , ui )Ni=1 is a compact, metric SF game with ui
bounded and (B(X),B(R))-measurable for each i and suppose that G satisfies weak
uniform surrogate payoff security with surrogate function H : X → R

N . If H is
(B(X),B(RN ))-measurable, and if

∑N
i=1 Hi : X → R is upper semicontinuous, then

the mixed extension (
(Xi ), ui )Ni=1 has a Nash equilibrium.

Remark 10 If G = (Xi , ui )Ni=1 is an SF game satisfying uniform surrogate payoff
security (Definition 25) with surrogate function H , then G satisfies weak uniform
surrogate payoff security (Definition 29) with surrogate function H . To see this, fix
i , ηi ∈ Xi , and ε > 0. Then, there exists ηi ∈ Xi such that for all x ∈ X there exist
neighborhoods V ′

x and V ′′
x of x such that

ui (ηi , x
′−i ) − ui (y

′
i ) + Hi (y

′) > ui (ηi , x−i ) − ui (x) + Hi (x) − ε,

for all (x ′, y′) ∈ V ′
x × V ′′

x .

Defining Vx = V ′
x ∩ V ′′

x , it follows that, for each z ∈ Vx ,

ui (ηi , z−i ) − ui (z) + Hi (z) > ui (ηi , x−i ) − ui (x) + Hi (x) − ε.

Example 3 There are SF games that violateMonteiro andPage’s (2007) uniformpayoff
security but satisfy weak uniform surrogate payoff security. Indeed, consider the two-
player game from Example 1,G = ([0, 1], [0, 1], u1, u2), where u2 ≡ 0 and

u1(x1, x2) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if x1 ∈ [0, 1) and x2 = 0,

0 if x1 ∈ [0, 1) and x2 �= 0,

2 if x1 = 1 and x2 = 0,

1 if x1 = 1 and x2 �= 0.
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This game fails Reny’s (2016a) point security (Remark 4). Since uniform payoff
security implies point security, it follows that G also fails uniform payoff security.6

To see that G satisfies weak uniform surrogate payoff security with surrogate func-
tion H ≡ 0, choose y1 ∈ [0, 1], ε > 0, and x ∈ [0, 1]2. If x2 > 0 and x1 < 1 then for
z ∈ [0, 1]2 with z2 > 0 and z1 < 1 we have

u1(1, z2) − u1(z) = 1 ≥ 1 − ε ≥ u1(y1, x2) − u1(x) − ε.

If x2 = 0 and x1 < 1 then for z ∈ [0, 1]2 with z1 < 1 we have

u1(1, z2) − u1(z) = 1 ≥ 1 − ε ≥ u1(y1, x2) − u1(x) − ε.

If x2 = 0 and x1 = 1 then for z ∈ [0, 1]2 we have

u1(1, z2) − u1(z) ≥ 0 ≥ 0 − ε ≥ u1(y1, x2) − u1(x) − ε.

If x2 > 0 and x1 = 1 then for z ∈ [0, 1]2 with z2 > 0 we have

u1(1, z2) − u1(z) = 0 ≥ 0 − ε ≥ u1(y1, x2) − u1(x) − ε.

A Appendix

A.1 Proof of Theorem 1

Theorem 1 is restated here for the convenience of the reader.
Theorem 1. Suppose that G = (Xi , ϕi )

N
i=1 is a compact SSYM game with Xi convex

for each i . If G satisfies surrogate correspondence security*, then G possesses a Nash
equilibrium.

Proof Suppose that G satisfies surrogate correspondence security* with surrogate
function H . Suppose that G has no Nash equilibrium. We will adapt the proof of The-
orem 4 in Nessah and Tian (2016) and construct a new game G∗ with two players α

and β, each with the same strategy set X . We will then show that the game G∗ satisfies
the hypotheses of Reny’s (2016a) Theorem 5.6, implying that G∗ has a Nash equilib-
rium, and that this implies that the game G has a Nash equilibrium. This contradiction
establishes the result.

Suppose that G has no equilibrium.
Step 1 Define a new game G∗ = (X , X ,�α,�β) with two players, each of whom
has strategy set X . The preferences of player α are defined as follows:

(ξ, η) �α (x, y) if and only if uα(η, ξ) ≥ uα(y, x),

6 It is easily seen that G also fails Allison and Lepore’s (2014) disjoint payoff matching. However, as
pointed out by a referee, this game does satisfy uniform diagonal security of Prokopovych and Yannelis
(2014).
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where uα : X × X → R is defined as

uα(ξ, η) :=
{
1 if ξ = η,

0 if ξ �= η.

The preferences of player β are defined as follows:

(ξ, η) �β (x, y) if and only if fi (ηi , ξ) ≥ fi (yi , x) for all i,

where fi : Xi × X → R is defined as follows:

fi (ξi , η) = ϕi ((ξi , η−i ), η) + Hi (η) for each i and each (ξi , η) ∈ Xi × X .

Applying Definition 5.4 in Reny (2016a), we claim that the gameG∗ = (X , X ,�α,

�β) is correspondence secure with respect to I = {β}. To see this, suppose that G∗ is
not correspondence secure with respect to I = {β}. As per the definition of BI on p.
556 of Reny (2016a), note that

B{β} = {(x, y) ∈ X × X : x = y}.

Then, there exists an (xα, xβ) ∈ B{β} such that (xα, xβ) is not a Nash equilibrium
in G∗ and the following holds: for every neighborhood U of (xα, xβ) and every co-
closed correspondence (dα, dβ) : U → X × X with nonempty values, there exists a
(yα, yβ) ∈ U∩ B{β} such that, for some (x ′

α, x ′
β) ∈ U∩ B{β} and some z ∈ dβ(x ′

α, x ′
β),

yβ ∈ co{w ∈ X : (yα,w) �β (x ′
α, z)}.

Given the definition of B{β}, we conclude that there exists x∗ ∈ X such that (x∗, x∗)
is not a Nash equilibrium of G∗ and the following holds: for every neighborhoodU of
(x∗, x∗) in X × X and every co-closed correspondence (dα, dβ) : U → X × X with
nonempty values, there exists a y∗ ∈ X with (y∗, y∗) ∈ U such that for some x ′ ∈ X
satisfying (x ′, x ′) ∈ U and some z ∈ dβ(x ′, x ′),

y∗ ∈ co{w ∈ X : (y∗, w) �β (x ′, z)}.

Step 2 Note that x∗ is not a Nash equilibrium of G since (x∗, x∗) is not a Nash
equilibriumofG∗. Applying surrogate correspondence security* (Definition 16), there
exists an open set V containing x∗ and a co-closed correspondence δ : V → X such
that the following holds: for every y ∈ V there exists a player j such that

y j /∈ co{w j ∈ X j : f j (ζ j , ξ) ≤ f j (w j , y)}

whenever ξ ∈ V and ζ j ∈ δ j (ξ). LetU := V × V and define (dα(x, y), dβ(x, y)) :=
(δ(x), δ(y)) for all (x, y) ∈ V × V . Then, U is an open set in X × X containing
(x∗, x∗) and it is easily verified that (dα, dβ) : U → X × X is co-closed with
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nonempty values. Applying Step 1, there exists y∗ ∈ V such that for some x ′ ∈ V
and some z ∈ dβ(x ′, x ′),

y∗ ∈ co{w ∈ X : (y∗, w) �β (x ′, z)}. (3)

Since y∗ ∈ V , x ′ ∈ V , and zi ∈ δi (x ′) for each i , it follows that there exists a player
j such that

y∗ /∈ co{w j ∈ X j : f j (z j , x
′) ≤ f j (w j , y

∗)}. (4)

Since

co{w ∈ X : (y∗, w) �β (x ′, z)} = co{w ∈ X : fi (wi , y
∗) ≥ fi (zi , x

′) for each i}

= co

(
N⋂

i=1

{w ∈ X : fi (wi , y
∗) ≥ fi (zi , x

′)}
)

⊆
N⋂

i=1

co{w ∈ X : fi (wi , y
∗) ≥ fi (zi , x

′)},

(3) implies that
y∗ ∈ co{w ∈ X : f j (w j , y

∗) ≥ f j (z j , x
′)},

contradicting (4). This establishes that the game G∗ = (X , X ,�α,�β) is correspon-
dence secure with respect to I = {β} (according to Definition 5.4 in Reny (2016a)).
Step 3 The game G∗ = (X , X ,�α,�β) satisfies the assumptions of Theorem 5.6 in
Reny (2016a). Therefore, G∗ admits a Nash equilibrium (x, x) ∈ X × X , i.e., for each
i and for all yi ∈ Xi ,

fi (xi , x) ≥ fi (yi , x) for all i .

Therefore, ϕi ((yi , x−i ), x) ≤ 0 for each i and for all yi ∈ Xi implying that x is a
Nash equilibrium in G. This last contradiction proves the theorem. �

A.2 Proof of Lemma 3

A.2.1 Preliminary lemma

Lemma 6 Suppose that the SSYMBayesian game ((Ti , Ti ), Xi , ψi , p)Ni=1 satisfies uni-
form surrogate payoff security with surrogate function H. Suppose that Hi : T ×X →
R is bounded and

(
[⊗N

j=1T j ] ⊗ [⊗N
j=1B(X j )],B(R)

)
-measurable for each i . If p is

absolutely continuouswith respect to p1⊗· · ·⊗pN , then for each i , ε > 0, and si ∈ Pi ,
then there exists s∗

i ∈ Pi such that for every σ ∈ Y , there exists a neighborhood Vσ

of σ such that

ψ i ((s
∗
i , ν−i ), ν) + H i (ν) > ψ i ((si , σ−i ), σ ) + H i (σ ) − ε, for all ν ∈ Vσ . (5)
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Proof Fix i , ε > 0, and si ∈ Pi . Let f be a density of p with respect to p1⊗· · ·⊗ pN .
To lighten the notation, let P := ⊗N

j=1 p j . Let T ∗(P) denote the P-completion of T
and let P∗ denote the unique extension of P to T ∗(P). Let

T ∗ :=
⋂

P∈
(T ,T )

T ∗(P)

denote the universal completion of T . Note that T ⊆ T ∗ ⊆ T ∗(P) and, abusing
notation slightly, wewill use P∗ for the restriction of P∗ to T ∗.Note that if h : T → R

is a bounded, (T ,B(R))-measurablemap, then h is a bounded (T ∗,B(R))-measurable
map and ∫

T
h(t)P(dt) =

∫

T
h(t)P∗(dt).

Uniform surrogate payoff security gives s∗
i ∈ Pi such that for every (t, x, y) ∈

T × X × X , there are neighborhoods Vx and Vy of x and y, respectively, such that

ψi (t, (s
∗
i (ti ), x

′−i ), y
′) + Hi (t, y

′)

> ψi (t, (si (ti ), x−i ), y) + Hi (t, y) − ε

2
,

for all (x ′, y′) ∈ Vx × Vy .

Therefore, for every (t, x, y) ∈ T × X × X , there are neighborhoods Vx and Vy of x
and y, respectively, such that

[ψi (t, (s
∗
i (ti ), x

′−i ), y
′) + Hi (t, y

′)] f (t)
≥

[
ψi (t, (si (ti ), x−i ), y) + Hi (t, y) − ε

2

]
f (t),

for all (x ′, y′) ∈ Vx × Vy .

(6)

Define ξ : T × X × X → R by

ξ(t, x, y) := sup
n∈N

inf
(x ′,y′)∈N 1

n
(x)×N 1

n
(y)

[ui (t, (s∗
i (ti ), x

′−i )) − ui (t, y
′) + Hi (t, y

′)] f (t).

Using an argument analogous to that in Step 3 of the proof of Lemma 5 in Carbonell-
Nicolau and McLean (2018), one can show that there exists an open set Vσ in Y (open
with respect to the product topology generated by the pi -narrow topology on each
factor Yi ) containing σ such that

∫

T

∫

X

∫

X
ξ(t, x, y)

⎡

⎣
N∏

j=1

ν j (dx j |t j )
⎤

⎦

⎡

⎣
N∏

j=1

ν j (dy j |t j )
⎤

⎦ P∗(dt)

>

∫

T

∫

X

∫

X
ξ(t, x, y)

⎡

⎣
N∏

j=1

σ j (dx j |t j )
⎤

⎦

⎡

⎣
N∏

j=1

σ j (dy j |t j )
⎤

⎦ P∗(dt) − ε

2

for all (ν1, . . . , νN ) ∈ Vσ .
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Because for each (t, x) ∈ T × X there are neighborhoods Vx and Vy of x and y,
respectively, such that (6) holds, (t, x, y) ∈ T × X × X implies that

[ψi (t, (s
∗
i (ti ), x−i ), y) + Hi (t, y)] f (t)

≥ ξ(t, x, y) ≥
[
ψi (t, (si (ti ), x−i ), y) + Hi (t, y) − ε

2

]
f (t).

This, together with the conclusion in the preceding paragraph, implies that for every
(ν1, .., νN ) ∈ Vσ ,

ψ i ((s
∗
i , ν−i ), ν) + H i (ν)

=
∫

T

∫

X

∫

X
[ψi (t, (s

∗
i (ti ), x−i ), y)

+ Hi (t, y)] f (t)
⎡

⎣
N∏

j=1

ν j (dx j |t j )
⎤

⎦

⎡

⎣
N∏

j=1

ν j (dy j |t j )
⎤

⎦ P(dt)

=
∫

T

∫

X

∫

X
[ψi (t, (s

∗
i (ti ), x−i ), y)

+ Hi (t, y)] f (t)
⎡

⎣
N∏

j=1

ν j (dx j |t j )
⎤

⎦

⎡

⎣
N∏

j=1

ν j (dy j |t j )
⎤

⎦ P∗(dt)

≥
∫

T

∫

X

∫

X
ξ(t, x, y)

⎡

⎣
N∏

j=1

ν j (dx j |t j )
⎤

⎦

⎡

⎣
N∏

j=1

ν j (dy j |t j )
⎤

⎦ P∗(dt)

>

∫

T

∫

X

∫

X
ξ(t, x, y)

⎡

⎣
N∏

j=1

σ j (dx j |t j )
⎤

⎦

⎡

⎣
N∏

j=1

σ j (dy j |t j )
⎤

⎦ P∗(dt) − ε

2

≥
∫

T

∫

X

∫

X

[
ψi (t, (si (ti ), x−i ), y)

+ Hi (t, y)] f (t)

⎡

⎣
N∏

j=1

σ j (dx j |t j )
⎤

⎦

⎡

⎣
N∏

j=1

σ j (dy j |t j )
⎤

⎦ P∗(dt) − ε

=
∫

T

∫

X

∫

X
[ψi (t, (si (ti ), x−i ), y)

+ Hi (t, y)] f (t)
⎡

⎣
N∏

j=1

σ j (dx j |t j )
⎤

⎦

⎡

⎣
N∏

j=1

σ j (dy j |t j )
⎤

⎦ P(dt) − ε

= ψ i ((si , σ−i ), σ ) + H i (σ ) − ε.

This establishes (5). �
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A.2.2 Proof of Lemma 3

We restate Lemma 3 here for the convenience of the reader.
Lemma 3. Suppose that the SSYM Bayesian game ((Ti , Ti ), Xi , ψi , p)Ni=1 satisfies
uniform surrogate payoff security with surrogate function H . If Hi : T × X → R is

bounded and
(
[⊗N

j=1T j ] ⊗ [⊗N
j=1B(X j )],B(R)

)
-measurable for each i , and if p is

absolutely continuous with respect to p1 ⊗ · · · ⊗ pN , then the game G� defined in
(2) is surrogate payoff secure with surrogate function H .

Proof Fix (σ, μ) ∈ Y × Y , i , and ε > 0. Let f be a density of p with respect to
P := p1 ⊗ · · · ⊗ pN . We must show that there exist σ ∗

i ∈ Yi and a neighborhood Vσ

of σ such that

ψ i ((σ
∗
i , ν−i ), ν) + H i (ν)

> ψ i ((μi , σ−i ), σ ) + H i (σ ) − ε, for every ν ∈ Vσ .
(7)

By an argument analogous to that in the proof of Lemma2 ofCarbonell-Nicolau and
McLean (2018), there exists si ∈ Pi such that ψ i ((si , σ−i ), σ ) ≥ ψ i ((μi , σ−i ), σ ) −
ε
2 . Consequently, there exists si ∈ Pi such that

ψ i ((si , σ−i ), σ ) + H i (σ ) ≥ ψ i ((μi , σ−i ), σ ) + H i (σ ) − ε

2
. (8)

By Lemma 6, there exist s∗
i ∈ Pi and a neighborhood Vσ of σ such that

ψ i ((s
∗
i , ν−i ), ν) + H i (ν) > ψ i ((si , σ−i ), σ ) + H i (σ ) − ε

2
, for all ν ∈ Vσ .

This, together with (8), gives (7) for some σ ∗
i ∈ Yi . �

A.3 Proof that the game in Example 2 satisfies surrogate better-reply security

The game was defined as G = (Xi , ui )2i=1, where for each i , Xi := [0, 2], and for
x = (x1, x2) ∈ [0, 1]2, the payoff ui is defined as follows:

ui (x1, x2) :=
{
1 − xi if xi > x−i ,

0 if xi ≤ x−i .

For x ∈ [1, 2]2 \ {(1, 1)}, define u2 ≡ 0 and

u1(x1, x2) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if 1 ≤ x1 < 2 and x2 = 2,

0 if 1 ≤ x1 < 2 and 1 ≤ x2 < 2,

2 if x1 = 2 and x2 = 2,

x2 − 1 if x1 = 2 and 1 ≤ x2 < 2.
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Everywhere else in [0, 2], the payoffs are identically zero.
Suppose that H(x) := u(x) for all x ∈ [0, 1]2 and H(x) := 0 elsewhere. Suppose

that x = (x1, x2) is not a Nash equilibrium. We consider six cases.
Case 1 x2 = 2, 0 ≤ x1 < 2. Let x1 := 2. Choose ε so that z1 < 2 and z2 > 3

2
whenever z ∈ Bε(x) (here Bε(x) represents the open neighborhood of x with radius
ε). Note that H(z) = 0 for all z ∈ Bε(x) and that (x, α) ∈ �H implies that α = 0.
Suppose that z ∈ Bε(x). Then

z2 < 2 ⇒ u1(2, z2) − u1(z1, z2) + H1(z1, z2) = (z2 − 1) − 0 + 0 >
1

2

and

z2 = 2 ⇒ u1(2, z2) − u1(z1, z2) + H1(z1, z2) = 2 − max{0, 1} + 0 ≥ 1,

implying that

inf
z∈Bε(x)

[u1(x1, z2) − u1(z1, z2) + H1(z1, z2)] > 0.

Case 2 1 < x2 < 2, 0 ≤ x1 < 2. Let x1 := 2. Choose ε so that z1 < 2 and z2 > x2+1
2

whenever z ∈ Bε(x). Note that H(z) = 0 for all z ∈ Bε(x) and that (x, α) ∈ �H

implies that α = 0. Suppose that z ∈ Bε(x). Then

u1(2, z2) − u1(z1, z2) + H1(z1, z2) = (z2 − 1) − 0 + 0 >
x2 + 1

2
− 1 = x2 − 1

2
,

implying that

inf
z∈Bε(x)

[u1(x1, z2) − u1(z1, z2) + H1(z1, z2)] > 0.

Case 3 x2 = 1, 0 ≤ x1 < 1. Choose ε so that 0 < ε < 1−x1
2 and z2 > z1 whenever

z ∈ Bε(x). Next, we claim that α2 = 0 if (x, α) ∈ �H . To see this, suppose that
(xk, u(xk)) → (x, α). Then xk2 > xk1 for all sufficiently large k. If xk2 ≥ 1, then
u2(xk) = 0. If xk2 < 1, then u2(xk) = 1 − xk2 . Therefore, u2(x

k) → 0. Now let
x2 = x1 + ε. Suppose that z ∈ Bε(x). Then 1 > x1 + ε > z1. Therefore,

z2 ≥ 1 and x1 + ε > z1

⇒ u2(z1, x1 + ε) − u2(z1, z2) + H2(z1, z2) = [1 − (x1 + ε)] − 0 + 0 >
1 − x1

2

and

z2 < 1 and x1 + ε > z1
⇒ u2(z1, x1 + ε) − u2(z1, z2) + H2(z1, z2)
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= [1 − (x1 + ε)] − (1 − z2) + (1 − z2) = 1 − (x1 + ε) >
1 − x1

2
,

implying that
inf

z∈Bε(x)
[u2(2, x2) − u1(z1, z2) + H(z1, z2)] > 0.

Case 4 0 ≤ x2 < 1, 1 < x1 ≤ 2. Choose ε so that 0 < ε < 1−x2
2 and 0 ≤ z2 < 1

and 1 < z1 ≤ 2 whenever z ∈ Bε(x). Note that H(z) = 0 for all z ∈ Bε(x) and that
(x, α) ∈ �H implies that α = 0. Suppose that z ∈ Bε(x). Then z2 < x2 + ε and
z2 < 1. Consequently,

u1(x2 + ε, z2) − u1(z1, z2) + H1(z1, z2) = [(1 − (x2 + ε)] − 0 + 0 >
1 − x2

2
,

implying that

inf
z∈Bε(x)

[u1(x1, z2) − u1(z1, z2) + H1(z1, z2)] > 0.

Case 5 0 ≤ x2 < 1, x1 = 1. Choose ε so that 0 < ε < 1−x2
2 and z1 > z2 whenever

z ∈ Bε(x). Next, we claim that α1 = 0 if (x, α) ∈ �H . To see this, suppose that
(xk, u(xk)) → (x, α). Then xk1 > xk2 for all sufficiently large k. If xk1 ≥ 1, then
u1(xk) = 0. If xk1 < 1, then u1(xk) = 1 − xk1 . Therefore, u1(x

k) → 0. Now let
x1 = x2 + ε and note that x2 + ε < 1. Suppose that z ∈ Bε(x). Then x2 + ε > z2.
Consequently,

z1 ≥ 1 and x2 + ε > z2

⇒ u1(x2 + ε, z2) − u1(z1, z2) + H1(z1, z2) = [1 − (x2 + ε)] − 0 + 0 >
1 − x2

2

and

z1 < 1 and x2 + ε > z2
⇒ u1(x2 + ε, z2) − u1(z1, z2) + H1(z1, z2)

= [1 − (x2 + ε)] − (1 − z1) + (1 − z1) >
1 − x2

2
,

implying that

inf
z∈Bε(x)

[u1(x1, z2) − u1(z1, z2) + H1(z1, z2)] > 0.

Case 6 0 ≤ x1 < 1, 0 ≤ x2 < 1. To begin, we claim that for each (x, α) ∈ �H , there
exist an i such that αi = 0. To see this, suppose that (xk, u(xk)) → (x, α). If xk1 > xk2
for all sufficiently large k, then u2(xk) = 0 for all sufficiently large k , implying that
α2 = 0.Otherwise, there exists a subsequence (xkm , u(xkm ))with xkm1 ≤ xkm2 for allm
. Consequently, u1(xkm ) = 0 for all m implying that α1 = 0. So suppose that α1 = 0.
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Choose ε so that 0 < ε < 1−x2
2 . Note that H(z) = u(z) for all z ∈ Bε(x). Now let

x1 = x2 + ε and note that x2 + ε < 1. Suppose that z ∈ Bε(x). Then x2 + ε > z2.
Consequently,

u1(x2 + ε, z2) − u2(z1, z2) + H2(z1, z2)

= [1 − (x2 + ε)] − u2(z1, z2) + u2(z1, z2) >
1 − x2

2
,

implying that

inf
z∈Bε(x)

[u1(x1, z2) − u1(z1, z2) + H1(z1, z2)] > 0.

A completely symmetric argument applies if α2 = 0, and the proof is complete.
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