Economics Letters 113 (2011) 120-123

Contents lists available at ScienceDirect

Economics Letters

journal homepage: www.elsevier.com/locate/ecolet

On strategic stability in discontinuous games

Oriol Carbonell-Nicolau*

Department of Economics, Rutgers University, 75 Hamilton Street, New Brunswick, NJ 08901, USA

ARTICLE INFO

ABSTRACT

Article history: Received 22 March 2010 Received in revised form 30 May 2011 Accepted 17 June 2011 Available online 25 June 2011

JEL classification: C72

Keywords: Infinite game Normal-form game Strategic stability Trembling-hand perfect equilibrium

1. Introduction

There are several refinements of the Nash equilibrium concept for normal-form games with finite action spaces. Some authors have studied extensions of the standard refinements to normal-form games with infinitely many strategies (e.g., perfect equilibrium (Simon and Stinchcombe, 1995; Carbonell-Nicolau, forthcoming-a-b, 2011), strategic stability (Al-Najjar, 1995), and essential stability (e.g., Yu, 1999; Zhou et al., 2007; Carbonell-Nicolau, 2010a)).

This paper examines an infinite-game generalization of Kohlberg and Mertens's (1986) strategic stability. For this notion, Al-Najjar (1995) shows that metric, compact, and continuous games possess stable sets of mixed strategies. In this paper, we extend this existence result to a class of possibly discontinuous games with the property that for generic members of this class, stable sets reduce to equilibrium points.

2. Preliminaries

A **normal-form game** is a collection $G = (X_i, u_i)_{i=1}^N$, where *N* is a finite number of players, X_i is a nonempty action space for player *i*, and $u_i : X \rightarrow \mathbb{R}$, a bounded and Borel measurable map with domain $X := \times_{i=1}^N X_i$, represents player *i*'s payoff function. When X_i

E-mail address: carbonell@econ.rutgers.edu.

We identify a class of discontinuous normal-form games whose members possess strategically stable sets, defined according to an infinite-game extension of Kohlberg and Mertens's (1986) equilibrium concept, and show that, generically, a set is stable if and only if it contains a single Nash equilibrium. © 2011 Elsevier B.V. All rights reserved.

is compact and metric for each $i \in \{1, ..., N\}$, G is called a **compact** metric game.

economics letters

The **mixed extension** of a compact metric game *G* is the game $\overline{G} = (M_i, U_i)_{i=1}^N$,

where, for each i, M_i represents the set of Borel probability measures on X_i , endowed with the weak* topology, and $U_i : M \rightarrow \mathbb{R}$ is defined by

$$U_i(\mu) := \int_X u_i \mathrm{d}\mu,$$

where $M := \times_{i=1}^{N} M_i$.

Given a compact, metric game $G = (X_i, u_i)_{i=1}^N$, the set M, together with the Prokhorov metric on M, can be viewed as a metric space.¹The Prokhorov metric on M, $\varrho : M^2 \to \mathbb{R}$, is defined as

 $\varrho(\mu, \nu) := \inf\{\varepsilon > 0 : \mu(B) \le \nu(B^{\varepsilon}) + \varepsilon \text{ and} \\ \nu(B) \le \mu(B^{\varepsilon}) + \varepsilon, \text{ for all } B\},$

where

 $B^{\varepsilon} := \{ x \in X : d(x, y) < \varepsilon \text{ for some } y \in B \},\$

and *d* denotes the metric associated with *X*.

A measure μ_i in M_i is said to be **strictly positive** if $\mu_i(O) > 0$ for every nonempty open subset *O* of X_i .

^{*} Tel.: +1 732 932 7363; fax: +1 732 932 7416.

^{0165-1765/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.econlet.2011.06.007

¹ For compact metric games, the weak^{*} topology on M coincides with the topology induced by the Prokhorov metric on M.

For each *i*, let \widehat{M}_i be the set of all strictly positive members of M_i , and define $\widehat{M} := \times_{i=1}^N \widehat{M}_i$. For $\nu = (\nu_1, \ldots, \nu_N) \in \widehat{M}$ and $\delta = (\delta_1, \ldots, \delta_N) \in [0, 1)^N$, define

 $M_i(\delta_i \nu_i) := \{\mu_i \in M_i : \mu_i \ge \delta_i \nu_i\}$

and $M(\delta v) := \times_{i=1}^{N} M_i(\delta_i v_i)$. The game

 $\overline{G}_{\delta \nu} = (M_i(\delta_i \nu_i), U_i|_{M(\delta \nu)})_{i=1}^N$

is called a **Selten perturbation** of *G*. When $\delta_1 = \cdots = \delta_N$, we slightly abuse notation and write $\overline{G}_{\delta \nu}$ with $\delta = \delta_1 = \cdots = \delta_N$. The graph of *G* is the set

 $\Gamma_G := \{ (x, \alpha) \in X \times \mathbb{R}^N : u_i(x) = \alpha_i, \text{ for all } i \}.$

The closure of Γ_G is denoted by $\overline{\Gamma}_G$.

Definition 1. Given a game $G = (X_i, u_i)_{i=1}^N$, a strategy profile $x = (x_1, \ldots, x_N) \in X$ is a **Nash equilibrium** of *G* if for each $i, u_i(x) \ge u_i(y_i, x_{-i})$ for every $y_i \in X_i$.

Given a game $G = (X_i, u_i)_{i=1}^N$, a Nash equilibrium of the mixed extension \overline{G} is called a **mixed-strategy Nash equilibrium** of *G*. By a slight abuse of terminology, we sometimes refer to a mixed-strategy Nash equilibrium of *G* simply as a Nash equilibrium of *G*.

Definition 2. A mixed-strategy profile $\mu \in M$ is a **trembling-hand perfect (thp) equilibrium** of $G = (X_i, u_i)_{i=1}^N$ if there are sequences $(\delta^n), (\nu^n)$, and (μ^n) such that $(0, 1)^N \ni \delta^n \to 0$ and $\nu^n \in \widehat{M}$ for each $n, \mu^n \to \mu$, and each μ^n is a Nash equilibrium of the perturbed game $\overline{G}_{\delta^n \nu^n}$.

Alternative definitions of trembling-hand perfection that are equivalent to Definition 2 can be found in Carbonell-Nicolau (forthcoming-b).

For $\emptyset \neq E \subseteq M$ and $\mu \in M$, define

$$\varrho(\mu, E) := \inf\{\varrho(\mu, \nu) : \nu \in E\}.$$

For $\varepsilon > 0$ and $\emptyset \neq E \subseteq M$, a profile $\mu \in M$ is said to be ε -close to *E* if $\varrho(\mu, E) < \varepsilon$.

Given a game $G = (X_i, u_i)_{i=1}^N$, let \mathscr{S}_G be the family of all nonempty closed sets E of Nash equilibria of \overline{G} with the following property: for each $\varepsilon > 0$ there exists $\alpha \in (0, 1]$ such that for each $\delta \in (0, \alpha)^N$ and every $\nu \in \widehat{M}$, the perturbed game $\overline{G}_{\delta \nu}$ has a Nash equilibrium ε -close to E.

Definition 3. A set of mixed-strategy profiles in *M* is a **stable set** of $G = (X_i, u_i)_{i=1}^N$ if it is a minimal element of the set \mathscr{S}_G ordered by set inclusion.

3. Existence of stable sets

We adapt ideas from Carbonell-Nicolau (forthcoming-a), Carbonell-Nicolau (2011), and Carbonell-Nicolau (2010a) to derive the main results. Some arguments are omitted in the interest of brevity. The reader is referred to the working paper version, Carbonell-Nicolau (2010b), of the current manuscript for details.

The following definitions are taken from Reny (1999).

Definition 4. The game $G = (X_i, u_i)_{i=1}^N$ is *better-reply secure* if for every $(x, \alpha) \in \overline{\Gamma}_G$ such that x is not a Nash equilibrium of G, there exist $i, y_i \in X_i$, a neighborhood $O_{x_{-i}}$ of x_{-i} , and $\beta \in \mathbb{R}$ such that $u_i(y_i, y_{-i}) \ge \beta > \alpha_i$ for all $y_{-i} \in O_{x_{-i}}$.

Definition 5. The game $G = (X_i, u_i)_{i=1}^N$ is **payoff secure** if for each $\varepsilon > 0, x = (x_1, \ldots, x_N) \in X$, and *i*, there exist $y_i \in X_i$ and a neighborhood $O_{x_{-i}}$ of x_{-i} such that $u_i(y_i, y_{-i}) > u_i(x) - \varepsilon$ for all $y_{-i} \in O_{x_{-i}}$.

The existence of stable sets in a game $G = (X_i, u_i)_{i=1}^N$ crucially relies on the existence of Nash equilibria in neighboring Selten perturbations of *G*.

Lemma 1. Suppose that *G* is a compact, metric game. If \overline{G} is betterreply secure and there exists $\alpha \in (0, 1)$ such that $\overline{G}_{\delta\mu}$ has a Nash equilibrium for every $(\delta, \mu) \in (0, \alpha] \times \widehat{M}$, then *G* possesses a stable set, and all stable sets of *G* contain only trembling-hand perfect equilibria, which are also Nash.

Proof. The set of Nash equilibria in \overline{G} belongs to $\mathscr{S}_{\underline{G}}$. The set of Nash equilibria in \overline{G} is nonempty and closed because \overline{G} is compact, metric, and better-reply secure (Reny, 1999, Corollary 5.2 and Remark 3.1). The proof that for each $\varepsilon > 0$ there exists $\alpha \in (0, 1]$ such that for each $\delta \in (0, \alpha)^N$ and every $\nu \in \widehat{M}, \overline{G}_{\delta\nu}$ has a Nash equilibrium ε -close to the set of Nash equilibria in \overline{G} is similar to the proof of Proposition 1 in Carbonell-Nicolau (forthcoming-a). We omit the details.

Next, every decreasing chain (E^{α}) in \mathscr{S}_G (ordered by set inclusion) has a lower bound. In fact, $\bigcap_{\alpha} E^{\alpha}$ is a lower bound for (E^{α}) . To see this, note first that the collection (E^{α}) has the finite intersection property, and therefore, since M is compact, $\bigcap_{\alpha} E^{\alpha} \neq i$ \emptyset . The set $\bigcap_{\alpha} E^{\alpha}$ is clearly a lower bound for (E^{α}) if $\bigcap_{\alpha} E^{\alpha}$ is a member of (E^{α}) . We assume that $\bigcap_{\alpha} E^{\alpha}$ is a not member of (E^{α}) and derive a contradiction. Suppose that $\bigcap_{\alpha} E^{\alpha}$ is a not member of (E^{α}) . Then, since $\bigcap_{\alpha} E^{\alpha} \neq \emptyset$, there exists $\varepsilon > 0$ such that for every $\alpha > 0$, there exist $\delta \in (0, \alpha)^N$ and $\nu \in \widehat{M}$ such that no Nash equilibrium of $\overline{G}_{\delta\nu}$ is ε -close to $\bigcap_{\alpha} E^{\alpha}$. Then, since each E^{α} is a member of \mathscr{S}_{G} , the Hausdorff distance (with respect to the Prokhorov metric) between $\bigcap_{\alpha} E^{\alpha}$ and E^{β} is bounded away from zero for every β (otherwise, for some β , the Hausdorff distance between E^{β} and $\bigcap_{\alpha} E^{\alpha}$ would lie below $\frac{\varepsilon}{2}$, and there would exist some $\alpha^* \in (0, 1]$ such that, for each $\delta \in (0, \alpha^*)^N$ and every $\nu \in \widehat{M}$, some Nash equilibrium of $\overline{G}_{\delta v}$ would be $\frac{\varepsilon}{2}$ -close to E^{β} , and therefore ε -close to $\bigcap_{\alpha} E^{\alpha}$). Because (E^{α}) is a totally ordered subset of \mathscr{S}_{G} (and hence a directed set), the map ς : $(E^{\alpha}) \rightarrow (E^{\alpha})$ defined by $\zeta(E^{\alpha}) := E^{\alpha}$ is a net in \mathscr{S}_{G} . But since ζ is a net of nonempty, closed subsets of the compact set M, and since the hyperspace of nonempty compact subsets of M is a compact, metric space relative to the Hausdorff metric, there is a subnet of ς , which we denote again by ς , that (Hausdorff) converges to some nonempty compact subset *E* of *M*. Hence, because $E = \bigcap_{\alpha} E^{\alpha}$, we see that ς (Hausdorff) converges to $E = \bigcap_{\alpha} E^{\alpha}$, which contradicts the fact that the Hausdorff distance between $\bigcap_{\alpha} E^{\alpha}$ and E^{β} is bounded away from zero for every β .

To see that $E = \bigcap_{\alpha} E^{\alpha}$, suppose first that there exists $\mu \in E \setminus (\bigcap_{\alpha} E^{\alpha})$. Then there exists α such that $\mu \in E \setminus E^{\alpha}$. But $E \subseteq E^{\alpha}$, a contradiction. To see that $E \subseteq E^{\alpha}$, note that since E^{α} is closed, $\nu \in E \setminus E^{\alpha}$ implies that $\inf\{\varrho(\nu, p) : p \in E^{\alpha}\} > 0$, so (given $\nu \in E$) the Hausdorff distance between E and E^{α} is greater than or equal to $\inf\{\varrho(\nu, p) : p \in E^{\alpha}\}$. Hence, for all $E^{\beta} \subseteq E^{\alpha}$, the Hausdorff distance between E and E^{β} is greater than or equal to $\inf\{\varrho(\nu, p) : p \in E^{\alpha}\} > 0$, thereby contradicting that the net ς (Hausdorff) converges to E.

Next, suppose that there exists $\mu \in (\bigcap_{\alpha} E^{\alpha}) \setminus E$. Then, since *E* is closed, $\inf\{\varrho(\mu, \nu) : \nu \in E\} > 0$. Now, since ς (Hausdorff) converges to *E*, there exists β such that the Hausdorff distance between E^{β} and *E*, call it *h*, is less than $\inf\{\varrho(\mu, \nu) : \nu \in E\}$. But $\mu \in E^{\beta}$ (since $\mu \in \bigcap_{\alpha} E^{\alpha}$), and therefore

$$\inf\{\varrho(\mu,\nu):\nu\in E\}\leq \max\{\sup_{p\in E^\beta}\inf_{\nu\in E}\varrho(p,\nu),\sup_{\nu\in E}\inf_{p\in E^\beta}\varrho(p,\nu)\}=h,$$

a contradiction.

Since $\bigcap_{\alpha} E^{\alpha}$ is a lower bound for (E^{α}) (and (E^{α}) was arbitrary), we conclude that every decreasing chain has a lower bound. Consequently, Zorn's lemma gives a minimal element E^* of \mathscr{S}_{G} ,

i.e., a stable set of G. Finally, it is easily seen that each element of E^* is a *thp* equilibrium of *G*. Hence, by Proposition 1 of Carbonell-Nicolau (forthcoming-a), the members of E^* are also Nash equilibria of G.

In light of Lemma 1, we seek conditions on the data of a game $G = (X_i, u_i)_{i=1}^N$ that ensure the existence of Nash equilibria in neighboring Selten perturbations of G.

Condition (B). For each *i* and every $\varepsilon > 0$, there is a sequence (f_k) of Borel measurable maps $f_k : X_i \to X_i$ such that the following is satisfied:

- (a) For each $(x_i, x_{-i}) \in X_i \times X_{-i}$ and each k, there is a neighborhood $O_{x_{-i}}$ of x_{-i} for which $u_i(f_k(x_i), y_{-i}) > u_i(x_i, x_{-i}) - \varepsilon$ for all $y_{-i} \in O_{x_{-i}}$.
- (b) For each $(x_i, x_{-i}) \in X_i \times X_{-i}$, there exists a real number $K_{(x_i, x_{-i})}$ such that for each $k \ge K_{(x_i, x_{-i})}$, there is a neighborhood $O_{x_{-i}}$ of x_{-i} such that $u_i(f_k(x_i), y_{-i}) < u_i(x_i, y_{-i}) + \varepsilon$ for all $y_{-i} \in O_{x_{-i}}$.

We omit the proof of the following lemma, which is an adaptation of the argument used in Carbonell-Nicolau (forthcoming-a) to prove Lemma 4. The details appear in Carbonell-Nicolau (2010b).

Lemma 2. Suppose that a compact, metric game G satisfies Condition (B). Then $\overline{G}_{\delta\mu}$ is payoff secure for every $(\delta, \mu) \in [0, 1) \times \widehat{M}$.

We are now ready to state and prove the first main result.

Theorem 1. Suppose that $G = (X_i, u_i)_{i=1}^N$ is compact, metric, and satisfies Condition (B). Suppose further that $\sum_{i=1}^{N} u_i$ is upper semicontinuous. Then G has a stable set, and all stable sets of G contain only trembling-hand perfect equilibria, which are also Nash.

Proof. Suppose that $G = (X_i, u_i)_{i=1}^N$ is compact, metric, and satisfies Condition (B). Suppose further that $\sum_{i=1}^{N} u_i$ is upper semicontinuous. By Lemma 2, $\overline{G}_{\delta\mu}$ is payoff secure for every $(\delta, \mu) \in [0, 1) \times \widehat{M}$. Further, since $\sum_{i=1}^{N} u_i$ is upper semicontinuous, so is $\sum_{i=1}^{N} U_i$. Consequently, by Proposition 3.2 in Reny (1999), $\overline{G}_{\delta\mu}$ is better-reply secure for every $(\delta, \mu) \in [0, 1) \times \widehat{M}$, and hence by Corollary 3.3 in Reny (1999), $\overline{G}_{\delta\mu}$ possesses a Nash equilibrium for every $(\delta, \mu) \in (0, 1) \times \widehat{M}$. Now apply Lemma 1. \Box

Remark 1. Carbonell-Nicolau (forthcoming-a) proves the existence of thp equilibria in a superset of the set of compact, metric games satisfying Condition (B) and upper semicontinuity of the sum of payoffs. It can be shown that this superset contains games *G* for which the following is true: given any $\mu \in \widehat{M}$ and $\delta \in (0, 1)^N$, there are many ρ arbitrarily close to μ such that $\overline{G}_{\delta\rho}$ fails payoff security and better-reply security. Consequently, proving that stable sets exist within the larger class considered in Carbonell-Nicolau (forthcoming-a) poses difficulties.

4. Generic games

This section provides conditions under which stable sets reduce to equilibrium points.

The following definition appears in Monteiro and Page (2007).

Definition 6. The game *G* is *uniformly payoff secure* if for each $i, \varepsilon > 0$, and $x_i \in X_i$, there exists $y_i \in X_i$ such that for every $x_{-i} \in X_{-i}$, there is a neighborhood $O_{x_{-i}}$ of x_{-i} such that $u_i(y_i, y_{-i}) > 0$ $u_i(x_i, x_{-i}) - \varepsilon$ for all $y_{-i} \in O_{x_{-i}}$.

For fixed action spaces X_1, \ldots, X_N , and letting $X := \times_i X_i$, consider the following classes of games:

- The class \mathfrak{g}_X^c of compact, metric games $(X_i, u_i)_{i=1}^N$ with u_i continuous for each *i*.
- The class g_X^u of compact, metric, and uniformly payoff secure
- **•** The class \mathfrak{g}_X of compact, metric games $(X_i, u_i)_{i=1}^N$ with $\sum_{i=1}^N u_i$ upper semicontinuous. The class \mathfrak{g}_X of compact, metric games $(X_i, u_i)_{i=1}^N$ satisfying Condition (B) and upper semicontinuity of $\sum_{i=1}^N u_i$.

It is clear that $\mathfrak{g}_X^c \subseteq \mathfrak{g}_X^u \supseteq \mathfrak{g}_X$. We view $\mathfrak{g}_X^c, \mathfrak{g}_X^u$, and \mathfrak{g}_X as metric subspaces of the metric space $(B(X)^N, \rho_X)$, where B(X) represents the set of bounded maps $f : X \rightarrow \mathbb{R}$, with associated metric $\rho_X : B(X)^N \times B(X)^N \to \mathbb{R}$ defined by

$$\rho_X((u_1,\ldots,u_N),(f_1,\ldots,f_N)) := \sum_{i=1}^N \sup_{x\in X} |u_i(x) - f_i(x)|.$$

Definition 7. Given a class of games $g \subseteq B(X)^N$ and $G \in g$, a Nash equilibrium μ of \overline{G} is an essential equilibrium of G relative to g if for every neighborhood O_{μ} of μ there is a neighborhood O_{G} of G such that for every $g \in O_G \cap \mathfrak{g}$, O_μ contains a mixed-strategy Nash equilibrium of g.

Theorem 2 (*Zhou et al., 2007, Theorem 1*). For any *G* in a dense \mathcal{G}_{δ} subset of g_X^c , any mixed-strategy Nash equilibrium of G is essential relative to $\mathfrak{g}_{\mathbf{x}}^{c}$.

It is easy to show, using Theorem 2, that for generic elements G of \mathfrak{g}_X^c (i.e., for any G in a dense \mathfrak{g}_{δ} subset of \mathfrak{g}_X^c), any $\{\mu\}$ is stable for

every mixed-strategy Nash equilibrium μ of G. In fact, given $\delta \in [0, 1)^N$ and $\mu \in \widehat{M}$, a carefully chosen perturbation of any G in \mathfrak{g}_{X}^{c} has a mixed extension that "coincides" with $\overline{G}_{\delta\mu}$. To see this, consider the mixed extension of the game

$$G_{(\delta,\mu)} = (X_i, u_i^{(\delta,\mu)})_{i=1}^N,$$

where $u_i^{(\delta,\mu)} : X \to \mathbb{R}$ is defined by

$$u_i^{(0,\mu)}(x) := U_i((1-\delta_1)x_1 + \delta_1\mu_1, \dots, (1-\delta_N)x_N + \delta_N\mu_N).$$

Here, $(1 - \delta_i)x_i + \delta_i\mu_i$ is a member of M_i defined by $((1 - \delta_i)x_i + \delta_i\mu_i)x_i$ $\delta_i \mu_i (B_i) := (1 - \delta_i) \delta_{x_i}(B_i) + \delta_i \mu_i(B_i)$, where δ_{x_i} denotes the Dirac measure on X_i with support $\{x_i\}$. Observe that given a Nash equilibrium $(\sigma_1, \ldots, \sigma_N)$ in the mixed extension of $G_{(\delta,\mu)}$, $((1 - \alpha_1))$ $\delta_1 \sigma_1 + \delta_1 \mu_1, \dots, (1 - \delta_N) \sigma_N + \delta_N \mu_N$ is a Nash equilibrium of $\overline{G}_{\delta\mu}$. Moreover, $G_{(\delta,\mu)}$ is a perturbation of G in \mathfrak{g}_X^c . Consequently, by Theorem 2, for a generic game G (in \mathfrak{g}_{χ}^{c}) any singleton set of mixed-strategy Nash equilibria is stable. In addition, by Theorem 1, all stable sets of G contain only thp equilibria, which are also Nash.

In light of the following extension of Theorem 2 to the superset \mathfrak{g}_{X}^{u} of \mathfrak{g}_{X}^{c} , it is natural to ask whether a similar result can be obtained for the class g_x^u .

Theorem 3 (Carbonell-Nicolau, 2010a, Corollary 1). For any G in a dense \mathfrak{G}_{δ} subset of \mathfrak{g}^u_X , any mixed-strategy Nash equilibrium of G is essential relative to \mathfrak{g}_X^u .

Unfortunately, given $G \in \mathfrak{g}_X^u \setminus \mathfrak{g}_X^c$, the perturbation $G_{(\delta,\mu)}$ need not lie in \mathfrak{g}_X^u (Carbonell-Nicolau, forthcoming-a, Example 3), so that even an essential game in \mathfrak{g}_{χ}^{u} (i.e., a game whose mixedstrategy Nash equilibria are all essential) cannot be guaranteed to have stable singleton sets of mixed-strategy Nash equilibria via Theorem 3. Nevertheless, the genericity result extends to the class g_X . To see this, the following observations are essential (for their proofs, the reader is referred to Carbonell-Nicolau (2010b)).

Lemma 3. Suppose that G is a compact, metric game satisfying Condition (B). Then, for every $(\delta, \mu) \in [0, 1)^N \times M$, $G_{(\delta, \mu)}$ is a compact, metric game satisfying Condition (B).

Lemma 4. Suppose that $\mathfrak{g} \subseteq \mathfrak{g}_X^u$ and \mathfrak{g} is closed in $B(X)^N$. Then, for any *G* in a dense \mathfrak{g}_{δ} subset of \mathfrak{g} , any mixed-strategy Nash equilibrium of G is essential relative to g.

Lemma 5. The set \mathfrak{g}_X is closed in $B(X)^N$.

Lemma 3 and upper semicontinuity of $\sum_{i=1}^{N} u_i$ imply that, given $G \in \mathfrak{g}_X$ and $(\delta, \mu) \in [0, 1)^N \times \widehat{M}$, we have $G_{(\delta,\mu)} \in \mathfrak{g}_X$ (upper semicontinuity of $\sum_{i=1}^{N} u_i^{(\delta,\mu)}$ is implied by that of $\sum_{i=1}^{N} U_i$, which, in turn, follows from upper semicontinuity of $\sum_{i=1}^{N} u_i$).

We are now ready to prove our second main result. Because $g_X \subseteq g_X^u$ is closed in $B(X)^N$ (Lemma 5), Lemma 4 implies that for any G in a dense g_{δ} subset of g_X , any mixed-strategy Nash equilibrium of G is essential relative to g_X . Therefore, since, given $\delta \in [0, 1)^N$ and $\mu \in \widehat{M}$, $G_{(\delta,\mu)}$ is a perturbation of G in g_X , and because $((1 - \delta_1)\sigma_1 + \delta_1\mu_1, \ldots, (1 - \delta_N)\sigma_N + \delta_N\mu_N)$ is a Nash equilibrium of $\overline{G}_{\delta\mu}$ whenever $(\sigma_1, \ldots, \sigma_N)$ is a Nash equilibrium of the mixed extension of $G_{(\delta,\mu)}$, for a generic game G in g_X (i.e., for any G in a dense g_{δ} subset of g_X) any singleton set of mixed-strategy Nash equilibria is stable. In addition, by Theorem 1, all stable sets of G contain only *thp* equilibria, which are also Nash. Finally, it is easy to see that any stable set of G is a singleton set of mixed-strategy Nash equilibria.

Theorem 4. For any G in a dense g_{δ} subset of g_X , a set is stable if and only if it contains a single mixed-strategy Nash equilibrium of G.

Acknowledgment

The author would like to thank an anonymous referee for his/her helpful comments.

References

- Al-Najjar, N., 1995. Strategically stable equilibria in games with infinitely many pure strategies. Mathematical Social Sciences 29, 151–164.
- Carbonell-Nicolau, O., 2010a. Essential equilibria in normal-form games. Journal of Economic Theory 145, 421–431.
- Carbonell-Nicolau, O., 2010b. On strategic stability in discontinuous games. Mimeo. Carbonell-Nicolau, O., 2011. On the existence of pure-strategy perfect equilibrium in discontinuous games. Games and Economic Behavior 71, 23–48.
- Carbonell-Nicolau, O., The existence of perfect equilibrium in discontinuous games. Games (forthcoming-a).
- Carbonell-Nicolau, O., Perfect and limit admissible perfect equilibria in discontinuous games. Journal of Mathematical Economics (forthcoming-b).
- Kohlberg, E., Mertens, J.-F., 1986. On the strategic stability of equilibria. Econometrica 54, 1003-1037.
- Monteiro, P.K., Page, F.H., 2007. Uniform payoff security and Nash equilibrium in compact games. Journal of Economic Theory 134, 566–575.
- Reny, P.J., 1999. On the existence of pure and mixed strategy Nash equilibria in discontinuous games. Econometrica 67, 1029–1056.
- Simon, L.K., Stinchcombe, M.B., 1995. Equilibrium refinement for infinite normalform games. Econometrica 63, 1421–1443.
- Yu, J., 1999. Essential equilibria of *n*-person noncooperative games. Journal of Mathematical Economics 31, 361–372.
- Zhou, Y.-H., Yu, J., Xiang, S.-W., 2007. Essential stability in games with infinitely many pure strategies. International Journal of Game Theory 35, 493–503.