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a b s t r a c t

We identify a class of discontinuous normal-form gameswhosemembers possess strategically stable sets,
defined according to an infinite-game extension of Kohlberg and Mertens’s (1986) equilibrium concept,
and show that, generically, a set is stable if and only if it contains a single Nash equilibrium.
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1. Introduction

There are several refinements of the Nash equilibrium con-
cept for normal-form games with finite action spaces. Some au-
thors have studied extensions of the standard refinements to
normal-form games with infinitely many strategies (e.g., perfect
equilibrium (Simon and Stinchcombe, 1995; Carbonell-Nicolau,
forthcoming-a-b, 2011), strategic stability (Al-Najjar, 1995), and
essential stability (e.g., Yu, 1999; Zhou et al., 2007; Carbonell-
Nicolau, 2010a)).

This paper examines an infinite-game generalization of
Kohlberg and Mertens’s (1986) strategic stability. For this no-
tion, Al-Najjar (1995) shows that metric, compact, and continuous
games possess stable sets of mixed strategies. In this paper, we ex-
tend this existence result to a class of possibly discontinuous games
with the property that for genericmembers of this class, stable sets
reduce to equilibrium points.

2. Preliminaries

A normal-form game is a collection G = (Xi, ui)
N
i=1, where N is

a finite number of players, Xi is a nonempty action space for player
i, and ui : X → R, a bounded and Borel measurable map with
domainX := ×

N
i=1 Xi, represents player i’s payoff function.WhenXi
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is compact andmetric for each i ∈ {1, . . . ,N},G is called a compact
metric game.

The mixed extension of a compact metric game G is the game
G = (Mi,Ui)

N
i=1,

where, for each i,Mi represents the set of Borel probability
measures on Xi, endowed with the weak* topology, and Ui : M →

R is defined by

Ui(µ) :=


X
uidµ,

where M := ×
N
i=1 Mi.

Given a compact, metric game G = (Xi, ui)
N
i=1, the set M ,

together with the Prokhorov metric on M , can be viewed as a
metric space.1The Prokhorov metric onM, ϱ : M2

→ R, is defined
as
ϱ(µ, ν) := inf{ε > 0 : µ(B) ≤ ν(Bε) + ε and

ν(B) ≤ µ(Bε) + ε, for all B},
where
Bε

:= {x ∈ X : d(x, y) < ε for some y ∈ B},
and d denotes the metric associated with X .

A measureµi inMi is said to be strictly positive ifµi(O) > 0 for
every nonempty open subset O of Xi.

1 For compact metric games, the weak* topology on M coincides with the
topology induced by the Prokhorov metric on M .
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For each i, let Mi be the set of all strictly positive members of
Mi, and define M := ×

N
i=1

Mi. For ν = (ν1, . . . , νN) ∈ M and
δ = (δ1, . . . , δN) ∈ [0, 1)N , define

Mi(δiνi) := {µi ∈ Mi : µi ≥ δiνi}

andM(δν) := ×
N
i=1 Mi(δiνi). The game

Gδν = (Mi(δiνi),Ui|M(δν))
N
i=1

is called a Selten perturbation of G. When δ1 = · · · = δN , we
slightly abuse notation and write Gδν with δ = δ1 = · · · = δN .

The graph of G is the set

ΓG := {(x, α) ∈ X × RN
: ui(x) = αi, for all i}.

The closure of ΓG is denoted by Γ G.

Definition 1. Given a game G = (Xi, ui)
N
i=1, a strategy profile

x = (x1, . . . , xN) ∈ X is a Nash equilibrium of G if for each
i, ui(x) ≥ ui(yi, x−i) for every yi ∈ Xi.

Given a game G = (Xi, ui)
N
i=1, a Nash equilibrium of the mixed

extension G is called a mixed-strategy Nash equilibrium of G. By
a slight abuse of terminology, we sometimes refer to a mixed-
strategy Nash equilibrium of G simply as a Nash equilibrium of G.

Definition 2. Amixed-strategy profileµ ∈ M is a trembling-hand
perfect (thp) equilibrium of G = (Xi, ui)

N
i=1 if there are sequences

(δn), (νn), and (µn) such that (0, 1)N ∋ δn
→ 0 and νn

∈ M for
each n, µn

→ µ, and each µn is a Nash equilibrium of the per-
turbed game Gδnνn .

Alternative definitions of trembling-hand perfection that are
equivalent to Definition 2 can be found in Carbonell-Nicolau
(forthcoming-b).

For ∅ ≠ E ⊆ M and µ ∈ M , define

ϱ(µ, E) := inf{ϱ(µ, ν) : ν ∈ E}.

For ε > 0 and ∅ ≠ E ⊆ M , a profile µ ∈ M is said to be ε -close to
E if ϱ(µ, E) < ε.

Given a game G = (Xi, ui)
N
i=1, let SG be the family of all

nonempty closed sets E of Nash equilibria of G with the following
property: for each ε > 0 there exists α ∈ (0, 1] such that for each
δ ∈ (0, α)N and every ν ∈ M , the perturbed game Gδν has a Nash
equilibrium ε-close to E.

Definition 3. A set of mixed-strategy profiles in M is a stable set
of G = (Xi, ui)

N
i=1 if it is a minimal element of the set SG ordered by

set inclusion.

3. Existence of stable sets

We adapt ideas from Carbonell-Nicolau (forthcoming-a),
Carbonell-Nicolau (2011), and Carbonell-Nicolau (2010a) to de-
rive the main results. Some arguments are omitted in the inter-
est of brevity. The reader is referred to the working paper version,
Carbonell-Nicolau (2010b), of the current manuscript for details.

The following definitions are taken from Reny (1999).

Definition 4. The game G = (Xi, ui)
N
i=1 is better-reply secure if for

every (x, α) ∈ Γ G such that x is not a Nash equilibrium of G, there
exist i, yi ∈ Xi, a neighborhood Ox−i of x−i, and β ∈ R such that
ui(yi, y−i) ≥ β > αi for all y−i ∈ Ox−i .

Definition 5. The game G = (Xi, ui)
N
i=1 is payoff secure if for each

ε > 0, x = (x1, . . . , xN) ∈ X , and i, there exist yi ∈ Xi and a
neighborhood Ox−i of x−i such that ui(yi, y−i) > ui(x) − ε for all
y−i ∈ Ox−i .
The existence of stable sets in a game G = (Xi, ui)
N
i=1 crucially

relies on the existence of Nash equilibria in neighboring Selten
perturbations of G.

Lemma 1. Suppose that G is a compact, metric game. If G is better-
reply secure and there exists α ∈ (0, 1) such that Gδµ has a Nash
equilibrium for every (δ, µ) ∈ (0, α] × M, then G possesses a
stable set, and all stable sets of G contain only trembling-hand perfect
equilibria, which are also Nash.

Proof. The set of Nash equilibria in G belongs to SG. The set of
Nash equilibria in G is nonempty and closed because G is compact,
metric, and better-reply secure (Reny, 1999, Corollary 5.2 and
Remark 3.1). The proof that for each ε > 0 there exists α ∈ (0, 1]
such that for each δ ∈ (0, α)N and every ν ∈ M,Gδν has a Nash
equilibrium ε-close to the set of Nash equilibria in G is similar to
the proof of Proposition 1 in Carbonell-Nicolau (forthcoming-a).
We omit the details.

Next, every decreasing chain (Eα) in SG (ordered by set
inclusion) has a lower bound. In fact,


α Eα is a lower bound for

(Eα). To see this, note first that the collection (Eα) has the finite
intersection property, and therefore, sinceM is compact,


α Eα

≠

∅. The set


α Eα is clearly a lower bound for (Eα) if


α Eα is a
member of (Eα). We assume that


α Eα is a not member of (Eα)

and derive a contradiction. Suppose that


α Eα is a not member
of (Eα). Then, since


α Eα

≠ ∅, there exists ε > 0 such that
for every α > 0, there exist δ ∈ (0, α)N and ν ∈ M such that
no Nash equilibrium of Gδν is ε-close to


α Eα . Then, since each

Eα is a member of SG, the Hausdorff distance (with respect to the
Prokhorov metric) between


α Eα and Eβ is bounded away from

zero for every β (otherwise, for some β , the Hausdorff distance
between Eβ and


α Eα would lie below ε

2 , and there would exist
some α∗

∈ (0, 1] such that, for each δ ∈ (0, α∗)N and every ν ∈ M ,
someNash equilibriumofGδν would be ε

2 -close to E
β , and therefore

ε-close to


α Eα). Because (Eα) is a totally ordered subset of SG
(and hence a directed set), the map ς : (Eα) → (Eα) defined
by ς(Eα) := Eα is a net in SG. But since ς is a net of nonempty,
closed subsets of the compact set M , and since the hyperspace
of nonempty compact subsets of M is a compact, metric space
relative to the Hausdorff metric, there is a subnet of ς , which we
denote again by ς , that (Hausdorff) converges to some nonempty
compact subset E of M . Hence, because E =


α Eα , we see that

ς (Hausdorff) converges to E =


α Eα , which contradicts the
fact that the Hausdorff distance between


α Eα and Eβ is bounded

away from zero for every β .
To see that E =


α Eα , suppose first that there exists µ ∈

E \ (


α Eα). Then there exists α such that µ ∈ E \ Eα . But E ⊆ Eα ,
a contradiction. To see that E ⊆ Eα , note that since Eα is closed,
ν ∈ E \ Eα implies that inf{ϱ(ν, p) : p ∈ Eα

} > 0, so (given
ν ∈ E) the Hausdorff distance between E and Eα is greater than
or equal to inf{ϱ(ν, p) : p ∈ Eα

}. Hence, for all Eβ
⊆ Eα , the

Hausdorff distance between E and Eβ is greater than or equal to
inf{ϱ(ν, p) : p ∈ Eα

} > 0, thereby contradicting that the net ς
(Hausdorff) converges to E.

Next, suppose that there exists µ ∈ (


α Eα) \ E. Then, since
E is closed, inf{ϱ(µ, ν) : ν ∈ E} > 0. Now, since ς (Hausdorff)
converges to E, there exists β such that the Hausdorff distance
between Eβ and E, call it h, is less than inf{ϱ(µ, ν) : ν ∈ E}. But
µ ∈ Eβ (since µ ∈


α Eα), and therefore

inf{ϱ(µ, ν) : ν ∈ E} ≤ max{sup
p∈Eβ

inf
ν∈E

ϱ(p, ν), sup
ν∈E

inf
p∈Eβ

ϱ(p, ν)} = h,

a contradiction.
Since


α Eα is a lower bound for (Eα) (and (Eα) was arbitrary),

we conclude that every decreasing chain has a lower bound.
Consequently, Zorn’s lemma gives a minimal element E∗ of SG,
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i.e., a stable set of G. Finally, it is easily seen that each element
of E∗ is a thp equilibrium of G. Hence, by Proposition 1 of
Carbonell-Nicolau (forthcoming-a), the members of E∗ are also
Nash equilibria of G. �

In light of Lemma 1, we seek conditions on the data of a game
G = (Xi, ui)

N
i=1 that ensure the existence of Nash equilibria in

neighboring Selten perturbations of G.

Condition (B). For each i and every ε > 0, there is a sequence (fk)
of Borel measurable maps fk : Xi → Xi such that the following is
satisfied:

(a) For each (xi, x−i) ∈ Xi×X−i and each k, there is a neighborhood
Ox−i of x−i for which ui(fk(xi), y−i) > ui(xi, x−i) − ε for all
y−i ∈ Ox−i .

(b) For each (xi, x−i) ∈ Xi × X−i, there exists a real number K(xi,x−i)

such that for each k ≥ K(xi,x−i), there is a neighborhood Ox−i of
x−i such that ui(fk(xi), y−i) < ui(xi, y−i) + ε for all y−i ∈ Ox−i .

We omit the proof of the following lemma, which is an adapta-
tion of the argument used in Carbonell-Nicolau (forthcoming-a) to
prove Lemma 4. The details appear in Carbonell-Nicolau (2010b).

Lemma 2. Suppose that a compact, metric game G satisfies Condition
(B). Then Gδµ is payoff secure for every (δ, µ) ∈ [0, 1) × M.

We are now ready to state and prove the first main result.

Theorem 1. Suppose that G = (Xi, ui)
N
i=1 is compact, metric,

and satisfies Condition (B). Suppose further that
N

i=1 ui is upper
semicontinuous. ThenGhas a stable set, and all stable sets of G contain
only trembling-hand perfect equilibria, which are also Nash.

Proof. Suppose that G = (Xi, ui)
N
i=1 is compact, metric, and sat-

isfies Condition (B). Suppose further that
N

i=1 ui is upper semi-
continuous. By Lemma 2, Gδµ is payoff secure for every (δ, µ) ∈

[0, 1) × M . Further, since
N

i=1 ui is upper semicontinuous, so isN
i=1 Ui. Consequently, by Proposition 3.2 in Reny (1999), Gδµ is

better-reply secure for every (δ, µ) ∈ [0, 1) × M , and hence by
Corollary 3.3 in Reny (1999), Gδµ possesses a Nash equilibrium for
every (δ, µ) ∈ (0, 1) × M . Now apply Lemma 1. �

Remark 1. Carbonell-Nicolau (forthcoming-a) proves the exis-
tence of thp equilibria in a superset of the set of compact, met-
ric games satisfying Condition (B) and upper semicontinuity of the
sum of payoffs. It can be shown that this superset contains games
G for which the following is true: given anyµ ∈ M and δ ∈ (0, 1)N ,
there aremany ρ arbitrarily close toµ such that Gδρ fails payoff se-
curity and better-reply security. Consequently, proving that stable
sets exist within the larger class considered in Carbonell-Nicolau
(forthcoming-a) poses difficulties.

4. Generic games

This section provides conditions underwhich stable sets reduce
to equilibrium points.

The following definition appears in Monteiro and Page (2007).

Definition 6. The game G is uniformly payoff secure if for each
i, ε > 0, and xi ∈ Xi, there exists yi ∈ Xi such that for every
x−i ∈ X−i, there is a neighborhoodOx−i of x−i such that ui(yi, y−i) >
ui(xi, x−i) − ε for all y−i ∈ Ox−i .

For fixed action spaces X1, . . . , XN , and letting X := ×i Xi,
consider the following classes of games:
• The class gcX of compact, metric games (Xi, ui)
N
i=1 with ui

continuous for each i.
• The class guX of compact, metric, and uniformly payoff secure

games (Xi, ui)
N
i=1 with

N
i=1 ui upper semicontinuous.

• The class gX of compact, metric games (Xi, ui)
N
i=1 satisfying

Condition (B) and upper semicontinuity of
N

i=1 ui.
It is clear that gcX ⊆ guX ⊇ gX . We view gcX , guX , and gX as metric

subspaces of the metric space (B(X)N , ρX ), where B(X) represents
the set of bounded maps f : X → R, with associated metric
ρX : B(X)N × B(X)N → R defined by

ρX ((u1, . . . , uN), (f1, . . . , fN)) :=

N
i=1

sup
x∈X

|ui(x) − fi(x)|.

Definition 7. Given a class of games g ⊆ B(X)N and G ∈ g, a Nash
equilibrium µ of G is an essential equilibrium of G relative to g
if for every neighborhood Oµ of µ there is a neighborhood OG of G
such that for every g ∈ OG ∩ g,Oµ contains a mixed-strategy Nash
equilibrium of g .

Theorem 2 (Zhou et al., 2007, Theorem 1). For any G in a dense Gδ

subset of gcX , any mixed-strategy Nash equilibrium of G is essential
relative to gcX .

It is easy to show, using Theorem 2, that for generic elements G
of gcX (i.e., for any G in a dense Gδ subset of gcX ), any {µ} is stable for
every mixed-strategy Nash equilibrium µ of G.

In fact, given δ ∈ [0, 1)N and µ ∈ M , a carefully chosen
perturbation of any G in gcX has a mixed extension that ‘‘coincides’’
with Gδµ. To see this, consider the mixed extension of the game

G(δ,µ) = (Xi, u
(δ,µ)

i )Ni=1,

where u(δ,µ)

i : X → R is defined by

u(δ,µ)

i (x) := Ui((1 − δ1)x1 + δ1µ1, . . . , (1 − δN)xN + δNµN).

Here, (1 − δi)xi + δiµi is a member of Mi defined by ((1 − δi)xi +
δiµi)(Bi) := (1 − δi)δxi(Bi) + δiµi(Bi), where δxi denotes the
Dirac measure on Xi with support {xi}. Observe that given a Nash
equilibrium (σ1, . . . , σN) in the mixed extension of G(δ,µ), ((1 −

δ1)σ1 + δ1µ1, . . . , (1 − δN)σN + δNµN) is a Nash equilibrium of
Gδµ. Moreover, G(δ,µ) is a perturbation of G in gcX . Consequently,
by Theorem 2, for a generic game G (in gcX ) any singleton set of
mixed-strategy Nash equilibria is stable. In addition, by Theorem1,
all stable sets of G contain only thp equilibria, which are also Nash.

In light of the following extension of Theorem 2 to the superset
guX of gcX , it is natural to askwhether a similar result can be obtained
for the class guX .

Theorem 3 (Carbonell-Nicolau, 2010a, Corollary 1). For any G in a
dense Gδ subset of guX , any mixed-strategy Nash equilibrium of G is
essential relative to guX .

Unfortunately, given G ∈ guX \ gcX , the perturbation G(δ,µ)

need not lie in guX (Carbonell-Nicolau, forthcoming-a, Example 3),
so that even an essential game in guX (i.e., a game whose mixed-
strategy Nash equilibria are all essential) cannot be guaranteed to
have stable singleton sets of mixed-strategy Nash equilibria via
Theorem 3. Nevertheless, the genericity result extends to the class
gX . To see this, the following observations are essential (for their
proofs, the reader is referred to Carbonell-Nicolau (2010b)).

Lemma 3. Suppose that G is a compact, metric game satisfying Con-
dition (B). Then, for every (δ, µ) ∈ [0, 1)N × M,G(δ,µ) is a compact,
metric game satisfying Condition (B).

Lemma 4. Suppose that g ⊆ guX and g is closed in B(X)N . Then, for
any G in a dense Gδ subset of g, any mixed-strategy Nash equilibrium
of G is essential relative to g.
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Lemma 5. The set gX is closed in B(X)N .

Lemma 3 and upper semicontinuity of
N

i=1 ui imply that, given
G ∈ gX and (δ, µ) ∈ [0, 1)N × M , we have G(δ,µ) ∈ gX (upper
semicontinuity of

N
i=1 u

(δ,µ)

i is implied by that of
N

i=1 Ui, which,
in turn, follows from upper semicontinuity of

N
i=1 ui).

We are now ready to prove our second main result. Because
gX ⊆ guX is closed in B(X)N (Lemma 5), Lemma 4 implies that
for any G in a dense Gδ subset of gX , any mixed-strategy Nash
equilibrium of G is essential relative to gX . Therefore, since, given
δ ∈ [0, 1)N and µ ∈ M , G(δ,µ) is a perturbation of G in gX , and
because ((1 − δ1)σ1 + δ1µ1, . . . , (1 − δN)σN + δNµN) is a Nash
equilibrium of Gδµ whenever (σ1, . . . , σN) is a Nash equilibrium of
themixed extension ofG(δ,µ), for a generic gameG in gX (i.e., for any
G in a dense Gδ subset of gX ) any singleton set of mixed-strategy
Nash equilibria is stable. In addition, by Theorem1, all stable sets of
G contain only thp equilibria, which are also Nash. Finally, it is easy
to see that any stable set of G is a singleton set of mixed-strategy
Nash equilibria.

Theorem 4. For any G in a dense Gδ subset of gX , a set is stable
if and only if it contains a single mixed-strategy Nash equilibrium
of G.
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